Exemple #1
0
    def __init__(self, im, init_rect, config=TrackerConfig(), gpu=True):
        self.gpu = gpu
        self.config = config
        self.net = DCFNet(config)
        self.net.load_param(config.feature_path)
        self.net.eval()
        if gpu:
            self.net.cuda()

        # confine results
        target_pos, target_sz = rect1_2_cxy_wh(init_rect)
        self.min_sz = np.maximum(config.min_scale_factor * target_sz, 4)
        self.max_sz = np.minimum(im.shape[:2],
                                 config.max_scale_factor * target_sz)

        # crop template
        window_sz = target_sz * (1 + config.padding)
        bbox = cxy_wh_2_bbox(target_pos, window_sz)
        patch = crop_chw(im, bbox, self.config.crop_sz)

        target = patch - config.net_average_image
        self.net.update(torch.Tensor(np.expand_dims(target, axis=0)).cuda())
        self.target_pos, self.target_sz = target_pos, target_sz
        self.patch_crop = np.zeros(
            (config.num_scale, patch.shape[0], patch.shape[1], patch.shape[2]),
            np.float32)  # buff
Exemple #2
0
class DCFNetTraker(object):
    def __init__(self, im, init_rect, config=TrackerConfig(), gpu=False):
        self.gpu = gpu
        self.config = config
        self.net = DCFNet(config)
        self.net.load_param(config.feature_path)
        self.net.eval()
        if gpu:
            self.net.cuda()

        # confine results
        target_pos, target_sz = rect1_2_cxy_wh(init_rect)
        self.min_sz = np.maximum(config.min_scale_factor * target_sz, 4)
        self.max_sz = np.minimum(im.shape[:2], config.max_scale_factor * target_sz)

        # crop template
        window_sz = target_sz * (1 + config.padding)
        bbox = cxy_wh_2_bbox(target_pos, window_sz)
        patch = crop_chw(im, bbox, self.config.crop_sz)

        target = patch - config.net_average_image
        self.net.update(torch.Tensor(np.expand_dims(target, axis=0)).cuda())
        self.target_pos, self.target_sz = target_pos, target_sz
        self.patch_crop = np.zeros((config.num_scale, patch.shape[0], patch.shape[1], patch.shape[2]), np.float32)  # buff

    def track(self, im):
        for i in range(self.config.num_scale):  # crop multi-scale search region
            window_sz = self.target_sz * (self.config.scale_factor[i] * (1 + self.config.padding))
            bbox = cxy_wh_2_bbox(self.target_pos, window_sz)
            self.patch_crop[i, :] = crop_chw(im, bbox, self.config.crop_sz)

        search = self.patch_crop - self.config.net_average_image

        if self.gpu:
            response = self.net(torch.Tensor(search).cuda())
        else:
            response = self.net(torch.Tensor(search))
        peak, idx = torch.max(response.view(self.config.num_scale, -1), 1)
        peak = peak.data.cpu().numpy() * self.config.scale_penalties
        best_scale = np.argmax(peak)
        r_max, c_max = np.unravel_index(idx[best_scale], self.config.net_input_size)

        if r_max > self.config.net_input_size[0] / 2:
            r_max = r_max - self.config.net_input_size[0]
        if c_max > self.config.net_input_size[1] / 2:
            c_max = c_max - self.config.net_input_size[1]
        window_sz = self.target_sz * (self.config.scale_factor[best_scale] * (1 + self.config.padding))

        self.target_pos = self.target_pos + np.array([c_max, r_max]) * window_sz / self.config.net_input_size
        self.target_sz = np.minimum(np.maximum(window_sz / (1 + self.config.padding), self.min_sz), self.max_sz)

        # model update
        window_sz = self.target_sz * (1 + self.config.padding)
        bbox = cxy_wh_2_bbox(self.target_pos, window_sz)
        patch = crop_chw(im, bbox, self.config.crop_sz)
        target = patch - self.config.net_average_image
        self.net.update(torch.Tensor(np.expand_dims(target, axis=0)).cuda(), lr=self.config.interp_factor)

        return cxy_wh_2_rect1(self.target_pos, self.target_sz)  # 1-index
Exemple #3
0
                        help='tune on which dataset')
    parser.add_argument('--model', metavar='PATH', default='param.pth')
    args = parser.parse_args()

    dataset = args.dataset
    base_path = join('dataset', dataset)
    json_path = join('dataset', dataset + '.json')
    annos = json.load(open(json_path, 'r'))
    videos = sorted(annos.keys())

    use_gpu = True
    visualization = False

    # default parameter and load feature extractor network
    config = TrackerConfig()
    net = DCFNet(config)
    net.load_param(args.model)
    net.eval().cuda()

    speed = []
    # loop videos
    for video_id, video in enumerate(videos):  # run without resetting
        video_path_name = annos[video]['name']
        init_rect = np.array(annos[video]['init_rect']).astype(np.float)
        image_files = [
            join(base_path, video_path_name, 'img', im_f)
            for im_f in annos[video]['image_files']
        ]
        n_images = len(image_files)

        tic = time.time()  # time start
    output_sz = 121

    lambda0 = 1e-4
    padding = 2.0
    output_sigma_factor = 0.1

    output_sigma = crop_sz / (1 + padding) * output_sigma_factor
    y = gaussian_shaped_labels(output_sigma, [output_sz, output_sz])
    yf = torch.rfft(torch.Tensor(y).view(1, 1, output_sz, output_sz).cuda(),
                    signal_ndim=2)
    # cos_window = torch.Tensor(np.outer(np.hanning(crop_sz), np.hanning(crop_sz))).cuda()  # train without cos window


config = TrackerConfig()

model = DCFNet(config=config)
model.cuda()
gpu_num = torch.cuda.device_count()
print('GPU NUM: {:2d}'.format(gpu_num))
if gpu_num > 1:
    model = torch.nn.DataParallel(model, list(range(gpu_num))).cuda()

criterion = nn.MSELoss(size_average=False).cuda()

optimizer = torch.optim.SGD(model.parameters(),
                            args.lr,
                            momentum=args.momentum,
                            weight_decay=args.weight_decay)

target = torch.Tensor(config.y).cuda().unsqueeze(0).unsqueeze(0).repeat(
    args.batch_size * gpu_num, 1, 1, 1)  # for training