Exemple #1
0
class DriveTrain:

    ###########################################################################
    # data_path = 'path_to_drive_data'  e.g. ../data/2017-09-22-10-12-34-56'
    def __init__(self, data_path):

        model_name = data_path[data_path.rfind('/'):]  # get folder name
        model_name = model_name.strip('/')
        csv_path = data_path + '/' + model_name + '.csv'  # use it for csv file name

        self.csv_path = csv_path
        self.train_generator = None
        self.valid_generator = None
        self.train_hist = None
        self.drive = None

        self.config = Config()  #model_name)

        self.data_path = data_path
        #self.model_name = model_name

        self.drive = DriveData(self.csv_path)
        self.net_model = NetModel(data_path)
        self.image_process = ImageProcess()
        self.data_aug = DataAugmentation()

    ###########################################################################
    #
    def _prepare_data(self):

        self.drive.read()

        from sklearn.model_selection import train_test_split

        samples = list(zip(self.drive.image_names, self.drive.measurements))
        self.train_data, self.valid_data = train_test_split(
            samples, test_size=self.config.valid_rate)

        self.num_train_samples = len(self.train_data)
        self.num_valid_samples = len(self.valid_data)

        print('Train samples: ', self.num_train_samples)
        print('Valid samples: ', self.num_valid_samples)

    ###########################################################################
    #
    def _build_model(self, show_summary=True):
        def _generator(samples, batch_size=self.config.batch_size):
            num_samples = len(samples)
            while True:  # Loop forever so the generator never terminates
                samples = sklearn.utils.shuffle(samples)

                for offset in range(0, num_samples, batch_size):
                    batch_samples = samples[offset:offset + batch_size]

                    images = []
                    measurements = []

                    for image_name, measurement in batch_samples:

                        image_path = self.data_path + '/' + image_name + \
                                     self.config.fname_ext
                        image = cv2.imread(image_path)
                        image = cv2.resize(image, (self.config.image_size[0],
                                                   self.config.image_size[1]))
                        image = self.image_process.process(image)
                        images.append(image)

                        steering_angle, throttle = measurement

                        #if abs(steering_angle) < self.config.jitter_tolerance:
                        #    steering_angle = 0

                        measurements.append(steering_angle)
                        #measurements.append(steering_angle*self.config.raw_scale)

                        ###-----------------------Flipping the image-----------------------###
                        flip_image, flip_steering = self.data_aug.flipping(
                            image, steering_angle)
                        images.append(flip_image)
                        measurements.append(flip_steering)
                        '''
                        # add the flipped image of the original
                        images.append(cv2.flip(image,1))
                        #measurement = (steering_angle*-1.0, measurement[1]) 
                        measurements.append(steering_angle*-1.0)
                        #measurements.append(steering_angle*self.config.raw_scale*-1.0)
                        '''
                        ###----------------Changing the brightness of image----------------###
                        if steering_angle > 0.01 or steering_angle < -0.015:
                            bright_image = self.data_aug.brightness(image)
                            images.append(bright_image)
                            measurements.append(steering_angle)

                        ###-----------------------Shifting the image-----------------------###
                        shift_image, shift_steering = self.data_aug.shift(
                            image, steering_angle)
                        images.append(shift_image)
                        measurements.append(shift_steering)

                    X_train = np.array(images)
                    y_train = np.array(measurements)

                    if self.config.typeofModel == 4 or self.config.typeofModel == 5:
                        X_train = np.array(images).reshape(
                            -1, 1, self.config.image_size[1],
                            self.config.image_size[0],
                            self.config.image_size[2])
                        y_train = np.array(measurements).reshape(-1, 1, 1)

                    yield sklearn.utils.shuffle(X_train, y_train)

        self.train_generator = _generator(self.train_data)
        self.valid_generator = _generator(self.valid_data)

        if (show_summary):
            self.net_model.model.summary()

    ###########################################################################
    #
    def _start_training(self):

        if (self.train_generator == None):
            raise NameError('Generators are not ready.')

        ######################################################################
        # callbacks
        from keras.callbacks import ModelCheckpoint, EarlyStopping

        # checkpoint
        callbacks = []
        checkpoint = ModelCheckpoint(self.net_model.name + '.h5',
                                     monitor='val_loss',
                                     verbose=1,
                                     save_best_only=True,
                                     mode='min')
        callbacks.append(checkpoint)

        # early stopping
        earlystop = EarlyStopping(monitor='val_loss',
                                  min_delta=0,
                                  patience=0,
                                  verbose=1,
                                  mode='min')
        callbacks.append(earlystop)

        self.train_hist = self.net_model.model.fit_generator(
            self.train_generator,
            steps_per_epoch=self.num_train_samples // self.config.batch_size,
            epochs=self.config.num_epochs,
            validation_data=self.valid_generator,
            validation_steps=self.num_valid_samples // self.config.batch_size,
            verbose=1,
            callbacks=callbacks)

    ###########################################################################
    #
    def _plot_training_history(self):

        print(self.train_hist.history.keys())

        ### plot the training and validation loss for each epoch
        plt.plot(self.train_hist.history['loss'])
        plt.plot(self.train_hist.history['val_loss'])
        plt.ylabel('mse loss')
        plt.xlabel('epoch')
        plt.legend(['training set', 'validatation set'], loc='upper right')
        plt.show()

    ###########################################################################
    #
    def train(self, show_summary=True):

        self._prepare_data()
        self._build_model(show_summary)
        self._start_training()
        self.net_model.save()
        self._plot_training_history()
Exemple #2
0
class DriveTrain:
    
    ###########################################################################
    # data_path = 'path_to_drive_data'  e.g. ../data/2017-09-22-10-12-34-56/'
    def __init__(self, data_path):
        
        if data_path[-1] == '/':
            data_path = data_path[:-1]

        loc_slash = data_path.rfind('/')
        if loc_slash != -1: # there is '/' in the data path
            model_name = data_path[loc_slash + 1:] # get folder name
            #model_name = model_name.strip('/')
        else:
            model_name = data_path
        csv_path = data_path + '/' + model_name + const.DATA_EXT  # use it for csv file name 
        
        self.csv_path = csv_path
        self.train_generator = None
        self.valid_generator = None
        self.train_hist = None
        self.drive = None
        
        #self.config = Config() #model_name)
        
        self.data_path = data_path
        #self.model_name = model_name
        
        self.drive = DriveData(self.csv_path)
        self.net_model = NetModel(data_path)
        self.image_process = ImageProcess()
        self.data_aug = DataAugmentation()
        
        
    ###########################################################################
    #
    def _prepare_data(self):
    
        self.drive.read()
        
        from sklearn.model_selection import train_test_split
        
        samples = list(zip(self.drive.image_names, self.drive.measurements))
        self.train_data, self.valid_data = train_test_split(samples, 
                                   test_size=Config.config['validation_rate'])
        
        self.num_train_samples = len(self.train_data)
        self.num_valid_samples = len(self.valid_data)
        
        print('Train samples: ', self.num_train_samples)
        print('Valid samples: ', self.num_valid_samples)
    
                                          
    ###########################################################################
    #
    def _build_model(self, show_summary=True):

        def _generator(samples, batch_size=Config.config['batch_size']):
            num_samples = len(samples)
            while True: # Loop forever so the generator never terminates
               
                if Config.config['lstm'] is False:
                    samples = sklearn.utils.shuffle(samples)

                for offset in range(0, num_samples, batch_size):
                    batch_samples = samples[offset:offset+batch_size]
        
                    images = []
                    measurements = []

                    for image_name, measurement in batch_samples:
                        
                        image_path = self.data_path + '/' + image_name
                        image = cv2.imread(image_path)
                        image = cv2.resize(image, 
                                           (Config.config['input_image_width'],
                                            Config.config['input_image_height']))
                        image = self.image_process.process(image)
                        images.append(image)
        
                        steering_angle, throttle = measurement
                        
                        if abs(steering_angle) < Config.config['steering_angle_jitter_tolerance']:
                            steering_angle = 0
                        
                        measurements.append(steering_angle*Config.config['steering_angle_scale'])
                        
                        if Config.config['data_aug_flip'] is True:    
                            # Flipping the image
                            flip_image, flip_steering = self.data_aug.flipping(image, steering_angle)
                            images.append(flip_image)
                            measurements.append(flip_steering*Config.config['steering_angle_scale'])
    
                        if Config.config['data_aug_bright'] is True:    
                            # Changing the brightness of image
                            if steering_angle > Config.config['steering_angle_jitter_tolerance'] or \
                                steering_angle < -Config.config['steering_angle_jitter_tolerance']:
                                bright_image = self.data_aug.brightness(image)
                                images.append(bright_image)
                                measurements.append(steering_angle*Config.config['steering_angle_scale'])
    
                        if Config.config['data_aug_shift'] is True:    
                            # Shifting the image
                            shift_image, shift_steering = self.data_aug.shift(image, steering_angle)
                            images.append(shift_image)
                            measurements.append(shift_steering*Config.config['steering_angle_scale'])

                    X_train = np.array(images)
                    y_train = np.array(measurements)

                    if Config.config['lstm'] is True:
                        X_train = np.array(images).reshape(-1, 1, 
                                          Config.config['input_image_height'],
                                          Config.config['input_image_width'],
                                          Config.config['input_image_depth'])
                        y_train = np.array(measurements).reshape(-1, 1, 1)
                    
                    if Config.config['lstm'] is False:
                        yield sklearn.utils.shuffle(X_train, y_train)
                    else:
                        yield X_train, y_train
        
        self.train_generator = _generator(self.train_data)
        self.valid_generator = _generator(self.valid_data)
        
        if (show_summary):
            self.net_model.model.summary()
    
    ###########################################################################
    #
    def _start_training(self):
        
        if (self.train_generator == None):
            raise NameError('Generators are not ready.')
        
        ######################################################################
        # callbacks
        from keras.callbacks import ModelCheckpoint, EarlyStopping
        
        # checkpoint
        callbacks = []
        #weight_filename = self.net_model.name + '_' + const.CONFIG_YAML + '_ckpt'
        weight_filename = self.data_path + '_' + const.CONFIG_YAML + '_ckpt'
        checkpoint = ModelCheckpoint(weight_filename+'.h5',
                                     monitor='val_loss', 
                                     verbose=1, save_best_only=True, mode='min')
        callbacks.append(checkpoint)
        
        # early stopping
        earlystop = EarlyStopping(monitor='val_loss', min_delta=0, patience=3, 
                                  verbose=1, mode='min')
        callbacks.append(earlystop)
        
        self.train_hist = self.net_model.model.fit_generator(
                self.train_generator, 
                steps_per_epoch=self.num_train_samples//Config.config['batch_size'], 
                epochs=Config.config['num_epochs'], 
                validation_data=self.valid_generator,
                validation_steps=self.num_valid_samples//Config.config['batch_size'],
                verbose=1, callbacks=callbacks)
    

    ###########################################################################
    #
    def _plot_training_history(self):
    
        print(self.train_hist.history.keys())
        
        ### plot the training and validation loss for each epoch
        plt.plot(self.train_hist.history['loss'])
        plt.plot(self.train_hist.history['val_loss'])
        plt.ylabel('mse loss')
        plt.xlabel('epoch')
        plt.legend(['training set', 'validatation set'], loc='upper right')
        plt.show()
        
        
    ###########################################################################
    #
    def train(self, show_summary=True):
        
        self._prepare_data()
        self._build_model(show_summary)
        self._start_training()
        self.net_model.save()
        self._plot_training_history()
        Config.summary()
Exemple #3
0
class DriveTrain:

    ###########################################################################
    # data_path = 'path_to_drive_data'  e.g. ../data/2017-09-22-10-12-34-56/'
    def __init__(self, data_path):

        if data_path[-1] == '/':
            data_path = data_path[:-1]

        loc_slash = data_path.rfind('/')
        if loc_slash != -1:  # there is '/' in the data path
            model_name = data_path[loc_slash + 1:]  # get folder name
            #model_name = model_name.strip('/')
        else:
            model_name = data_path
        csv_path = data_path + '/' + model_name + const.DATA_EXT  # use it for csv file name

        self.csv_path = csv_path
        self.train_generator = None
        self.valid_generator = None
        self.train_hist = None
        self.data = None

        #self.config = Config() #model_name)

        self.data_path = data_path
        #self.model_name = model_name

        self.model_name = data_path + '_' + Config.neural_net_yaml_name \
            + '_N' + str(config['network_type'])
        self.model_ckpt_name = self.model_name + '_ckpt'

        self.data = DriveData(self.csv_path)
        self.net_model = NetModel(data_path)
        self.image_process = ImageProcess()
        self.data_aug = DataAugmentation()

    ###########################################################################
    #
    def _prepare_data(self):

        self.data.read()

        # put velocities regardless we use them or not for simplicity.
        samples = list(
            zip(self.data.image_names, self.data.velocities,
                self.data.measurements))

        if config['lstm'] is True:
            self.train_data, self.valid_data = self._prepare_lstm_data(samples)
        else:
            self.train_data, self.valid_data = train_test_split(
                samples, test_size=config['validation_rate'])

        self.num_train_samples = len(self.train_data)
        self.num_valid_samples = len(self.valid_data)

        print('Train samples: ', self.num_train_samples)
        print('Valid samples: ', self.num_valid_samples)

    ###########################################################################
    # group the samples by the number of timesteps
    def _prepare_lstm_data(self, samples):
        num_samples = len(samples)

        # get the last index number
        steps = 1
        last_index = (num_samples - config['lstm_timestep']) // steps

        image_names = []
        velocities = []
        measurements = []

        for i in range(0, last_index, steps):
            sub_samples = samples[i:i + config['lstm_timestep']]

            # print('num_batch_sample : ',len(batch_samples))
            sub_image_names = []
            sub_velocities = []
            sub_measurements = []
            for image_name, velocity, measurement in sub_samples:
                sub_image_names.append(image_name)
                sub_velocities.append(velocity)
                sub_measurements.append(measurement)

            image_names.append(sub_image_names)
            velocities.append(sub_velocities)
            measurements.append(sub_measurements)

        samples = list(zip(image_names, velocities, measurements))
        return train_test_split(samples,
                                test_size=config['validation_rate'],
                                shuffle=False)

    ###########################################################################
    #
    def _build_model(self, show_summary=True):
        def _data_augmentation(image, steering_angle):
            if config['data_aug_flip'] is True:
                # Flipping the image
                return True, self.data_aug.flipping(image, steering_angle)

            if config['data_aug_bright'] is True:
                # Changing the brightness of image
                if steering_angle > config['steering_angle_jitter_tolerance'] or \
                    steering_angle < -config['steering_angle_jitter_tolerance']:
                    image = self.data_aug.brightness(image)
                return True, image, steering_angle

            if config['data_aug_shift'] is True:
                # Shifting the image
                return True, self.data_aug.shift(image, steering_angle)

            return False, image, steering_angle

        def _prepare_batch_samples(batch_samples):
            images = []
            velocities = []
            measurements = []

            for image_name, velocity, measurement in batch_samples:

                image_path = self.data_path + '/' + image_name
                image = cv2.imread(image_path)

                # if collected data is not cropped then crop here
                # otherwise do not crop.
                if Config.data_collection['crop'] is not True:
                    image = image[
                        Config.data_collection['image_crop_y1']:Config.
                        data_collection['image_crop_y2'],
                        Config.data_collection['image_crop_x1']:Config.
                        data_collection['image_crop_x2']]

                image = cv2.resize(image, (config['input_image_width'],
                                           config['input_image_height']))
                image = self.image_process.process(image)
                images.append(image)
                velocities.append(velocity)

                # if no brake data in collected data, brake values are dummy
                steering_angle, throttle, brake = measurement

                if abs(steering_angle
                       ) < config['steering_angle_jitter_tolerance']:
                    steering_angle = 0

                if config['num_outputs'] == 2:
                    measurements.append(
                        (steering_angle * config['steering_angle_scale'],
                         throttle))
                else:
                    measurements.append(steering_angle *
                                        config['steering_angle_scale'])

                # data augmentation
                append, image, steering_angle = _data_augmentation(
                    image, steering_angle)
                if append is True:
                    images.append(image)
                    velocities.append(velocity)

                    if config['num_outputs'] == 2:
                        measurements.append(
                            (steering_angle * config['steering_angle_scale'],
                             throttle))
                    else:
                        measurements.append(steering_angle *
                                            config['steering_angle_scale'])

            return images, velocities, measurements

        def _prepare_lstm_batch_samples(batch_samples):
            images = []
            velocities = []
            measurements = []

            for i in range(0, config['batch_size']):

                images_timestep = []
                velocities_timestep = []
                measurements_timestep = []

                for j in range(0, config['lstm_timestep']):

                    image_name = batch_samples[i][0][j]
                    image_path = self.data_path + '/' + image_name
                    image = cv2.imread(image_path)

                    # if collected data is not cropped then crop here
                    # otherwise do not crop.
                    if Config.data_collection['crop'] is not True:
                        image = image[
                            Config.data_collection['image_crop_y1']:Config.
                            data_collection['image_crop_y2'],
                            Config.data_collection['image_crop_x1']:Config.
                            data_collection['image_crop_x2']]

                    image = cv2.resize(image, (config['input_image_width'],
                                               config['input_image_height']))
                    image = self.image_process.process(image)

                    images_timestep.append(image)

                    velocity = batch_samples[i][1][j]
                    velocities_timestep.append(velocity)

                    if j is config['lstm_timestep'] - 1:
                        measurement = batch_samples[i][2][j]
                        # if no brake data in collected data, brake values are dummy
                        steering_angle, throttle, brake = measurement

                        if abs(steering_angle
                               ) < config['steering_angle_jitter_tolerance']:
                            steering_angle = 0

                        if config['num_outputs'] == 2:
                            measurements_timestep.append(
                                (steering_angle *
                                 config['steering_angle_scale'], throttle))
                        else:
                            measurements_timestep.append(
                                steering_angle *
                                config['steering_angle_scale'])

                    # data augmentation?
                    """
                    append, image, steering_angle = _data_augmentation(image, steering_angle)
                    if append is True:
                        images_timestep.append(image)
                        measurements_timestep.append(steering_angle*config['steering_angle_scale'])
                    """

                images.append(images_timestep)
                velocities.append(velocities_timestep)
                measurements.append(measurements_timestep)

            return images, velocities, measurements

        def _generator(samples, batch_size=config['batch_size']):
            num_samples = len(samples)
            while True:  # Loop forever so the generator never terminates

                if config['lstm'] is True:
                    for offset in range(0, (num_samples // batch_size) *
                                        batch_size, batch_size):
                        batch_samples = samples[offset:offset + batch_size]

                        images, velocities, measurements = _prepare_lstm_batch_samples(
                            batch_samples)

                        X_train = np.array(images)
                        y_train = np.array(measurements)

                        if config['num_inputs'] == 2:
                            X_train_vel = np.array(velocities).reshape(
                                -1, config['lstm_timestep'], 1)
                            X_train = [X_train, X_train_vel]
                        if config['num_outputs'] == 2:
                            y_train = np.stack(measurements).reshape(
                                -1, config['num_outputs'])

                        yield X_train, y_train

                else:
                    samples = sklearn.utils.shuffle(samples)

                    for offset in range(0, num_samples, batch_size):
                        batch_samples = samples[offset:offset + batch_size]

                        images, velocities, measurements = _prepare_batch_samples(
                            batch_samples)
                        X_train = np.array(images).reshape(
                            -1, config['input_image_height'],
                            config['input_image_width'],
                            config['input_image_depth'])
                        y_train = np.array(measurements)
                        y_train = y_train.reshape(-1, 1)

                        if config['num_inputs'] == 2:
                            X_train_vel = np.array(velocities).reshape(-1, 1)
                            X_train = [X_train, X_train_vel]

                        yield X_train, y_train

        self.train_generator = _generator(self.train_data)
        self.valid_generator = _generator(self.valid_data)

        if (show_summary):
            self.net_model.model.summary()

    ###########################################################################
    #
    def _start_training(self):

        if (self.train_generator == None):
            raise NameError('Generators are not ready.')

        ######################################################################
        # callbacks
        from keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard

        # checkpoint
        callbacks = []
        #weight_filename = self.data_path + '_' + Config.config_yaml_name \
        #    + '_N' + str(config['network_type']) + '_ckpt'
        checkpoint = ModelCheckpoint(self.model_ckpt_name +
                                     '.{epoch:02d}-{val_loss:.2f}.h5',
                                     monitor='val_loss',
                                     verbose=1,
                                     save_best_only=True,
                                     mode='min')
        callbacks.append(checkpoint)

        # early stopping
        patience = config['early_stopping_patience']
        earlystop = EarlyStopping(monitor='val_loss',
                                  min_delta=0,
                                  patience=patience,
                                  verbose=1,
                                  mode='min')
        callbacks.append(earlystop)

        # tensor board
        logdir = config['tensorboard_log_dir'] + datetime.now().strftime(
            "%Y%m%d-%H%M%S")
        tensorboard = TensorBoard(log_dir=logdir)
        callbacks.append(tensorboard)

        self.train_hist = self.net_model.model.fit_generator(
            self.train_generator,
            steps_per_epoch=self.num_train_samples // config['batch_size'],
            epochs=config['num_epochs'],
            validation_data=self.valid_generator,
            validation_steps=self.num_valid_samples // config['batch_size'],
            verbose=1,
            callbacks=callbacks,
            use_multiprocessing=True)

    ###########################################################################
    #
    def _plot_training_history(self):

        print(self.train_hist.history.keys())

        plt.figure()  # new figure window
        ### plot the training and validation loss for each epoch
        plt.plot(self.train_hist.history['loss'][1:])
        plt.plot(self.train_hist.history['val_loss'][1:])
        #plt.title('Mean Squared Error Loss')
        plt.ylabel('mse loss')
        plt.xlabel('epoch')
        plt.legend(['training set', 'validatation set'], loc='upper right')
        plt.tight_layout()
        #plt.show()
        plt.savefig(self.model_name + '_model.png', dpi=150)
        plt.savefig(self.model_name + '_model.pdf', dpi=150)

    ###########################################################################
    #
    def train(self, show_summary=True):

        self._prepare_data()
        self._build_model(show_summary)
        self._start_training()
        self.net_model.save(self.model_name)
        self._plot_training_history()
        Config.summary()