Exemple #1
0
    def _compute_edge_context_3d2(self, vert_factor, edge_factor, reuse=False):
        """
        attention-based edge message pooling
        this output will be the input edge_ctx of _edge_rnn_forward(edge_ctx, ...
        edge_factor and vert_factor are gru_cell
        """
        geo_pairs = utils.gather_vec_pairs(
            self.geo_state, self.relations
        )  #utils.gather_vec_pairs(self.geo_state, self.relations)
        self.geo_pairs = geo_pairs
        sub_geo, obj_geo = tf.split(split_dim=1, num_split=2, value=geo_pairs)

        vert_pairs = utils.gather_vec_pairs(
            vert_factor, self.relations
        )  #Tensor("Reshape:0", shape=(?, 1024), dtype=float32) if relation is [24 2], vert_pairs is [24 2*512] so I guess the corresponding object feature for each relation
        sub_vert, obj_vert = tf.split(
            split_dim=1, num_split=2, value=vert_pairs
        )  # I guess putting the in (subject) on one part and the out (object) on the other part, because subject verb object, so each is 24 z 512
        sub_vert_w_input = tf.concat(concat_dim=1,
                                     values=[sub_vert, edge_factor])
        obj_vert_w_input = tf.concat(concat_dim=1,
                                     values=[obj_vert, edge_factor])

        # compute compatibility scores
        (self.feed(sub_vert_w_input).fc(
            1, relu=False, reuse=reuse,
            name='sub_vert_w_fc').sigmoid(name='sub_vert_score')
         )  # passing the input messages from the relation to a fc layer
        (self.feed(obj_vert_w_input).fc(
            1, relu=False, reuse=reuse,
            name='obj_vert_w_fc').sigmoid(name='obj_vert_score')
         )  # passing the previous state of the object node to a fc layer

        # encoding the geomtery of the relation
        geo_pairs = self.norm_geo_pairs(geo_pairs, sc=1000)
        (self.feed(geo_pairs).fc(
            100, relu=False, reuse=reuse,
            name='geo_fc1_obj').sigmoid(name='geo_encoded_pre').fc(
                512, relu=False, reuse=reuse,
                name='geo_fc2_obj').sigmoid(name='geo_encoded')
         )  # passing the previous state of the object node to a fc layer
        geo_encoded = self.get_output('geo_encoded')

        # then concatenating wiht the relation feature (edge_factor) and getting a weight out of that
        geo_encoded_w_input = tf.concat(concat_dim=1,
                                        values=[geo_encoded, edge_factor])
        (self.feed(geo_encoded_w_input).fc(
            1, relu=False, reuse=reuse,
            name='geo_w_fc').sigmoid(name='geo_vert_score')
         )  # passing the previous state of the object node to a fc layer
        sub_vert_w = self.get_output(
            'sub_vert_score'
        )  #this guy is 24 x 1, and the relations vector is 24,which count for the 4 objects present in the 2 images.
        obj_vert_w = self.get_output('obj_vert_score')
        geo_vert_w = self.get_output('geo_vert_score')

        weighted_sub = tf.mul(sub_vert, sub_vert_w)
        weighted_obj = tf.mul(obj_vert, obj_vert_w)
        weighted_geo = tf.mul(geo_encoded, geo_vert_w)
        return weighted_sub + weighted_obj + weighted_geo
Exemple #2
0
    def _compute_edge_context_soft(self,
                                   vert_factor,
                                   edge_factor,
                                   reuse=False):
        """
        attention-based edge message pooling
        """
        vert_pairs = utils.gather_vec_pairs(vert_factor, self.relations)

        sub_vert, obj_vert = tf.split(vert_pairs, num_or_size_splits=2, axis=1)
        sub_vert_w_input = tf.concat([sub_vert, edge_factor], 1)
        obj_vert_w_input = tf.concat([obj_vert, edge_factor], 1)

        # compute compatibility scores
        (self.feed(sub_vert_w_input).fc(
            1, relu=False, reuse=reuse,
            name='sub_vert_w_fc').sigmoid(name='sub_vert_score'))
        (self.feed(obj_vert_w_input).fc(
            1, relu=False, reuse=reuse,
            name='obj_vert_w_fc').sigmoid(name='obj_vert_score'))

        sub_vert_w = self.get_output('sub_vert_score')
        obj_vert_w = self.get_output('obj_vert_score')

        weighted_sub = tf.multiply(sub_vert, sub_vert_w)
        weighted_obj = tf.multiply(obj_vert, obj_vert_w)
        return weighted_sub + weighted_obj
Exemple #3
0
 def _compute_edge_context_2d(self, vert_factor, edge_factor, reuse=False):
     """
     attention-based edge message pooling
     this output will be the input edge_ctx of _edge_rnn_forward(edge_ctx, ...
     edge_factor and vert_factor are gru_cell
     """
     vert_pairs = utils.gather_vec_pairs(
         vert_factor, self.relations
     )  #Tensor("Reshape:0", shape=(?, 1024), dtype=float32) if relation is [24 2], vert_pairs is [24 2*512] so I guess the corresponding object feature for each relation
     vis_geo = tf.concat(concat_dim=1, values=[vert_pairs, self.geo_state])
     # encoding the geomtery of the relation
     (self.feed(vis_geo).fc(512,
                            relu=False,
                            reuse=reuse,
                            name='geo_fc2_obj').sigmoid(name='geo_encoded')
      )  # passing the previous state of the object node to a fc layer
     geo_encoded = self.get_output('geo_encoded')
     return geo_encoded
Exemple #4
0
 def _compute_edge_context_geo_only_stand(self,
                                          vert_factor,
                                          edge_factor,
                                          reuse=False):
     """
     same as _compute_edge_context_geo_only, but the normalisation is added.
     """
     geo_pairs = utils.gather_vec_pairs(
         self.geo_state, self.relations
     )  #utils.gather_vec_pairs(self.geo_state, self.relations)
     geo_pairs = self.norm_geo_pairs(geo_pairs, sc=500)
     self.geo_pairs = geo_pairs
     # compute compatibility scores
     (self.feed(geo_pairs).fc(
         100, relu=False, reuse=reuse,
         name='geo_fc1').sigmoid(name='geo_score_pre').fc(
             512, relu=False, reuse=reuse,
             name='geo_fc2').sigmoid(name='geo_score')
      )  # passing the input messages from the relation to a fc layer
     geo_state_w = self.get_output('geo_score')
     return geo_state_w
Exemple #5
0
    def _compute_edge_context_geo_only(self,
                                       vert_factor,
                                       edge_factor,
                                       reuse=False):
        """
        The message will only contains the geometric information
        """
        geo_pairs = utils.gather_vec_pairs(
            self.geo_state, self.relations
        )  #utils.gather_vec_pairs(self.geo_state, self.relations)
        self.geo_pairs = geo_pairs
        # compute compatibility scores
        (self.feed(geo_pairs).fc(
            100, relu=False, reuse=reuse,
            name='geo_fc1').sigmoid(name='geo_score_pre').fc(
                512, relu=False, reuse=reuse,
                name='geo_fc2').sigmoid(name='geo_score')
         )  # passing the input messages from the relation to a fc layer

        geo_state_w = self.get_output('geo_score')
        return geo_state_w
Exemple #6
0
    def _compute_edge_context_soft(self,
                                   vert_factor,
                                   edge_factor,
                                   reuse=False):
        """
        attention-based edge message pooling
        this output will be the input edge_ctx of _edge_rnn_forward(edge_ctx, ...
        edge_factor and vert_factor are gru_cell
        """
        vert_pairs = utils.gather_vec_pairs(
            vert_factor, self.relations
        )  #Tensor("Reshape:0", shape=(?, 1024), dtype=float32) if relation is [24 2], vert_pairs is [24 2 512] so I guess the corresponding object feature for each relation

        sub_vert, obj_vert = tf.split(
            split_dim=1, num_split=2, value=vert_pairs
        )  # I guess putting the in (subject) on one part and the out (object) on the other part, because subject verb object
        sub_vert_w_input = tf.concat(
            concat_dim=1,
            values=[sub_vert, edge_factor
                    ])  # sub_vert with the state of the predicate cell at tm1
        obj_vert_w_input = tf.concat(concat_dim=1,
                                     values=[obj_vert,
                                             edge_factor])  # 24 x 1024

        # compute compatibility scores
        (self.feed(sub_vert_w_input).fc(
            1, relu=False, reuse=reuse,
            name='sub_vert_w_fc').sigmoid(name='sub_vert_score')
         )  # passing the input messages from the relation to a fc layer
        (self.feed(obj_vert_w_input).fc(
            1, relu=False, reuse=reuse,
            name='obj_vert_w_fc').sigmoid(name='obj_vert_score')
         )  # passing the previous state of the object node to a fc layer

        sub_vert_w = self.get_output('sub_vert_score')
        obj_vert_w = self.get_output('obj_vert_score')

        weighted_sub = tf.mul(sub_vert, sub_vert_w)
        weighted_obj = tf.mul(obj_vert, obj_vert_w)
        return weighted_sub + weighted_obj