def features_selection(): """ -> Perform a features selection procedure: - get arguments from the command line - i : the input file (mandatory) - o : the output folder (mandatory) - r : the name of the report file (optionnal, default is report.html) - run analysis (analysis type set to "all") - write report """ ## Collect arguments parser = argparse.ArgumentParser(prog='netabio_stuff') # not sure what does the instanciation parser.add_argument('-i', nargs='?', help='the input data file') parser.add_argument('-o', nargs='?', help='the output directory') parser.add_argument('-r', nargs='?', help='the name of the report file') args = parser.parse_args() ## Init optionnal arguments if(not args.r): args.r = "report.html" collected_inputs = {'i': args.i, 'r': args.r, 'o': args.o} ## Get the name of the prepared data file report_file = str(collected_inputs["o"])+"/"+str(collected_inputs["r"]) data_file = str(collected_inputs["i"]) result_folder = str(collected_inputs["o"]) ## Run analysis feature_selection.run_analyser(data_file, result_folder, "all") ## write report feature_selection.write_html_report(report_file, data_file, result_folder)
def features_selection_workspace(): """ [IN PROGRESS] -> Grand bazar, scavange stuff from this function -> TODO: - get a list of args - implement the feature selection procedure ... - include the fudction in entry point """ ## Collect arguments parser = argparse.ArgumentParser(prog='netabio_stuff') # not sure what does the instanciation parser.add_argument('-i', nargs='?', help='the input data file') parser.add_argument('-gp', nargs='?', help='the group position (label) in the reformated file') parser.add_argument('-gn', nargs='?', help='the group name (colname of the label) in the reformated file') parser.add_argument('-ph', nargs='?', help='the phase we want in the reformated dile') parser.add_argument('-o', nargs='?', help='the output directory') args = parser.parse_args() ## Init optionnal arguments if(not args.gp): args.gp = "start" if(not args.gn): args.gn = "Disease" if(not args.ph): args.ph = "all" collected_inputs = {'i': args.i, 'gp': args.gp, 'gn': args.gn, 'ph': args.ph, 'o': args.o} ## Prepare data file #data_extraction.generate_Luminex_data_file(collected_inputs['i'], group_pos=collected_inputs['gp'], group_name=collected_inputs['gn'], phase=collected_inputs['ph']) ## Get the name of the prepared data file report_file = "C:\\Users\\NaturalKiller01\\Desktop\\Nathan\\Spellcraft\\TRASH\\report.html" data_file = "C:\\Users\\NaturalKiller01\\Desktop\\Nathan\\Spellcraft\\Luminex_data_NA_filtered.csv" result_folder = "C:\\Users\\NaturalKiller01\\Desktop\\Nathan\\Spellcraft\\TRASH" ## Run analysis feature_selection.run_analyser(data_file, result_folder, "all") ## write report feature_selection.write_html_report(report_file, data_file, result_folder)
def run(): ## general parameters data_file_name = TEST_DATA separator = "," test_value = "53,7%" input_vector = ["5", "3", "4", "6", "89", "5", "6"] col_number = 1 header_detected = True output_folder = "output" analysis = "all" report_file = "report.html" ## biotoolbox module print "[TEST] Testing biotoolbox module from netabio package" biotoolbox.detect_file_format(data_file_name) biotoolbox.change_file_format(data_file_name, separator) biotoolbox.fix_file_name(data_file_name) ## na_manager module print "[TEST] Testing na_manager module from netabio package" na_manager.check_NA_proportion_in_file(data_file_name) na_manager.display_NA_proportions(data_file_name) na_manager.filter_NA_values(data_file_name) ## quality_control module print "[TEST] Testing quality_control module from netabio package" quality_control.check_pourcentages(test_value) quality_control.looking_for_outliers(input_vector, col_number) quality_control.basic_check(data_file_name) quality_control.check_standard_deviation(data_file_name) quality_control.check_zscore(data_file_name, separator, header_detected) ## feature_selection module print "[TEST] Testing feature_selection module from netabio package" feature_selection.run_analyser(data_file_name, output_folder, analysis) feature_selection.write_html_report(report_file, data_file_name, output_folder)