def __init__(self, in_channels, num_anchors, num_classes, num_layers, onnx_export=False): super(ClassNet, self).__init__() self.num_anchors = num_anchors self.num_classes = num_classes self.num_layers = num_layers self.conv_list = nn.ModuleList([ SeparableConvBlock(in_channels, in_channels, norm=False, activation=False) for i in range(num_layers) ]) # 每一个有效特征层对应的BatchNorm2d不同 self.bn_list = nn.ModuleList([ nn.ModuleList([ nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3) for i in range(num_layers) ]) for j in range(5) ]) # num_anchors = 9 # num_anchors num_classes self.header = SeparableConvBlock(in_channels, num_anchors * num_classes, norm=False, activation=False) self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
def __init__(self, in_channels, out_channels=None, norm=True, activation=False, onnx_export=False): super(SeparableConvBlock, self).__init__() if out_channels is None: out_channels = in_channels self.depthwise_conv = Conv2dStaticSamePadding(in_channels, in_channels, kernel_size=3, stride=1, groups=in_channels, bias=False) self.pointwise_conv = Conv2dStaticSamePadding(in_channels, out_channels, kernel_size=1, stride=1) self.norm = norm if self.norm: self.bn = nn.BatchNorm2d(num_features=out_channels, momentum=0.01, eps=1e-3) self.activation = activation if self.activation: self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
def set_swish(self, memory_efficient=True): """Sets swish function as memory efficient (for training) or standard (for export)""" # swish函数 self._swish = MemoryEfficientSwish() if memory_efficient else Swish() for block in self._blocks: block.set_swish(memory_efficient)
def set_swish(self, memory_efficient=True): """Sets swish function as memory efficient (for training) or standard (for export)""" self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
def __init__(self, num_channels, conv_channels, first_time=False, epsilon=1e-4, onnx_export=False, attention=True): super(BiFPN, self).__init__() self.epsilon = epsilon self.conv6_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv5_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv4_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv3_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv4_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv5_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv6_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.conv7_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) self.p6_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p5_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p4_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p3_upsample = nn.Upsample(scale_factor=2, mode='nearest') self.p4_downsample = MaxPool2dStaticSamePadding(3, 2) self.p5_downsample = MaxPool2dStaticSamePadding(3, 2) self.p6_downsample = MaxPool2dStaticSamePadding(3, 2) self.p7_downsample = MaxPool2dStaticSamePadding(3, 2) self.swish = MemoryEfficientSwish() if not onnx_export else Swish() self.first_time = first_time if self.first_time: # 获取到了efficientnet的最后三层,对其进行通道的下压缩 self.p5_down_channel = nn.Sequential( Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) self.p4_down_channel = nn.Sequential( Conv2dStaticSamePadding(conv_channels[1], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) self.p3_down_channel = nn.Sequential( Conv2dStaticSamePadding(conv_channels[0], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) # 对输入进来的p5进行宽高的下采样 self.p5_to_p6 = nn.Sequential( Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), MaxPool2dStaticSamePadding(3, 2) ) self.p6_to_p7 = nn.Sequential( MaxPool2dStaticSamePadding(3, 2) ) # BIFPN第一轮的时候,跳线那里并不是同一个in self.p4_down_channel_2 = nn.Sequential( Conv2dStaticSamePadding(conv_channels[1], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) self.p5_down_channel_2 = nn.Sequential( Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), ) # 简易注意力机制的weights self.p6_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p6_w1_relu = nn.ReLU() self.p5_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p5_w1_relu = nn.ReLU() self.p4_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p4_w1_relu = nn.ReLU() self.p3_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p3_w1_relu = nn.ReLU() self.p4_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) self.p4_w2_relu = nn.ReLU() self.p5_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) self.p5_w2_relu = nn.ReLU() self.p6_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) self.p6_w2_relu = nn.ReLU() self.p7_w2 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.p7_w2_relu = nn.ReLU() self.attention = attention