def __init__(self,
              in_channels,
              num_anchors,
              num_classes,
              num_layers,
              onnx_export=False):
     super(ClassNet, self).__init__()
     self.num_anchors = num_anchors
     self.num_classes = num_classes
     self.num_layers = num_layers
     self.conv_list = nn.ModuleList([
         SeparableConvBlock(in_channels,
                            in_channels,
                            norm=False,
                            activation=False) for i in range(num_layers)
     ])
     # 每一个有效特征层对应的BatchNorm2d不同
     self.bn_list = nn.ModuleList([
         nn.ModuleList([
             nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3)
             for i in range(num_layers)
         ]) for j in range(5)
     ])
     # num_anchors = 9
     # num_anchors num_classes
     self.header = SeparableConvBlock(in_channels,
                                      num_anchors * num_classes,
                                      norm=False,
                                      activation=False)
     self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
    def __init__(self,
                 in_channels,
                 out_channels=None,
                 norm=True,
                 activation=False,
                 onnx_export=False):
        super(SeparableConvBlock, self).__init__()
        if out_channels is None:
            out_channels = in_channels

        self.depthwise_conv = Conv2dStaticSamePadding(in_channels,
                                                      in_channels,
                                                      kernel_size=3,
                                                      stride=1,
                                                      groups=in_channels,
                                                      bias=False)
        self.pointwise_conv = Conv2dStaticSamePadding(in_channels,
                                                      out_channels,
                                                      kernel_size=1,
                                                      stride=1)

        self.norm = norm
        if self.norm:
            self.bn = nn.BatchNorm2d(num_features=out_channels,
                                     momentum=0.01,
                                     eps=1e-3)

        self.activation = activation
        if self.activation:
            self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
Exemple #3
0
 def set_swish(self, memory_efficient=True):
     """Sets swish function as memory efficient (for training) or standard (for export)"""
     # swish函数
     self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
     for block in self._blocks:
         block.set_swish(memory_efficient)
Exemple #4
0
 def set_swish(self, memory_efficient=True):
     """Sets swish function as memory efficient (for training) or standard (for export)"""
     self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
    def __init__(self, num_channels, conv_channels, first_time=False, epsilon=1e-4, onnx_export=False, attention=True):
        super(BiFPN, self).__init__()
        self.epsilon = epsilon
        self.conv6_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv5_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv4_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv3_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)

        self.conv4_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv5_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv6_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
        self.conv7_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)

        self.p6_upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.p5_upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.p4_upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.p3_upsample = nn.Upsample(scale_factor=2, mode='nearest')

        self.p4_downsample = MaxPool2dStaticSamePadding(3, 2)
        self.p5_downsample = MaxPool2dStaticSamePadding(3, 2)
        self.p6_downsample = MaxPool2dStaticSamePadding(3, 2)
        self.p7_downsample = MaxPool2dStaticSamePadding(3, 2)

        self.swish = MemoryEfficientSwish() if not onnx_export else Swish()

        self.first_time = first_time
        if self.first_time:
            # 获取到了efficientnet的最后三层,对其进行通道的下压缩
            self.p5_down_channel = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )
            self.p4_down_channel = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[1], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )
            self.p3_down_channel = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[0], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )

            # 对输入进来的p5进行宽高的下采样
            self.p5_to_p6 = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
                MaxPool2dStaticSamePadding(3, 2)
            )
            self.p6_to_p7 = nn.Sequential(
                MaxPool2dStaticSamePadding(3, 2)
            )

            # BIFPN第一轮的时候,跳线那里并不是同一个in
            self.p4_down_channel_2 = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[1], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )
            self.p5_down_channel_2 = nn.Sequential(
                Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
                nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
            )

        # 简易注意力机制的weights
        self.p6_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p6_w1_relu = nn.ReLU()
        self.p5_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p5_w1_relu = nn.ReLU()
        self.p4_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p4_w1_relu = nn.ReLU()
        self.p3_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p3_w1_relu = nn.ReLU()

        self.p4_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.p4_w2_relu = nn.ReLU()
        self.p5_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.p5_w2_relu = nn.ReLU()
        self.p6_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.p6_w2_relu = nn.ReLU()
        self.p7_w2 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p7_w2_relu = nn.ReLU()

        self.attention = attention