# output directory where the models are saved output_dir = get_output_dir(imdb, args.tag) print('Output will be saved to `{:s}`'.format(output_dir)) # tensorboard directory where the summaries are saved during training tb_dir = get_output_tb_dir(imdb, args.tag) print('TensorFlow summaries will be saved to `{:s}`'.format(tb_dir)) # also add the validation set, but with no flipping images orgflip = cfg.TRAIN.USE_FLIPPED cfg.TRAIN.USE_FLIPPED = False _, valroidb = combined_roidb(args.imdbval_name) print('{:d} validation roidb entries'.format(len(valroidb))) cfg.TRAIN.USE_FLIPPED = orgflip # load network if args.net == 'vgg16': net = vgg16(batch_size=cfg.TRAIN.IMS_PER_BATCH) elif args.net == 'res50': net = resnetv1(batch_size=cfg.TRAIN.IMS_PER_BATCH, num_layers=50) elif args.net == 'res101': net = resnetv1(batch_size=cfg.TRAIN.IMS_PER_BATCH, num_layers=101) elif args.net == 'res152': net = resnetv1(batch_size=cfg.TRAIN.IMS_PER_BATCH, num_layers=152) else: raise NotImplementedError train_net(net, imdb, roidb, valroidb, output_dir, tb_dir, pretrained_model=args.weight, max_iters=args.max_iters)
tag = tag if tag else 'default' filename = tag + '/' + filename imdb = get_imdb(args.imdb_name) imdb.competition_mode(args.comp_mode) tfconfig = tf.ConfigProto(allow_soft_placement=True) tfconfig.gpu_options.allow_growth = True # init session sess = tf.Session(config=tfconfig) # load network if args.net == 'vgg16': net = vgg16() elif args.net == 'res50': net = resnetv1(num_layers=50) elif args.net == 'res101': net = resnetv1(num_layers=101) elif args.net == 'res152': net = resnetv1(num_layers=152) elif args.net == 'mobile': net = mobilenetv1() else: raise NotImplementedError # load model with tf.variable_scope('rpn_network'): net.create_architecture(sess, "TEST", imdb.num_classes, tag='default',
('{:s} not found.\nDid you download the proper networks from ' 'our server and place them properly?').format(tfmodel + '.meta')) # set config tfconfig = tf.ConfigProto(allow_soft_placement=True) tfconfig.gpu_options.allow_growth = True print("\033[1;34mThe code is licensed by engineer1109.") #print ("\033[1;34m开始初始化系统") # init session sess = tf.Session(config=tfconfig) #print ("\033[1;33m卷积模型开始加载,默认是RES101") # load network if demonet == 'vgg16': net = vgg16(batch_size=1) elif demonet == 'res101': net = resnetv1(batch_size=1, num_layers=101) else: raise NotImplementedError #print(demonet) net.create_architecture(sess, "TEST", 37, tag='default', anchor_scales=[8, 16, 32]) saver = tf.train.Saver() saver.restore(sess, tfmodel) #print(saver.restore(sess, tfmodel)) #print('网络加载完毕 {:s}'.format(tfmodel)) result = [] fd = file("images.txt", "r")
# tensorboard directory where the summaries are saved during training tb_dir = get_output_tb_dir(imdb, args.tag) print('TensorFlow summaries will be saved to `{:s}`'.format(tb_dir)) # also add the validation set, but with no flipping images orgflip = cfg.TRAIN.USE_FLIPPED cfg.TRAIN.USE_FLIPPED = False _, valroidb = combined_roidb(args.imdbval_name) print('{:d} validation roidb entries'.format(len(valroidb))) cfg.TRAIN.USE_FLIPPED = orgflip # load network if args.net == 'vgg16': net = vgg16(batch_size=cfg.TRAIN.IMS_PER_BATCH) elif args.net == 'res50': net = resnetv1(batch_size=cfg.TRAIN.IMS_PER_BATCH, num_layers=50) elif args.net == 'res101': net = resnetv1(batch_size=cfg.TRAIN.IMS_PER_BATCH, num_layers=101) elif args.net == 'res152': net = resnetv1(batch_size=cfg.TRAIN.IMS_PER_BATCH, num_layers=152) else: raise NotImplementedError train_net(net, imdb, roidb, valroidb, output_dir, tb_dir, pretrained_model=args.weight, max_iters=args.max_iters)
tag = tag if tag else 'default' filename = tag + '/' + filename imdb = get_imdb(args.imdb_name) imdb.competition_mode(args.comp_mode) tfconfig = tf.ConfigProto(allow_soft_placement=True) tfconfig.gpu_options.allow_growth=True # init session sess = tf.Session(config=tfconfig) # load network if args.net == 'vgg16': net = vgg16() elif args.net == 'res50': net = resnetv1(num_layers=50) elif args.net == 'res101': net = resnetv1(num_layers=101) elif args.net == 'res152': net = resnetv1(num_layers=152) elif args.net == 'mobile': net = mobilenetv1() else: raise NotImplementedError # load model with tf.variable_scope('rpn_network'): net.create_architecture(sess, "TEST", imdb.num_classes, tag='default', anchor_scales=cfg.ANCHOR_SCALES, anchor_ratios=cfg.ANCHOR_RATIOS)
filename = os.path.splitext(os.path.basename(args.weight))[0] tag = args.tag tag = tag if tag else 'default' filename = tag + '/' + filename imdb = get_imdb(args.imdb_name) imdb.competition_mode(args.comp_mode) tfconfig = tf.ConfigProto(allow_soft_placement=True) tfconfig.gpu_options.allow_growth = True # init session sess = tf.Session(config=tfconfig) net = resnetv1(num_layers=101) # load model net.create_architecture(sess, "TEST", imdb.num_classes, tag='default', anchor_scales=cfg.ANCHOR_SCALES, anchor_ratios=cfg.ANCHOR_RATIOS) print(('Loading model check point from {:s}').format(args.model)) saver = tf.train.Saver() saver.restore(sess, args.model) test_net(sess, net, imdb, filename, max_per_image=args.max_per_image) # for var in tf.all_variables():