Exemple #1
0
def get_ssd(phase, num_classes):

    vgg, extra_layers = add_vgg(3), add_extras(1024)

    loc_layers = []
    conf_layers = []
    vgg_source = [21, -2]
    for k, v in enumerate(vgg_source):
        loc_layers += [
            nn.Conv2d(vgg[v].out_channels,
                      mbox[k] * 4,
                      kernel_size=3,
                      padding=1)
        ]
        conf_layers += [
            nn.Conv2d(vgg[v].out_channels,
                      mbox[k] * num_classes,
                      kernel_size=3,
                      padding=1)
        ]

    for k, v in enumerate(extra_layers[1::2], 2):
        loc_layers += [
            nn.Conv2d(v.out_channels, mbox[k] * 4, kernel_size=3, padding=1)
        ]
        conf_layers += [
            nn.Conv2d(v.out_channels,
                      mbox[k] * num_classes,
                      kernel_size=3,
                      padding=1)
        ]

    SSD_MODEL = SSD(phase, vgg, extra_layers, (loc_layers, conf_layers),
                    num_classes)
    return SSD_MODEL
Exemple #2
0
def get_ssd(phase, num_classes):
    vgg, extra_layers = add_vgg(3), add_extras(1024)

    loc_layers = []
    conf_layers = []
    vgg_source = [21, -2]
    for k, v in enumerate(
            vgg_source):  # k是索引,v是枚举出来得对象(0 21) (1 -2)提取出21层和33层对应(4,6)
        loc_layers += [
            nn.Conv2d(vgg[v].out_channels,
                      mbox[k] * 4,
                      kernel_size=3,
                      padding=1)
        ]
        conf_layers += [
            nn.Conv2d(vgg[v].out_channels,
                      mbox[k] * num_classes,
                      kernel_size=3,
                      padding=1)
        ]

    for k, v in enumerate(extra_layers[1::2], 2):  # (2,1)(3,3)(4,5)(5,7)
        loc_layers += [
            nn.Conv2d(v.out_channels, mbox[k] * 4, kernel_size=3, padding=1)
        ]
        conf_layers += [
            nn.Conv2d(v.out_channels,
                      mbox[k] * num_classes,
                      kernel_size=3,
                      padding=1)
        ]

    SSD_MODEL = SSD(phase, vgg, extra_layers, (loc_layers, conf_layers),
                    num_classes)
    return SSD_MODEL
Exemple #3
0
def get_ssd(phase, num_classes, confidence=0.5, nms_iou=0.45):
    #---------------------------------------------------#
    #   add_vgg指的是加入vgg主干特征提取网络。
    #   该网络的最后一个特征层是conv7后的结果。
    #   shape为19,19,1024。
    #
    #   为了更好的提取出特征用于预测。
    #   SSD网络会继续进行下采样。
    #   add_extras是额外下采样的部分。
    #---------------------------------------------------#
    vgg, extra_layers = add_vgg(3), add_extras(1024)

    loc_layers = []
    conf_layers = []
    vgg_source = [21, -2]
    #---------------------------------------------------#
    #   在add_vgg获得的特征层里
    #   第21层和-2层可以用来进行回归预测和分类预测。
    #   分别是conv4-3(38,38,512)和conv7(19,19,1024)的输出
    #---------------------------------------------------#
    for k, v in enumerate(vgg_source):
        loc_layers += [
            nn.Conv2d(vgg[v].out_channels,
                      mbox[k] * 4,
                      kernel_size=3,
                      padding=1)
        ]
        conf_layers += [
            nn.Conv2d(vgg[v].out_channels,
                      mbox[k] * num_classes,
                      kernel_size=3,
                      padding=1)
        ]

    #-------------------------------------------------------------#
    #   在add_extras获得的特征层里
    #   第1层、第3层、第5层、第7层可以用来进行回归预测和分类预测。
    #   shape分别为(10,10,512), (5,5,256), (3,3,256), (1,1,256)
    #-------------------------------------------------------------#
    for k, v in enumerate(extra_layers[1::2], 2):
        loc_layers += [
            nn.Conv2d(v.out_channels, mbox[k] * 4, kernel_size=3, padding=1)
        ]
        conf_layers += [
            nn.Conv2d(v.out_channels,
                      mbox[k] * num_classes,
                      kernel_size=3,
                      padding=1)
        ]

    #-------------------------------------------------------------#
    #   add_vgg和add_extras,一共获得了6个有效特征层,shape分别为:
    #   (38,38,512), (19,19,1024), (10,10,512),
    #   (5,5,256), (3,3,256), (1,1,256)
    #-------------------------------------------------------------#
    SSD_MODEL = SSD(phase, vgg, extra_layers, (loc_layers, conf_layers),
                    num_classes, confidence, nms_iou)
    return SSD_MODEL
Exemple #4
0
    def __init__(self, num_classes, backbone_name, pretrained = False):
        super(SSD300, self).__init__()
        self.num_classes    = num_classes
        if backbone_name    == "vgg":
            self.vgg        = add_vgg(pretrained)
            self.extras     = add_extras(1024, backbone_name)
            self.L2Norm     = L2Norm(512, 20)
            mbox            = [4, 6, 6, 6, 4, 4]
            
            loc_layers      = []
            conf_layers     = []
            backbone_source = [21, -2]
            #---------------------------------------------------#
            #   在add_vgg获得的特征层里
            #   第21层和-2层可以用来进行回归预测和分类预测。
            #   分别是conv4-3(38,38,512)和conv7(19,19,1024)的输出
            #---------------------------------------------------#
            for k, v in enumerate(backbone_source):
                loc_layers  += [nn.Conv2d(self.vgg[v].out_channels, mbox[k] * 4, kernel_size = 3, padding = 1)]
                conf_layers += [nn.Conv2d(self.vgg[v].out_channels, mbox[k] * num_classes, kernel_size = 3, padding = 1)]
            #-------------------------------------------------------------#
            #   在add_extras获得的特征层里
            #   第1层、第3层、第5层、第7层可以用来进行回归预测和分类预测。
            #   shape分别为(10,10,512), (5,5,256), (3,3,256), (1,1,256)
            #-------------------------------------------------------------#  
            for k, v in enumerate(self.extras[1::2], 2):
                loc_layers  += [nn.Conv2d(v.out_channels, mbox[k] * 4, kernel_size = 3, padding = 1)]
                conf_layers += [nn.Conv2d(v.out_channels, mbox[k] * num_classes, kernel_size = 3, padding = 1)]
        else:
            self.mobilenet  = mobilenet_v2(pretrained).features
            self.extras     = add_extras(1280, backbone_name)
            self.L2Norm     = L2Norm(96, 20)
            mbox            = [6, 6, 6, 6, 6, 6]

            loc_layers      = []
            conf_layers     = []
            backbone_source = [13, -1]
            for k, v in enumerate(backbone_source):
                loc_layers  += [nn.Conv2d(self.mobilenet[v].out_channels, mbox[k] * 4, kernel_size = 3, padding = 1)]
                conf_layers += [nn.Conv2d(self.mobilenet[v].out_channels, mbox[k] * num_classes, kernel_size = 3, padding = 1)]
            for k, v in enumerate(self.extras, 2):
                loc_layers  += [nn.Conv2d(v.out_channels, mbox[k] * 4, kernel_size = 3, padding = 1)]
                conf_layers += [nn.Conv2d(v.out_channels, mbox[k] * num_classes, kernel_size = 3, padding = 1)]

        self.loc            = nn.ModuleList(loc_layers)
        self.conf           = nn.ModuleList(conf_layers)
        self.backbone_name  = backbone_name
Exemple #5
0
def get_ssd(phase,num_classes):
    #获得这些层
    vgg, extra_layers = add_vgg(3), add_extras(1024)#in chnnels

    loc_layers = []
    conf_layers = []
    vgg_source = [21, -2]#取出conv4-3进行回归预测,分类预测
    for k, v in enumerate(vgg_source):# 0,21,,,,,,1,-2
        loc_layers += [nn.Conv2d(vgg[v].out_channels,
                                 mbox[k] * 4, kernel_size=3, padding=1)]#*4是因为中心点坐标2个,长宽2个,共可能调整的参数有4个,回归预测
        conf_layers += [nn.Conv2d(vgg[v].out_channels,
                        mbox[k] * num_classes, kernel_size=3, padding=1)]# * num_classes是分类的种类,mbox[k]是在小格内预先设定k种不同尺寸anchor,分类预测
                        
    for k, v in enumerate(extra_layers[1::2], 2):
        loc_layers += [nn.Conv2d(v.out_channels, mbox[k]
                                 * 4, kernel_size=3, padding=1)]# 回归预测
        conf_layers += [nn.Conv2d(v.out_channels, mbox[k]
                                  * num_classes, kernel_size=3, padding=1)]# 分类预测 

    SSD_MODEL = SSD(phase, vgg, extra_layers, (loc_layers, conf_layers), num_classes)
    return SSD_MODEL