Exemple #1
0
    def __init__(self, config, is_training=True):
        super(ModelMain, self).__init__()
        self.config = config
        self.training = is_training
        self.model_params = config["model_params"]
        #  backbone
        # _backbone_fn = backbone_fn[self.model_params["backbone_name"]]
        # self.backbone = _backbone_fn(self.model_params["backbone_pretrained"])
        # self.backbone = mobilenet.mobilenetv2(self.model_params["backbone_pretrained"])
        self.backbone = ShuffleNetV2(scale=1,
                                     in_channels=3,
                                     c_tag=0.5,
                                     num_classes=2,
                                     activation=nn.ReLU,
                                     SE=False,
                                     residual=False)
        _out_filters = self.backbone.layers_out_filters
        #  embedding0
        final_out_filter0 = len(
            config["yolo"]["anchors"][0]) * (5 + config["yolo"]["classes"])
        self.embedding0 = self._make_embedding([512, 1024], _out_filters[-1],
                                               final_out_filter0)
        #  embedding1
        final_out_filter1 = len(
            config["yolo"]["anchors"][1]) * (5 + config["yolo"]["classes"])
        self.embedding1_cbl = self._make_cbl(512, 256, 1)
        self.embedding1_upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.embedding1 = self._make_embedding([256, 512],
                                               _out_filters[-2] + 256,
                                               final_out_filter1)
        #  embedding2
        final_out_filter2 = len(
            config["yolo"]["anchors"][2]) * (5 + config["yolo"]["classes"])
        self.embedding2_cbl = self._make_cbl(256, 128, 1)
        self.embedding2_upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.embedding2 = self._make_embedding([128, 256],
                                               _out_filters[-3] + 128,
                                               final_out_filter2)

        self.yolo_losses = []
        self.losses_name = [
            "total_loss", "x", "y", "w", "h", "conf", "cls", "recall"
        ]
        if not self.training:
            self.nms = NMSLayer()
        for i in range(3):
            yololayer = YOLOLayer(config["batch_size"], i,
                                  config["yolo"]["anchors"][i],
                                  config["yolo"]["classes"],
                                  (config["img_w"], config["img_h"]))

            self.yolo_losses.append(yololayer)
def build_yolov3(config):
    is_training = False
    anchors = [int(x) for x in config["yolo"]["anchors"].split(",")]
    anchors = [[[anchors[i], anchors[i + 1]], [anchors[i + 2], anchors[i + 3]],
                [anchors[i + 4], anchors[i + 5]]]
               for i in range(0, len(anchors), 6)]
    anchors.reverse()
    config["yolo"]["anchors"] = []

    for i in range(3):
        config["yolo"]["anchors"].append(anchors[i])
    # Load and initialize network
    net = ModelMain(config, is_training=is_training)
    net.train(is_training)
    net = nn.DataParallel(net)
    net = net.cuda()
    yolo_losses = []  # YOLO loss with 3 scales
    for i in range(3):
        yolo_losses.append(
            YOLOLayer(config["batch_size"], i, config["yolo"]["anchors"][i],
                      config["yolo"]["classes"],
                      (config["img_w"], config["img_h"])))
    return net, yolo_losses
def test(config):
    is_training = False
    anchors = [int(x) for x in config["yolo"]["anchors"].split(",")]
    anchors = [[[anchors[i], anchors[i + 1]], [anchors[i + 2], anchors[i + 3]],
                [anchors[i + 4], anchors[i + 5]]]
               for i in range(0, len(anchors), 6)]
    anchors.reverse()
    config["yolo"]["anchors"] = []

    for i in range(3):
        config["yolo"]["anchors"].append(anchors[i])
    net = ModelMain(config, is_training=is_training)
    net.train(is_training)

    # Set data parallel
    net = nn.DataParallel(net)
    net = net.cuda()
    ini_files = [
        inifile for inifile in os.listdir(
            os.path.join(config['test_weights'], 'result'))
        if inifile.endswith('.ini')
    ]
    accuracy_s = [(inifile[:-4]).split('_')[-1] for inifile in ini_files]
    accuracy_ints = list(map(float, accuracy_s))
    max_index = accuracy_ints.index(max(accuracy_ints))
    # for kkk,ini_file in enumerate(ini_files):
    ini_list_config = configparser.ConfigParser()
    config_file_path = os.path.join(config['test_weights'], 'result',
                                    ini_files[max_index])
    Bi_picpath = os.path.join(config['test_weights'], 'result',
                              ini_files[max_index]).replace('.ini', '')
    os.makedirs(Bi_picpath, exist_ok=True)
    ini_list_config.read(config_file_path)
    ini_session = ini_list_config.sections()
    accuracy = ini_list_config.items(ini_session[0])
    err_jpgfiles = ini_list_config.items(ini_session[1])
    weight_file = os.path.join(
        config['test_weights'],
        '%s.weights' % ini_files[max_index].split('_')[0])

    if weight_file:  # Restore pretrain model
        logging.info("load checkpoint from {}".format(weight_file))
        state_dict = torch.load(weight_file)
        net.load_state_dict(state_dict)
    else:
        raise Exception("missing pretrain_snapshot!!!")

    yolo_losses = []
    for i in range(3):
        yolo_losses.append(
            YOLOLayer(config["batch_size"], i, config["yolo"]["anchors"][i],
                      config["yolo"]["classes"],
                      (config["img_w"], config["img_h"])))
    # images_name = os.listdir(config["images_path"]) # prepare images path
    # images_path = [os.path.join(config["images_path"], name) for name in images_name]
    # if len(images_path) == 0:
    #     raise Exception("no image found in {}".format(config["images_path"]))
    # batch_size = config["batch_size"]# Start inference
    # for step in range(0, len(images_path), batch_size):

    for _jpg_images in err_jpgfiles:
        images = []  # preprocess
        images_origin = []
        jpg_path = str(_jpg_images[1])
        logging.info("processing: {}".format(jpg_path))
        bbox_list = read_gt_boxes(jpg_path)

        image = cv2.imread(jpg_path, cv2.IMREAD_COLOR)
        if image is None:
            logging.error("read path error: {}. skip it.".format(jpg_path))
            continue
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        images_origin.append(image)  # keep for save result
        image = cv2.resize(image, (config["img_w"], config["img_h"]),
                           interpolation=cv2.INTER_LINEAR)
        image = image.astype(np.float32)
        image /= 255.0
        image = np.transpose(image, (2, 0, 1))
        image = image.astype(np.float32)
        images.append(image)

        images = np.asarray(images)
        images = torch.from_numpy(images).cuda()
        with torch.no_grad():  # inference
            outputs = net(images)
            output_list = []
            for i in range(3):
                output_list.append(yolo_losses[i](outputs[i]))
            output = torch.cat(output_list, 1)
            batch_detections = non_max_suppression(
                output,
                config["yolo"]["classes"],
                conf_thres=config["confidence_threshold"])
        classes = open(config["classes_names_path"],
                       "r").read().split("\n")[:-1]
        for idx, detections in enumerate(batch_detections):
            image_show = images_origin[idx]
            if detections is not None:
                unique_labels = detections[:, -1].cpu().unique()
                n_cls_preds = len(unique_labels)
                for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
                    ori_h, ori_w = images_origin[
                        idx].shape[:
                                   2]  # Rescale coordinates to original dimensions
                    pre_h, pre_w = config["img_h"], config["img_w"]
                    box_h = ((y2 - y1) / pre_h) * ori_h
                    box_w = ((x2 - x1) / pre_w) * ori_w
                    y1 = (y1 / pre_h) * ori_h
                    x1 = (x1 / pre_w) * ori_w
                    image_show = cv2.rectangle(images_origin[idx], (x1, y1),
                                               (x1 + box_w, y1 + box_h),
                                               (0, 255, 0), 2)
                for (x1, x2, y1, y2) in bbox_list:
                    [x1, x2, y1, y2] = map(int, [x1, x2, y1, y2])
                    cv2.rectangle(image_show, (x1, y1), (x2, y2), (255, 0, 0),
                                  2)
            pic_name = (jpg_path.split('/')[-1]).split('.')[0]
            image_show = cv2.cvtColor(image_show, cv2.COLOR_RGB2BGR)
            cv2.imwrite(
                os.path.join(Bi_picpath,
                             '%s.jpg' % os.path.basename(pic_name)),
                image_show)
Exemple #4
0
def train(config):
    config["global_step"] = config.get("start_step", 0)
    is_training = False if config.get("export_onnx") else True

    anchors = [int(x) for x in config["yolo"]["anchors"].split(",")]
    anchors = [[[anchors[i], anchors[i + 1]], [anchors[i + 2], anchors[i + 3]],
                [anchors[i + 4], anchors[i + 5]]]
               for i in range(0, len(anchors), 6)]
    anchors.reverse()
    config["yolo"]["anchors"] = []
    for i in range(3):
        config["yolo"]["anchors"].append(anchors[i])
    # Load and initialize network
    net = ModelMain_SN(config, is_training=is_training)
    net.train(is_training)

    # Optimizer and learning rate
    optimizer = _get_optimizer(config, net)
    lr_scheduler = optim.lr_scheduler.StepLR(
        optimizer,
        step_size=config["lr"]["decay_step"],
        gamma=config["lr"]["decay_gamma"])

    # Set data parallel
    net = nn.DataParallel(net)
    net = net.cuda()

    # Restore pretrain model
    if config["pretrain_snapshot"]:
        logging.info("Load pretrained weights from {}".format(
            config["pretrain_snapshot"]))
        state_dict = torch.load(config["pretrain_snapshot"])
        net.load_state_dict(state_dict)

    # YOLO loss with 3 scales
    yolo_losses = []
    for i in range(3):
        yolo_losses.append(
            YOLOLayer(config["batch_size"], i, config["yolo"]["anchors"][i],
                      config["yolo"]["classes"],
                      (config["img_w"], config["img_h"])))

    # DataLoader
    dataloader = torch.utils.data.DataLoader(COCODataset(
        config["train_path"], (config["img_w"], config["img_h"]),
        is_training=True,
        is_scene=False),
                                             batch_size=config["batch_size"],
                                             shuffle=True,
                                             drop_last=True,
                                             num_workers=0,
                                             pin_memory=True)

    # Start the training loop
    logging.info("Start training.")
    dataload_len = len(dataloader)
    for epoch in range(config["epochs"]):
        recall = 0
        mini_step = 0
        for step, samples in enumerate(dataloader):
            images, labels = samples["image"], samples["label"]
            start_time = time.time()
            config["global_step"] += 1
            for mini_batch in range(8):
                mini_step += 1
                # Forward and backward
                optimizer.zero_grad()
                outputs = net(images)
                losses_name = [
                    "total_loss", "x", "y", "w", "h", "conf", "cls", "recall"
                ]
                losses = [0] * len(losses_name)
                for i in range(3):
                    _loss_item = yolo_losses[i](outputs[i], labels)
                    for j, l in enumerate(_loss_item):
                        losses[j] += l
                # losses = [sum(l) for l in losses]
                loss = losses[0]
                loss.backward()
                optimizer.step()
                _loss = loss.item()
                # example_per_second = config["batch_size"] / duration
                # lr = optimizer.param_groups[0]['lr']

                strftime = datetime.datetime.now().strftime("%H:%M:%S")
                if (losses[7] / 3 >= recall / (step + 1)) or mini_batch == 7:
                    recall += losses[7] / 3
                    print(
                        '%s [Epoch %d/%d,batch %03d/%d loss:x %.5f,y %.5f,w %.5f,h %.5f,conf %.5f,cls %.5f,total %.5f,rec %.3f,avrec %.3f %d]'
                        %
                        (strftime, epoch, config["epochs"], step, dataload_len,
                         losses[1], losses[2], losses[3], losses[4], losses[5],
                         losses[6], _loss, losses[7] / 3, recall /
                         (step + 1), mini_batch))
                    break
                else:
                    print(
                        '%s [Epoch %d/%d,batch %03d/%d loss:x %.5f,y %.5f,w %.5f,h %.5f,conf %.5f,cls %.5f,total %.5f,rec %.3f,prerc %.3f %d]'
                        % (strftime, epoch, config["epochs"], step,
                           dataload_len, losses[1], losses[2], losses[3],
                           losses[4], losses[5], losses[6], _loss,
                           losses[7] / 3, recall / step, mini_batch))
        if (epoch % 2 == 0 and recall / len(dataloader) > 0.7
            ) or recall / len(dataloader) > 0.96:
            torch.save(
                net.state_dict(), '%s/%.4f_%04d.weights' %
                (checkpoint_dir, recall / len(dataloader), epoch))

        lr_scheduler.step()
    # net.train(True)
    logging.info("Bye bye")
Exemple #5
0
def test(config):
    is_training = False
    anchors = [int(x) for x in config["yolo"]["anchors"].split(",")]
    anchors = [[[anchors[i], anchors[i + 1]], [anchors[i + 2], anchors[i + 3]], [anchors[i + 4], anchors[i + 5]]] for i
               in range(0, len(anchors), 6)]
    anchors.reverse()
    config["yolo"]["anchors"] = []
    for i in range(3):
        config["yolo"]["anchors"].append(anchors[i])
    # Load and initialize network
    net = ModelMain(config, is_training=is_training)
    net.train(is_training)

    # Set data parallel
    net = nn.DataParallel(net)
    net = net.cuda()

    # Restore pretrain model
    if config["pretrain_snapshot"]:
        logging.info("load checkpoint from {}".format(config["pretrain_snapshot"]))
        state_dict = torch.load(config["pretrain_snapshot"])
        net.load_state_dict(state_dict)
    else:
        raise Exception("missing pretrain_snapshot!!!")

    # YOLO loss with 3 scales
    yolo_losses = []
    for i in range(3):
        yolo_losses.append(YOLOLayer(config["batch_size"],i,config["yolo"]["anchors"][i],
                                     config["yolo"]["classes"], (config["img_w"], config["img_h"])))

    # prepare images path
    images_path = os.listdir(config["images_path"])
    images_path = [file for file in images_path if file.endswith('.jpg')]
    # images_path = [os.path.join(config["images_path"], name) for name in images_name]
    if len(images_path) == 0:
        raise Exception("no image found in {}".format(config["images_path"]))

    # Start inference
    batch_size = config["batch_size"]
    bgimage = cv2.imread(os.path.join(config["images_path"], images_path[0]), cv2.IMREAD_COLOR)
    bgimage = cv2.cvtColor(bgimage, cv2.COLOR_BGR2GRAY)
    for step in range(0, len(images_path)-1, batch_size):
        # preprocess
        images = []
        images_origin = []
        for path in images_path[step*batch_size: (step+1)*batch_size]:
            if not path.endswith(".jpg") and (not path.endswith(".png")) and not path.endswith(".JPEG"):
                continue
            image = cv2.imread(os.path.join(config["images_path"], path), cv2.IMREAD_COLOR)
            if image is None:
                logging.error("read path error: {}. skip it.".format(path))
                continue
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            images_origin.append(image)  # keep for save result
            image = cv2.resize(image, (config["img_w"], config["img_h"]),
                               interpolation=cv2.INTER_LINEAR)
            image = image.astype(np.float32)
            image /= 255.0
            image = np.transpose(image, (2, 0, 1))
            image = image.astype(np.float32)
            images.append(image)
        images = np.asarray(images)
        images = torch.from_numpy(images).cuda()
        # inference
        with torch.no_grad():
            outputs = net(images)
            output_list = []
            for i in range(3):
                output_list.append(yolo_losses[i](outputs[i]))
            output = torch.cat(output_list, 1)
            batch_detections = non_max_suppression(output, config["yolo"]["classes"],
                                                   conf_thres=config["confidence_threshold"])

        # write result images. Draw bounding boxes and labels of detections
        classes = open(config["classes_names_path"], "r").read().split("\n")[:-1]
        for idx, detections in enumerate(batch_detections):
            image_show =images_origin[idx]
            if detections is not None:

                anno = savexml.GEN_Annotations(path + '.jpg')
                anno.set_size(1280, 720, 3)

                unique_labels = detections[:, -1].cpu().unique()
                n_cls_preds = len(unique_labels)
                bbox_list = []
                for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
                    # Rescale coordinates to original dimensions
                    ori_h, ori_w = images_origin[idx].shape[:2]
                    pre_h, pre_w = config["img_h"], config["img_w"]
                    box_h = ((y2 - y1) / pre_h) * ori_h
                    box_w =   ((x2 - x1) / pre_w) * ori_w
                    y1 = (y1 / pre_h) * ori_h
                    x1 = (x1 / pre_w) * ori_w
                    # Create a Rectangle patch
                    bbox_list.append((x1, y1,box_w,box_h))

                    image_show = cv2.rectangle(images_origin[idx], (x1, y1), (x1 + box_w, y1 + box_h), (0, 0, 255), 1)
                boundbox = bg_judge(images_origin[idx],bgimage,bbox_list)
                print('boundbox',boundbox,bbox_list)
                for (x,y,w,h) in boundbox:
                    image_show = cv2.rectangle(image_show, (x, y), (x + w, y + h), (0, 255, 0), 1)
                #     anno.add_pic_attr("mouse", int(x1.cpu().data), int(y1.cpu().data), int(box_w.cpu().data) , int(box_h.cpu().data) ,"0")
                #
                # xml_path = os.path.join(config["images_path"], path).replace('rec_pic',r'detect_pic1\Annotations').replace('jpg','xml')
                # anno.savefile(xml_path)
                # cv2.imwrite(os.path.join(config["images_path"], path).replace('rec_pic',r'detect_pic1\rec_pic'),images_origin[idx])
            cv2.imshow('1', image_show)
            cv2.waitKey(1)
    logging.info("Save all results to ./output/")
Exemple #6
0
def test(config):
    is_training = False
    anchors = [int(x) for x in config["yolo"]["anchors"].split(",")]
    anchors = [[[anchors[i], anchors[i + 1]], [anchors[i + 2], anchors[i + 3]],
                [anchors[i + 4], anchors[i + 5]]]
               for i in range(0, len(anchors), 6)]
    anchors.reverse()
    config["yolo"]["anchors"] = []
    for i in range(3):
        config["yolo"]["anchors"].append(anchors[i])
    # Load and initialize network
    net = ModelMain(config, is_training=is_training)
    net.train(is_training)

    # Set data parallel
    net = nn.DataParallel(net)
    net = net.cuda()

    # Restore pretrain model
    if config["pretrain_snapshot"]:
        logging.info("load checkpoint from {}".format(
            config["pretrain_snapshot"]))
        state_dict = torch.load(config["pretrain_snapshot"])
        net.load_state_dict(state_dict)
    else:
        raise Exception("missing pretrain_snapshot!!!")

    # YOLO loss with 3 scales
    yolo_losses = []
    for i in range(3):
        yolo_losses.append(
            YOLOLayer(config["batch_size"], i, config["yolo"]["anchors"][i],
                      config["yolo"]["classes"],
                      (config["img_w"], config["img_h"])))

    # prepare images path
    images_name = os.listdir(config["images_path"])
    images_path = [
        os.path.join(config["images_path"], name) for name in images_name
    ]
    if len(images_path) == 0:
        raise Exception("no image found in {}".format(config["images_path"]))

    # Start inference
    batch_size = config["batch_size"]
    for step in range(0, len(images_path), batch_size):
        # preprocess
        images = []
        images_origin = []
        for path in images_path[step * batch_size:(step + 1) * batch_size]:
            logging.info("processing: {}".format(path))
            image = cv2.imread(path, cv2.IMREAD_COLOR)
            if image is None:
                logging.error("read path error: {}. skip it.".format(path))
                continue
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            images_origin.append(image)  # keep for save result
            image = cv2.resize(image, (config["img_w"], config["img_h"]),
                               interpolation=cv2.INTER_LINEAR)
            image = image.astype(np.float32)
            image /= 255.0
            image = np.transpose(image, (2, 0, 1))
            image = image.astype(np.float32)
            images.append(image)
        images = np.asarray(images)
        images = torch.from_numpy(images).cuda()
        # inference
        with torch.no_grad():
            outputs = net(images)
            output_list = []
            for i in range(3):
                output_list.append(yolo_losses[i](outputs[i]))
            output = torch.cat(output_list, 1)
            batch_detections = non_max_suppression(
                output,
                config["yolo"]["classes"],
                conf_thres=config["confidence_threshold"],
                nms_thres=config["iou_thres"])

        # write result images. Draw bounding boxes and labels of detections
        classes = open(config["classes_names_path"],
                       "r").read().split("\n")[:-1]
        if not os.path.isdir("./output/"):
            os.makedirs("./output/")
        for idx, detections in enumerate(batch_detections):
            plt.figure()
            fig, ax = plt.subplots(1)
            ax.imshow(images_origin[idx])
            if detections is not None:
                unique_labels = detections[:, -1].cpu().unique()
                n_cls_preds = len(unique_labels)
                bbox_colors = random.sample(colors, n_cls_preds)
                boxes = []
                for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
                    color = bbox_colors[int(
                        np.where(unique_labels == int(cls_pred))[0])]
                    # Rescale coordinates to original dimensions
                    ori_h, ori_w = images_origin[idx].shape[:2]
                    pre_h, pre_w = config["img_h"], config["img_w"]
                    box_h = ((y2 - y1) / pre_h) * ori_h
                    box_w = ((x2 - x1) / pre_w) * ori_w
                    y1 = (y1 / pre_h) * ori_h
                    x1 = (x1 / pre_w) * ori_w
                    # Create a Rectangle patch

                    box = BoundBox(x1, y1, x1 + box_w, y1 + box_h,
                                   cls_conf.item(), int(cls_pred),
                                   classes[int(cls_pred)])
                    boxes.append(box)
                    # bbox = patches.Rectangle((x1, y1), box_w, box_h, linewidth=1,
                    #                          edgecolor=color,
                    #                          facecolor='none')
                    # # Add the bbox to the plot
                    # ax.add_patch(bbox)
                    # Add label
                    # plt.text(x1, y1, s=classes[int(cls_pred)], color='white',
                    #          verticalalignment='top',
                    #          bbox={'color': color, 'pad': 0})
            # Save generated image with detections
            img_show = draw_boxes(images_origin[idx], boxes, labels, 0.5)
            img_show = cv2.resize(img_show,
                                  (img_show.shape[1], img_show.shape[0]),
                                  interpolation=cv2.INTER_CUBIC)
            # outVideo.write(img_show)
            cv2.imshow("ai", img_show)
            cv2.waitKey()
            # plt.close()
    logging.info("Save all results to ./output/")
                    index += 1


anchors = [int(x) for x in config["yolo"]["anchors"].split(",")]
anchors = [[[anchors[i], anchors[i + 1]], [anchors[i + 2], anchors[i + 3]],
            [anchors[i + 4], anchors[i + 5]]]
           for i in range(0, len(anchors), 6)]
anchors.reverse()
config["yolo"]["anchors"] = []
for i in range(3):
    config["yolo"]["anchors"].append(anchors[i])
yolo_losses = []
for i in range(3):
    yolo_losses.append(
        YOLOLayer(config["batch_size"], i, config["yolo"]["anchors"][i],
                  config["yolo"]["classes"],
                  (config["img_w"], config["img_h"])))

dataloader = torch.utils.data.DataLoader(COCODataset(
    config["train_path"], (config["img_w"], config["img_h"]),
    is_training=True,
    is_scene=True),
                                         batch_size=config["batch_size"],
                                         shuffle=True,
                                         drop_last=True,
                                         num_workers=0,
                                         pin_memory=True)


def validate(net):
    n_gt = 0
Exemple #8
0
def train(config):
    config["global_step"] = config.get("start_step", 0)
    is_training = False if config.get("export_onnx") else True

    anchors = [int(x) for x in config["yolo"]["anchors"].split(",")]
    anchors = [[[anchors[i], anchors[i + 1]], [anchors[i + 2], anchors[i + 3]],
                [anchors[i + 4], anchors[i + 5]]]
               for i in range(0, len(anchors), 6)]
    anchors.reverse()
    config["yolo"]["anchors"] = []
    for i in range(3):
        config["yolo"]["anchors"].append(anchors[i])
    # Load and initialize network
    net = ModelMain(config, is_training=is_training)
    net.train(is_training)

    # Optimizer and learning rate
    optimizer = _get_optimizer(config, net)

    lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=15)
    # lr_scheduler = optim.lr_scheduler.StepLR(
    #     optimizer,
    #     step_size=config["lr"]["decay_step"],
    #     gamma=config["lr"]["decay_gamma"])

    # Set data parallel
    net = nn.DataParallel(net)
    net = net.cuda()
    # Restore pretrain model
    if config["pretrain_snapshot"]:
        logging.info("Load pretrained weights from {}".format(
            config["pretrain_snapshot"]))
        state_dict = torch.load(config["pretrain_snapshot"])
        net.load_state_dict(state_dict)

    # Only export onnx
    # if config.get("export_onnx"):
    # real_model = net.module
    # real_model.eval()
    # dummy_input = torch.randn(8, 3, config["img_h"], config["img_w"]).cuda()
    # save_path = os.path.join(config["sub_working_dir"], "pytorch.onnx")
    # logging.info("Exporting onnx to {}".format(save_path))
    # torch.onnx.export(real_model, dummy_input, save_path, verbose=False)
    # logging.info("Done. Exiting now.")
    # sys.exit()

    # Evaluate interface
    # if config["evaluate_type"]:
    # logging.info("Using {} to evaluate model.".format(config["evaluate_type"]))
    # evaluate_func = importlib.import_module(config["evaluate_type"]).run_eval
    # config["online_net"] = net

    # YOLO loss with 3 scales
    yolo_losses = []
    for i in range(3):
        yolo_losses.append(
            YOLOLayer(config["batch_size"], i, config["yolo"]["anchors"][i],
                      config["yolo"]["classes"],
                      (config["img_w"], config["img_h"])))

    # DataLoader
    dataloader = torch.utils.data.DataLoader(COCODataset(
        config["train_path"], (config["img_w"], config["img_h"]),
        is_training=True,
        is_scene=True),
                                             batch_size=config["batch_size"],
                                             shuffle=True,
                                             drop_last=True,
                                             num_workers=0,
                                             pin_memory=True)

    # Start the training loop
    logging.info("Start training.")
    dataload_len = len(dataloader)
    best_acc = 0.5
    for epoch in range(config["epochs"]):

        recall = 0
        mini_step = 0
        for step, samples in enumerate(dataloader):
            images, labels = samples["image"], samples["label"]
            config["global_step"] += 1
            # Forward and backward
            optimizer.zero_grad()
            outputs = net(images.cuda())
            losses_name = [
                "total_loss", "x", "y", "w", "h", "conf", "cls", "recall"
            ]
            losses = [0] * len(losses_name)
            for i in range(3):
                _loss_item = yolo_losses[i](outputs[i], labels)
                for j, l in enumerate(_loss_item):
                    losses[j] += l
            # losses = [sum(l) for l in losses]
            loss = losses[0]
            loss.backward()
            optimizer.step()
            _loss = loss.item()
            # example_per_second = config["batch_size"] / duration
            lr = optimizer.param_groups[0]['lr']

            strftime = datetime.datetime.now().strftime("%H:%M:%S")
            # if (losses[7] / 3 >= recall / (step + 1)):#mini_batch为0走这里
            recall += losses[7] / 3
            print(
                '%s [Epoch %d/%d,batch %03d/%d loss:x %.5f,y %.5f,w %.5f,h %.5f,conf %.5f,cls %.5f,total %.5f,rec %.3f,avrec %.3f %.3f]'
                % (strftime, epoch, config["epochs"], step, dataload_len,
                   losses[1], losses[2], losses[3], losses[4], losses[5],
                   losses[6], _loss, losses[7] / 3, recall / (step + 1), lr))

        if recall / len(dataloader) > best_acc:
            best_acc = recall / len(dataloader)
            if epoch > 0:
                torch.save(
                    net.state_dict(), '%s/%.4f_%04d.weights' %
                    (checkpoint_dir, recall / len(dataloader), epoch))

        lr_scheduler.step()
        net.train(is_training)
        torch.cuda.empty_cache()
    # net.train(True)
    logging.info("Bye bye")
Exemple #9
0
def evaluate(config):
    is_training = False
    anchors = [int(x) for x in config["yolo"]["anchors"].split(",")]
    anchors = [[[anchors[i], anchors[i + 1]], [anchors[i + 2], anchors[i + 3]],
                [anchors[i + 4], anchors[i + 5]]]
               for i in range(0, len(anchors), 6)]
    anchors.reverse()
    config["yolo"]["anchors"] = []
    for i in range(3):
        config["yolo"]["anchors"].append(anchors[i])
    # Load and initialize network
    net = ModelMain(config, is_training=is_training)
    net.train(is_training)

    # Set data parallel
    net = nn.DataParallel(net)
    net = net.cuda()

    # Restore pretrain model
    if config["pretrain_snapshot"]:
        state_dict = torch.load(config["pretrain_snapshot"])
        net.load_state_dict(state_dict)
    else:
        logging.warning("missing pretrain_snapshot!!!")

    # YOLO loss with 3 scales
    yolo_losses = []
    for i in range(3):
        yolo_losses.append(
            YOLOLayer(config["batch_size"], i, config["yolo"]["anchors"][i],
                      config["yolo"]["classes"],
                      (config["img_w"], config["img_h"])))

    # DataLoader
    dataloader = torch.utils.data.DataLoader(COCODataset(
        config["val_path"], (config["img_w"], config["img_h"]), is_training=1),
                                             batch_size=config["batch_size"],
                                             shuffle=False,
                                             drop_last=True,
                                             num_workers=0,
                                             pin_memory=False)

    # Start the eval loop
    logging.info("Start eval.")
    n_gt = 0
    correct = 0
    for step, samples in enumerate(dataloader):
        images, labels = samples["image"], samples["label"]
        labels = labels.cuda()
        with torch.no_grad():
            time1 = datetime.datetime.now()
            outputs = net(images)
            output_list = []
            for i in range(3):
                output_list.append(yolo_losses[i](outputs[i]))
            output = torch.cat(output_list, 1)
            output = non_max_suppression(output, 1, conf_thres=0.3)
            print("time", (datetime.datetime.now() - time1).microseconds)
            #  calculate
            for sample_i in range(labels.size(0)):
                # Get labels for sample where width is not zero (dummies)
                target_sample = labels[sample_i, labels[sample_i, :, 3] != 0]
                for obj_cls, tx, ty, tw, th in target_sample:
                    # Get rescaled gt coordinates
                    tx1, tx2 = config["img_w"] * (
                        tx - tw / 2), config["img_w"] * (tx + tw / 2)
                    ty1, ty2 = config["img_h"] * (
                        ty - th / 2), config["img_h"] * (ty + th / 2)
                    n_gt += 1
                    box_gt = torch.cat([
                        coord.unsqueeze(0) for coord in [tx1, ty1, tx2, ty2]
                    ]).view(1, -1)
                    sample_pred = output[sample_i]
                    if sample_pred is not None:
                        # Iterate through predictions where the class predicted is same as gt
                        for x1, y1, x2, y2, conf, obj_conf, obj_pred in sample_pred[
                                sample_pred[:, 6] == obj_cls]:
                            box_pred = torch.cat([
                                coord.unsqueeze(0)
                                for coord in [x1, y1, x2, y2]
                            ]).view(1, -1)
                            iou = bbox_iou(box_pred, box_gt)
                            if iou >= config["iou_thres"]:
                                correct += 1
                                break
        if n_gt:
            logging.info('Batch [%d/%d] mAP: %.5f' %
                         (step, len(dataloader), float(correct / n_gt)))

    logging.info('Mean Average Precision: %.5f' % float(correct / n_gt))
Exemple #10
0
def test(config):
    is_training = False
    # Load and initialize network
    net = ModelMain(config, is_training=is_training)
    net.train(is_training)

    # Set data parallel
    net = nn.DataParallel(net)
    net = net.cuda()

    # Restore pretrain model
    if config["pretrain_snapshot"]:
        logging.info("load checkpoint from {}".format(
            config["pretrain_snapshot"]))
        state_dict = torch.load(config["pretrain_snapshot"])
        net.load_state_dict(state_dict)
    else:
        raise Exception("missing pretrain_snapshot!!!")

    # YOLO loss with 3 scales
    yolo_losses = []
    for i in range(3):
        yolo_losses.append(
            YOLOLayer(config["yolo"]["anchors"][i], config["yolo"]["classes"],
                      (config["img_w"], config["img_h"])))

    # prepare images path
    images_name = os.listdir(config["images_path"])
    images_path = [
        os.path.join(config["images_path"], name) for name in images_name
    ]
    if len(images_path) == 0:
        raise Exception("no image found in {}".format(config["images_path"]))

    # Start testing FPS of different batch size
    for batch_size in range(1, 10):
        # preprocess
        images = []
        for path in images_path[:batch_size]:
            image = cv2.imread(path, cv2.IMREAD_COLOR)
            if image is None:
                logging.error("read path error: {}. skip it.".format(path))
                continue
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            image = cv2.resize(image, (config["img_w"], config["img_h"]),
                               interpolation=cv2.INTER_LINEAR)
            image = image.astype(np.float32)
            image /= 255.0
            image = np.transpose(image, (2, 0, 1))
            image = image.astype(np.float32)
            images.append(image)
        for i in range(batch_size - len(images)):
            images.append(images[0])  #  fill len to batch_sze
        images = np.asarray(images)
        images = torch.from_numpy(images).cuda()
        # inference in 30 times and calculate average
        inference_times = []
        for i in range(30):
            start_time = time.time()
            with torch.no_grad():
                outputs = net(images)
                output_list = []
                for i in range(3):
                    output_list.append(yolo_losses[i](outputs[i]))
                output = torch.cat(output_list, 1)
                batch_detections = non_max_suppression(
                    output,
                    config["yolo"]["classes"],
                    conf_thres=config["confidence_threshold"])
                torch.cuda.synchronize()  #  wait all done.
            end_time = time.time()
            inference_times.append(end_time - start_time)
        inference_time = sum(inference_times) / len(
            inference_times) / batch_size
        fps = 1.0 / inference_time
        logging.info(
            "Batch_Size: {}, Inference_Time: {:.5f} s/image, FPS: {}".format(
                batch_size, inference_time, fps))
def test(config):
    is_training = False
    anchors = [int(x) for x in config["yolo"]["anchors"].split(",")]
    anchors = [[[anchors[i], anchors[i + 1]], [anchors[i + 2], anchors[i + 3]], [anchors[i + 4], anchors[i + 5]]] for i
               in range(0, len(anchors), 6)]
    anchors.reverse()
    config["yolo"]["anchors"] = []
    for i in range(3):
        config["yolo"]["anchors"].append(anchors[i])
    # Load and initialize network
    net = ModelMain(config, is_training=is_training)
    net.train(is_training)

    # Set data parallel
    net = nn.DataParallel(net)
    net = net.cuda()

    # Restore pretrain model
    if config["pretrain_snapshot"]:
        logging.info("load checkpoint from {}".format(config["pretrain_snapshot"]))
        state_dict = torch.load(config["pretrain_snapshot"])
        net.load_state_dict(state_dict)
    else:
        raise Exception("missing pretrain_snapshot!!!")
    # YOLO loss with 3 scales
    yolo_losses = []
    for i in range(3):
        yolo_losses.append(YOLOLayer(config["batch_size"],i,config["yolo"]["anchors"][i],
                                     config["yolo"]["classes"], (config["img_w"], config["img_h"])))

    # prepare images path
    images_name = os.listdir(config["images_path"])
    images_path = [os.path.join(config["images_path"], name) for name in images_name]
    if len(images_path) == 0:
        raise Exception("no image found in {}".format(config["images_path"]))

    cap = cv2.VideoCapture(0)
    # cap = cv2.VideoCapture("./007.avi")

    img_i = 0
    start = time.time()
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        img_i += 1
        # preprocess
        images = []
        images_origin = []
        image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        images_origin.append(image)  # keep for save result
        image = cv2.resize(image, (config["img_w"], config["img_h"]),
                           interpolation=cv2.INTER_LINEAR)
        image = image.astype(np.float32)
        image /= 255.0
        image = np.transpose(image, (2, 0, 1))
        image = image.astype(np.float32)
        images.append(image)
        images = np.asarray(images)
        images = torch.from_numpy(images).cuda()
        # inference
        with torch.no_grad():
            time1=datetime.datetime.now()
            outputs = net(images)
            output_list = []
            for i in range(3):
                output_list.append(yolo_losses[i](outputs[i]))
            output = torch.cat(output_list, 1)
            print("time1",(datetime.datetime.now()-time1).microseconds)
            batch_detections = non_max_suppression(output, config["yolo"]["classes"],
                                                   conf_thres=config["confidence_threshold"])
            print("time2", (datetime.datetime.now() - time1).microseconds)

        # write result images. Draw bounding boxes and labels of detections
        classes = open(config["classes_names_path"], "r").read().split("\n")[:-1]
        if not os.path.isdir("./output/"):
            os.makedirs("./output/")
        for idx, detections in enumerate(batch_detections):
            img_show = images_origin[idx]
            img_show = cv2.cvtColor(img_show, cv2.COLOR_RGB2BGR)
            if detections is not None:
                unique_labels = detections[:, -1].cpu().unique()
                n_cls_preds = len(unique_labels)
                boxes=[]
                for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
                    # Rescale coordinates to original dimensions
                    ori_h, ori_w = images_origin[idx].shape[:2]
                    pre_h, pre_w = config["img_h"], config["img_w"]
                    box_h = ((y2 - y1) / pre_h) * ori_h
                    box_w = ((x2 - x1) / pre_w) * ori_w
                    y1 = (y1 / pre_h) * ori_h
                    x1 = (x1 / pre_w) * ori_w
                    # Create a Rectangle patch
                    box = BoundBox(x1, y1, x1 + box_w, y1 + box_h, cls_conf.item(), int(cls_pred))
                    boxes.append(box)
                    img_show = draw_boxes(img_show, boxes, labels)
                    # image_show = cv2.rectangle(images_origin[idx], (x1, y1), (x1 + box_w, y1 + box_h), (0, 255, 0), 1)

            cv2.imshow('1', img_show)
            cv2.waitKey(1)
    logging.info("Save all results to ./output/")
Exemple #12
0
def train(config):
    config["global_step"] = config.get("start_step", 0)
    is_training = False if config.get("export_onnx") else True

    anchors = [int(x) for x in config["yolo"]["anchors"].split(",")]
    anchors = [[[anchors[i], anchors[i + 1]], [anchors[i + 2], anchors[i + 3]],
                [anchors[i + 4], anchors[i + 5]]]
               for i in range(0, len(anchors), 6)]
    anchors.reverse()
    config["yolo"]["anchors"] = []
    for i in range(3):
        config["yolo"]["anchors"].append(anchors[i])
    # Load and initialize network
    net = ModelMain(config, is_training=is_training)
    net.train(is_training)

    # Optimizer and learning rate
    optimizer = _get_optimizer(config, net)
    lr_scheduler = optim.lr_scheduler.StepLR(
        optimizer,
        step_size=config["lr"]["decay_step"],
        gamma=config["lr"]["decay_gamma"])

    # Set data parallel
    net = nn.DataParallel(net)
    net = net.cuda()

    # Restore pretrain model
    if config["pretrain_snapshot"]:
        logging.info("Load pretrained weights from {}".format(
            config["pretrain_snapshot"]))
        state_dict = torch.load(config["pretrain_snapshot"])
        net.load_state_dict(state_dict)

    # YOLO loss with 3 scales
    yolo_losses = []
    for i in range(3):
        yolo_losses.append(
            YOLOLayer(config["batch_size"], i, config["yolo"]["anchors"][i],
                      config["yolo"]["classes"],
                      (config["img_w"], config["img_h"])))

    total_loss = 0
    last_total_loss = 0

    manager = Manager()
    # 父进程创建Queue,并传给各个子进程:
    q = manager.Queue(1)
    lock = manager.Lock()  # 初始化一把锁
    p = Pool()
    pw = p.apply_async(get_data, args=(q, lock))

    batch_len = q.get()
    if batch_len[0] == "len":
        batch_len = batch_len[1]
    logging.info("Start training.")
    for epoch in range(config["epochs"]):
        recall = 0
        for step in range(batch_len):
            samples = q.get()
            images, labels = samples["image"], samples["label"]
            start_time = time.time()
            config["global_step"] += 1

            # Forward and backward
            optimizer.zero_grad()
            outputs = net(images)
            losses_name = [
                "total_loss", "x", "y", "w", "h", "conf", "cls", "recall"
            ]
            losses = [0] * len(losses_name)
            for i in range(3):
                _loss_item = yolo_losses[i](outputs[i], labels)
                for j, l in enumerate(_loss_item):
                    losses[j] += l
            # losses = [sum(l) for l in losses]
            loss = losses[0]
            loss.backward()
            optimizer.step()

            if step > 0 and step % 2 == 0:
                _loss = loss.item()
                duration = float(time.time() - start_time)
                example_per_second = config["batch_size"] / duration
                lr = optimizer.param_groups[0]['lr']

                strftime = datetime.datetime.now().strftime("%H:%M:%S")
                recall += losses[7] / 3
                print(
                    '%s [Epoch %d/%d, Batch %03d/%d losses: x %.5f, y %.5f, w %.5f, h %.5f, conf %.5f, cls %.5f, total %.5f, recall: %.3f]'
                    % (strftime, epoch, config["epochs"], step, batch_len,
                       losses[1], losses[2], losses[3], losses[4], losses[5],
                       losses[6], _loss, losses[7] / 3))
                # logging.info(epoch [%.3d] iter = %d loss = %.2f example/sec = %.3f lr = %.5f "%
                #     (epoch, step, _loss, example_per_second, lr))
                # config["tensorboard_writer"].add_scalar("lr",
                #                                         lr,
                #                                         config["global_step"])
                # config["tensorboard_writer"].add_scalar("example/sec",
                #                                         example_per_second,
                #                                         config["global_step"])
                # for i, name in enumerate(losses_name):
                #     value = _loss if i == 0 else losses[i]
                #     config["tensorboard_writer"].add_scalar(name,
                #                                             value,
                #                                             config["global_step"])

        if (epoch % 2 == 0
                and recall / batch_len > 0.7) or recall / batch_len > 0.96:
            torch.save(net.state_dict(),
                       '%s/%04d.weights' % (checkpoint_dir, epoch))

        lr_scheduler.step()
Exemple #13
0
def test(config,int_dir='result'):
    is_training = False
    anchors = [int(x) for x in config["yolo"]["anchors"].split(",")]
    anchors = [[[anchors[i], anchors[i + 1]], [anchors[i + 2], anchors[i + 3]], [anchors[i + 4], anchors[i + 5]]] for i
               in range(0, len(anchors), 6)]
    anchors.reverse()
    config["yolo"]["anchors"] = []

    for i in range(3):
        config["yolo"]["anchors"].append(anchors[i])
    net = ModelMain(config, is_training=is_training)
    net.train(is_training)

    # Set data parallel
    net = nn.DataParallel(net)
    net = net.cuda()

    ini_files = os.listdir(os.path.join(config['test_weights'], int_dir))

    for kkk,ini_file in enumerate(ini_files):
        ini_list_config = configparser.ConfigParser()
        config_file_path = os.path.join(config['test_weights'], int_dir,ini_files[-kkk-1])
        ini_list_config.read(config_file_path)
        ini_session = ini_list_config.sections()
        # accuracy = ini_list_config.items(ini_session[0])
        err_jpgfiles = ini_list_config.items(ini_session[1])
        aaa = glob.glob(os.path.join(config['test_weights'],'*_%s.weights'%ini_files[-kkk-1].split('_')[-1].split('.')[0]))

        weight_file = aaa[0]#os.path.join(config['test_weights'],'%s.weights'%ini_files[-kkk-1].split('_')[0])
        if weight_file:                    # Restore pretrain model
            logging.info("load checkpoint from {}".format(weight_file))
            state_dict = torch.load(weight_file)
            net.load_state_dict(state_dict)
        else:
            raise Exception("missing pretrain_snapshot!!!")

        yolo_losses = []
        for i in range(3):
            yolo_losses.append(YOLOLayer(1, i, config["yolo"]["anchors"][i],
                                         config["yolo"]["classes"], (config["img_w"], config["img_h"])))

        for index, _jpg_images in enumerate(err_jpgfiles):
            images = []# preprocess
            images_origin = []
            jpg_path = str(_jpg_images[1])
            print(str(index+1),jpg_path)
            bbox_list = read_gt_boxes(jpg_path)

            image = cv2.imread(jpg_path, cv2.IMREAD_COLOR)
            if image is None:
                logging.error("read path error: {}. skip it.".format(jpg_path))
                continue
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            images_origin.append(image)  # keep for save result
            image = cv2.resize(image, (config["img_w"], config["img_h"]),interpolation=cv2.INTER_LINEAR)
            image = image.astype(np.float32)
            image /= 255.0
            image = np.transpose(image, (2, 0, 1))
            image = image.astype(np.float32)
            images.append(image)

            images = np.asarray(images)
            images = torch.from_numpy(images).cuda()
            with torch.no_grad():# inference
                outputs = net(images)
                output_list = []
                for i in range(3):
                    output_list.append(yolo_losses[i](outputs[i]))
                output = torch.cat(output_list, 1)
                batch_detections = non_max_suppression(output, config["yolo"]["classes"],
                                                       conf_thres=config["confidence_threshold"])
            classes = open(config["classes_names_path"], "r").read().split("\n")[:-1]
            if not os.path.isdir("./output/"):
                os.makedirs("./output/")
            for idx, detections in enumerate(batch_detections):
                image_show=images_origin[idx]
                if detections is not None:
                    unique_labels = detections[:, -1].cpu().unique()
                    n_cls_preds = len(unique_labels)
                    for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
                        ori_h, ori_w = images_origin[idx].shape[:2]# Rescale coordinates to original dimensions
                        pre_h, pre_w = config["img_h"], config["img_w"]
                        box_h = ((y2 - y1) / pre_h) * ori_h
                        box_w = ((x2 - x1) / pre_w) * ori_w
                        y1 = (y1 / pre_h) * ori_h
                        x1 = (x1 / pre_w) * ori_w
                        #绿色代表预测,红色代表标注
                        image_show = cv2.rectangle(images_origin[idx], (x1, y1), (x1 + box_w, y1 + box_h), (0, 255, 0),2)
                    for (x1, x2, y1, y2) in bbox_list:
                        [x1, x2, y1, y2] = map(int, [x1, x2, y1, y2])
                        cv2.rectangle(image_show, (x1, y1), (x2, y2), (0, 0, 255), 2)
                cv2.imshow('1', image_show)
                cv2.waitKey()