Exemple #1
0
    def _get_conv(self,
                  inputs,
                  in_channels,
                  out_channels,
                  scale,
                  suffix,
                  kernel_size=(3, 3),
                  strides=(1, 1)):
        """Performs a convolution in the ResNet block."""
        if inputs.get_shape().as_list()[-1] != in_channels:
            raise ValueError("Unexpected number of input channels.")
        if scale not in ["up", "down", "none"]:
            raise ValueError(
                "Scale: got {}, expected 'up', 'down', or 'none'.".format(
                    scale))

        outputs = inputs
        if scale == "up":
            outputs = unpool(outputs)
        outputs = ops.conv2d(outputs,
                             output_dim=out_channels,
                             k_h=kernel_size[0],
                             k_w=kernel_size[1],
                             d_h=strides[0],
                             d_w=strides[1],
                             use_sn=self._spectral_norm,
                             name="{}_{}".format(
                                 "same" if scale == "none" else scale, suffix))
        if scale == "down":
            outputs = tf.nn.pool(outputs, [2, 2],
                                 "AVG",
                                 "SAME",
                                 strides=[2, 2],
                                 name="pool_%s" % suffix)
        return outputs
Exemple #2
0
 def apply(self, x, is_training):
     num_units = self.nef
     num_layers = self.nel
     for i in range(num_layers):
         scale = 2**(num_layers - i - 1)
         x = ops.conv2d(x,
                        num_units // scale,
                        k_w=5,
                        k_h=5,
                        d_h=2,
                        d_w=2,
                        stddev=0.0099999,
                        name='h%d_conv' % i)
         x = ops.batch_norm(x, is_training, name='h%d_bn' % i)
         x = tf.nn.relu(x)
     x = tf.reshape(x, [x.shape[0], -1])
     mu = ops.linear(x, self.dim_z, scope='mu')
     log_sigma = ops.linear(x, self.dim_z, scope='log_sigma')
     return mu, log_sigma, reparametric(mu, log_sigma)
    def apply(self, z, y, is_training):
        """Build the generator network for the given inputs.

    Args:
      z: `Tensor` of shape [batch_size, z_dim] with latent code.
      y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
        labels.
      is_training: boolean, are we in train or eval model.

    Returns:
      A tensor of size [batch_size] + self._image_shape with values in [0, 1].
    """
        shape_or_none = lambda t: None if t is None else t.shape
        logging.info("[Generator] inputs are z=%s, y=%s", z.shape,
                     shape_or_none(y))
        # Each block upscales by a factor of 2.
        seed_size = 4
        z_dim = z.shape[1].value

        in_channels, out_channels = self._get_in_out_channels()
        num_blocks = len(in_channels)

        if self._embed_z:
            z = ops.linear(z,
                           z_dim,
                           scope="embed_z",
                           use_sn=False,
                           use_bias=self._embed_bias)
        if self._embed_y:
            y = ops.linear(y,
                           self._embed_y_dim,
                           scope="embed_y",
                           use_sn=False,
                           use_bias=self._embed_bias)
        y_per_block = num_blocks * [y]
        if self._hierarchical_z:
            z_per_block = tf.split(z, num_blocks + 1, axis=1)
            z0, z_per_block = z_per_block[0], z_per_block[1:]
            if y is not None:
                y_per_block = [tf.concat([zi, y], 1) for zi in z_per_block]
        else:
            z0 = z
            z_per_block = num_blocks * [z]

        logging.info("[Generator] z0=%s, z_per_block=%s, y_per_block=%s",
                     z0.shape, [str(shape_or_none(t)) for t in z_per_block],
                     [str(shape_or_none(t)) for t in y_per_block])

        # Map noise to the actual seed.
        net = ops.linear(z0,
                         in_channels[0] * seed_size * seed_size,
                         scope="fc_noise",
                         use_sn=self._spectral_norm)
        # Reshape the seed to be a rank-4 Tensor.
        net = tf.reshape(net, [-1, seed_size, seed_size, in_channels[0]],
                         name="fc_reshaped")

        for block_idx in range(num_blocks):
            name = "B{}".format(block_idx + 1)
            block = self._resnet_block(name=name,
                                       in_channels=in_channels[block_idx],
                                       out_channels=out_channels[block_idx],
                                       scale="up")
            net = block(net,
                        z=z_per_block[block_idx],
                        y=y_per_block[block_idx],
                        is_training=is_training)
            if name in self._blocks_with_attention:
                logging.info("[Generator] Applying non-local block to %s",
                             net.shape)
                net = ops.non_local_block(net,
                                          "non_local_block",
                                          use_sn=self._spectral_norm)
        # Final processing of the net.
        # Use unconditional batch norm.
        logging.info("[Generator] before final processing: %s", net.shape)
        net = ops.batch_norm(net, is_training=is_training, name="final_norm")
        net = tf.nn.relu(net)
        net = ops.conv2d(net,
                         output_dim=self._image_shape[2],
                         k_h=3,
                         k_w=3,
                         d_h=1,
                         d_w=1,
                         name="final_conv",
                         use_sn=self._spectral_norm)
        logging.info("[Generator] after final processing: %s", net.shape)
        net = (tf.nn.tanh(net) + 1.0) / 2.0
        return net
Exemple #4
0
    def apply(self, x, y, is_training):
        """Apply the discriminator on a input.

    Args:
      x: `Tensor` of shape [batch_size, ?, ?, ?] with real or fake images.
      y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
        labels.
      is_training: Boolean, whether the architecture should be constructed for
        training or inference.

    Returns:
      Tuple of 3 Tensors, the final prediction of the discriminator, the logits
      before the final output activation function and logits form the second
      last layer.
    """
        logging.info("[Discriminator] inputs are x=%s, y=%s", x.shape,
                     None if y is None else y.shape)
        resnet_ops.validate_image_inputs(x)

        in_channels, out_channels = self._get_in_out_channels(
            colors=x.shape[-1].value, resolution=x.shape[1].value)
        num_blocks = len(in_channels)

        net = ops.conv2d(x,
                         output_dim=in_channels[0],
                         k_h=3,
                         k_w=3,
                         d_h=1,
                         d_w=1,
                         name="initial_conv",
                         use_sn=self._spectral_norm)

        for block_idx in range(num_blocks):
            scale = "down" if block_idx % 2 == 0 else "none"
            block = self._resnet_block(name="B{}".format(block_idx + 1),
                                       in_channels=in_channels[block_idx],
                                       out_channels=out_channels[block_idx],
                                       scale=scale)
            net = block(net, z=None, y=y, is_training=is_training)
            # At resolution 64x64 there is a self-attention block.
            if scale == "none" and net.shape[1].value == 64:
                logging.info("[Discriminator] Applying non-local block to %s",
                             net.shape)
                net = ops.non_local_block(net,
                                          "non_local_block",
                                          use_sn=self._spectral_norm)

        # Final part
        logging.info("[Discriminator] before final processing: %s", net.shape)
        net = tf.nn.relu(net)
        h = tf.math.reduce_sum(net, axis=[1, 2])
        out_logit = ops.linear(h,
                               1,
                               scope="final_fc",
                               use_sn=self._spectral_norm)
        logging.info("[Discriminator] after final processing: %s", net.shape)
        if self._project_y:
            if y is None:
                raise ValueError(
                    "You must provide class information y to project.")
            with tf.variable_scope("embedding_fc"):
                y_embedding_dim = out_channels[-1]
                # We do not use ops.linear() below since it does not have an option to
                # override the initializer.
                kernel = tf.get_variable(
                    "kernel", [y.shape[1], y_embedding_dim],
                    tf.float32,
                    initializer=tf.initializers.glorot_normal())
                if self._spectral_norm:
                    kernel = ops.spectral_norm(kernel)
                embedded_y = tf.matmul(y, kernel)
                logging.info("[Discriminator] embedded_y for projection: %s",
                             embedded_y.shape)
                out_logit += tf.reduce_sum(embedded_y * h,
                                           axis=1,
                                           keepdims=True)
        out = tf.nn.sigmoid(out_logit)
        return out, out_logit, h
Exemple #5
0
    def apply(self, z, y, is_training):
        """Build the generator network for the given inputs.

    Args:
      z: `Tensor` of shape [batch_size, z_dim] with latent code.
      y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
        labels.
      is_training: boolean, are we in train or eval model.

    Returns:
      A tensor of size [batch_size] + self._image_shape with values in [0, 1].
    """
        shape_or_none = lambda t: None if t is None else t.shape
        logging.info("[Generator] inputs are z=%s, y=%s", z.shape,
                     shape_or_none(y))
        seed_size = 4

        if self._embed_y:
            y = ops.linear(y,
                           self._embed_y_dim,
                           scope="embed_y",
                           use_sn=False,
                           use_bias=False)
        if y is not None:
            y = tf.concat([z, y], axis=1)
            z = y

        in_channels, out_channels = self._get_in_out_channels()
        num_blocks = len(in_channels)

        # Map noise to the actual seed.
        net = ops.linear(z,
                         in_channels[0] * seed_size * seed_size,
                         scope="fc_noise",
                         use_sn=self._spectral_norm)
        # Reshape the seed to be a rank-4 Tensor.
        net = tf.reshape(net, [-1, seed_size, seed_size, in_channels[0]],
                         name="fc_reshaped")

        for block_idx in range(num_blocks):
            scale = "none" if block_idx % 2 == 0 else "up"
            block = self._resnet_block(name="B{}".format(block_idx + 1),
                                       in_channels=in_channels[block_idx],
                                       out_channels=out_channels[block_idx],
                                       scale=scale)
            net = block(net, z=z, y=y, is_training=is_training)
            # At resolution 64x64 there is a self-attention block.
            if scale == "up" and net.shape[1].value == 64:
                logging.info("[Generator] Applying non-local block to %s",
                             net.shape)
                net = ops.non_local_block(net,
                                          "non_local_block",
                                          use_sn=self._spectral_norm)
        # Final processing of the net.
        # Use unconditional batch norm.
        logging.info("[Generator] before final processing: %s", net.shape)
        net = ops.batch_norm(net, is_training=is_training, name="final_norm")
        net = tf.nn.relu(net)
        colors = self._image_shape[2]
        if self._experimental_fast_conv_to_rgb:

            net = ops.conv2d(net,
                             output_dim=128,
                             k_h=3,
                             k_w=3,
                             d_h=1,
                             d_w=1,
                             name="final_conv",
                             use_sn=self._spectral_norm)
            net = net[:, :, :, :colors]
        else:
            net = ops.conv2d(net,
                             output_dim=colors,
                             k_h=3,
                             k_w=3,
                             d_h=1,
                             d_w=1,
                             name="final_conv",
                             use_sn=self._spectral_norm)
        logging.info("[Generator] after final processing: %s", net.shape)
        net = (tf.nn.tanh(net) + 1.0) / 2.0
        return net