class QtranAlt: def __init__(self, args): self.n_actions = args.n_actions self.n_agents = args.n_agents self.state_shape = args.state_shape self.obs_shape = args.obs_shape rnn_input_shape = self.obs_shape # 根据参数决定RNN的输入维度 if args.last_action: rnn_input_shape += self.n_actions # 当前agent的上一个动作的one_hot向量 if args.reuse_network: rnn_input_shape += self.n_agents self.args = args # 神经网络 self.eval_rnn = RNN(rnn_input_shape, args) # individual networks self.target_rnn = RNN(rnn_input_shape, args) self.eval_joint_q = QtranQAlt(args) # counterfactual joint networks self.target_joint_q = QtranQAlt(args) self.v = QtranV(args) if self.args.cuda: self.eval_rnn.cuda() self.target_rnn.cuda() self.eval_joint_q.cuda() self.target_joint_q.cuda() self.v.cuda() self.model_dir = args.model_dir + '/' + args.alg + '/' + args.map # 如果存在模型则加载模型 if self.args.load_model: if os.path.exists(self.model_dir + '/rnn_net_params.pkl'): path_rnn = self.model_dir + '/rnn_net_params.pkl' path_joint_q = self.model_dir + '/joint_q_params.pkl' path_v = self.model_dir + '/v_params.pkl' map_location = 'cuda:0' if self.args.cuda else 'cpu' self.eval_rnn.load_state_dict( torch.load(path_rnn, map_location=map_location)) self.eval_joint_q.load_state_dict( torch.load(path_joint_q, map_location=map_location)) self.v.load_state_dict( torch.load(path_v, map_location=map_location)) print('Successfully load the model: {}, {} and {}'.format( path_rnn, path_joint_q, path_v)) else: raise Exception("No model!") # 让target_net和eval_net的网络参数相同 self.target_rnn.load_state_dict(self.eval_rnn.state_dict()) self.target_joint_q.load_state_dict(self.eval_joint_q.state_dict()) self.eval_parameters = list(self.eval_joint_q.parameters()) + \ list(self.v.parameters()) + \ list(self.eval_rnn.parameters()) if args.optimizer == "RMS": self.optimizer = torch.optim.RMSprop(self.eval_parameters, lr=args.lr) # 执行过程中,要为每个agent都维护一个eval_hidden # 学习过程中,要为每个episode的每个agent都维护一个eval_hidden、target_hidden self.eval_hidden = None self.target_hidden = None print('Init alg QTRAN-alt') def learn(self, batch, max_episode_len, train_step, epsilon=None): # train_step表示是第几次学习,用来控制更新target_net网络的参数 ''' 在learn的时候,抽取到的数据是四维的,四个维度分别为 1——第几个episode 2——episode中第几个transition 3——第几个agent的数据 4——具体obs维度。因为在选动作时不仅需要输入当前的inputs,还要给神经网络输入hidden_state, hidden_state和之前的经验相关,因此就不能随机抽取经验进行学习。所以这里一次抽取多个episode,然后一次给神经网络 传入每个episode的同一个位置的transition ''' episode_num = batch['o'].shape[0] self.init_hidden(episode_num) for key in batch.keys(): # 把batch里的数据转化成tensor if key == 'u': batch[key] = torch.tensor(batch[key], dtype=torch.long) else: batch[key] = torch.tensor(batch[key], dtype=torch.float32) s, s_next, u, r, avail_u, avail_u_next, terminated = batch['s'], batch['s_next'], batch['u'], \ batch['r'], batch['avail_u'], batch['avail_u_next'],\ batch['terminated'] mask = 1 - batch["padded"].float().repeat( 1, 1, self.n_agents) # 用来把那些填充的经验的TD-error置0,从而不让它们影响到学习 if self.args.cuda: u = u.cuda() r = r.cuda() avail_u = avail_u.cuda() avail_u_next = avail_u_next.cuda() terminated = terminated.cuda() mask = mask.cuda() # 得到每个agent对应的Q和hidden_states,维度为(episode个数, max_episode_len, n_agents, n_actions/hidden_dim) individual_q_evals, individual_q_targets, hidden_evals, hidden_targets = self._get_individual_q( batch, max_episode_len) # 得到当前时刻和下一时刻每个agent的局部最优动作及其one_hot表示 individual_q_clone = individual_q_evals.clone() individual_q_clone[avail_u == 0.0] = -999999 individual_q_targets[avail_u_next == 0.0] = -999999 opt_onehot_eval = torch.zeros(*individual_q_clone.shape) opt_action_eval = individual_q_clone.argmax(dim=3, keepdim=True) opt_onehot_eval = opt_onehot_eval.scatter(-1, opt_action_eval[:, :].cpu(), 1) opt_onehot_target = torch.zeros(*individual_q_targets.shape) opt_action_target = individual_q_targets.argmax(dim=3, keepdim=True) opt_onehot_target = opt_onehot_target.scatter( -1, opt_action_target[:, :].cpu(), 1) # ---------------------------------------------L_td------------------------------------------------------------- # 计算joint_q和v,要注意joint_q是每个agent都有,v只有一个 # joint_q的维度为(episode个数, max_episode_len, n_agents, n_actions), 而且joint_q在后面的l_nopt还要用到 # v的维度为(episode个数, max_episode_len) joint_q_evals, joint_q_targets, v = self.get_qtran( batch, opt_onehot_target, hidden_evals, hidden_targets) # 取出当前agent动作对应的joint_q_chosen以及它的局部最优动作对应的joint_q joint_q_chosen = torch.gather(joint_q_evals, dim=-1, index=u).squeeze( -1) # (episode个数, max_episode_len, n_agents) joint_q_opt = torch.gather(joint_q_targets, dim=-1, index=opt_action_target).squeeze(-1) # loss y_dqn = r.repeat(1, 1, self.n_agents) + self.args.gamma * joint_q_opt * ( 1 - terminated.repeat(1, 1, self.n_agents)) td_error = joint_q_chosen - y_dqn.detach() l_td = ((td_error * mask)**2).sum() / mask.sum() # ---------------------------------------------L_td------------------------------------------------------------- # ---------------------------------------------L_opt------------------------------------------------------------ # 将局部最优动作的Q值相加 (episode个数,max_episode_len) # 这里要使用individual_q_clone,它把不能执行的动作Q值改变了,使用individual_q_evals可能会使用不能执行的动作的Q值 q_sum_opt = individual_q_clone.max(dim=-1)[0].sum(dim=-1) # 重新得到joint_q_opt_eval,它和joint_q_evals的区别是前者输入的动作是当前局部最优动作,后者输入的动作是当前执行的动作 joint_q_opt_evals, _, _ = self.get_qtran(batch, opt_onehot_eval, hidden_evals, hidden_targets, hat=True) joint_q_opt_evals = torch.gather( joint_q_opt_evals, dim=-1, index=opt_action_eval).squeeze( -1) # (episode个数, max_episode_len, n_agents) # 因为QTRAN-alt要对每个agent都计算l_opt,所以要把q_sum_opt和v再增加一个agent维 q_sum_opt = q_sum_opt.unsqueeze(-1).expand(-1, -1, self.n_agents) v = v.unsqueeze(-1).expand(-1, -1, self.n_agents) opt_error = q_sum_opt - joint_q_opt_evals.detach( ) + v # 计算l_opt时需要将joint_q_opt_evals固定 l_opt = ((opt_error * mask)**2).sum() / mask.sum() # ---------------------------------------------L_opt------------------------------------------------------------ # ---------------------------------------------L_nopt----------------------------------------------------------- # 因为L_nopt约束的是当前agent所有可执行的动作中,对应的最小的d,为了让不能执行的动作不影响d的计算,将不能执行的动作对应的q变大 individual_q_evals[avail_u == 0.0] = 999999 # 得到agent_i之外的其他agent的执行动作的Q值之和q_other_sum # 1. 先得到每个agent的执行动作的Q值q_all,(episode个数, max_episode_len, n_agents, 1) q_all_chosen = torch.gather(individual_q_evals, dim=-1, index=u) # 2. 把q_all最后一个维度上当前agent的Q值变成所有agent的Q值,(episode个数, max_episode_len, n_agents, n_agents) q_all_chosen = q_all_chosen.view((episode_num, max_episode_len, 1, -1)).repeat(1, 1, self.n_agents, 1) q_mask = (1 - torch.eye(self.n_agents)).unsqueeze(0).unsqueeze(0) if self.args.cuda: q_mask = q_mask.cuda() q_other_chosen = q_all_chosen * q_mask # 把每个agent自己的Q值置为0,从而才能相加得到其他agent的Q值之和 # 3. 求和,同时由于对于当前agent的每个动作,都要和q_other_sum相加,所以把q_other_sum扩展出n_actions维度 q_other_sum = q_other_chosen.sum(dim=-1, keepdim=True).repeat( 1, 1, 1, self.n_actions) # 当前agent的每个动作的Q和其他agent执行动作的Q相加,得到D中的第一项 q_sum_nopt = individual_q_evals + q_other_sum # 因为joint_q_evals的维度是(episode个数,max_episode_len,n_agents,n_actions),所以要对v扩展出一个n_actions维度 v = v.unsqueeze(-1).expand(-1, -1, -1, self.n_actions) d = q_sum_nopt - joint_q_evals.detach( ) + v # 计算l_nopt时需要将qtran_q_evals固定 d = d.min(dim=-1)[0] l_nopt = ((d * mask)**2).sum() / mask.sum() # ---------------------------------------------L_nopt----------------------------------------------------------- # print('l_td is {}, l_opt is {}, l_nopt is {}'.format(l_td, l_opt, l_nopt)) loss = l_td + self.args.lambda_opt * l_opt + self.args.lambda_nopt * l_nopt # loss = l_td + self.args.lambda_opt * l_opt self.optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(self.eval_parameters, self.args.grad_norm_clip) self.optimizer.step() if train_step > 0 and train_step % self.args.target_update_cycle == 0: self.target_rnn.load_state_dict(self.eval_rnn.state_dict()) self.target_joint_q.load_state_dict(self.eval_joint_q.state_dict()) def _get_individual_q(self, batch, max_episode_len): episode_num = batch['o'].shape[0] q_evals, q_targets, hidden_evals, hidden_targets = [], [], [], [] for transition_idx in range(max_episode_len): inputs, inputs_next = self._get_individual_inputs( batch, transition_idx) # 给obs加last_action、agent_id if self.args.cuda: inputs = inputs.cuda() self.eval_hidden = self.eval_hidden.cuda() inputs_next = inputs_next.cuda() self.target_hidden = self.target_hidden.cuda() q_eval, self.eval_hidden = self.eval_rnn(inputs, self.eval_hidden) q_target, self.target_hidden = self.target_rnn( inputs_next, self.target_hidden) hidden_eval, hidden_target = self.eval_hidden.clone( ), self.target_hidden.clone() # 把q_eval维度重新变回(8, 5,n_actions) q_eval = q_eval.view(episode_num, self.n_agents, -1) q_target = q_target.view(episode_num, self.n_agents, -1) hidden_eval = hidden_eval.view(episode_num, self.n_agents, -1) hidden_target = hidden_target.view(episode_num, self.n_agents, -1) q_evals.append(q_eval) q_targets.append(q_target) hidden_evals.append(hidden_eval) hidden_targets.append(hidden_target) # 得的q_eval和q_target是一个列表,列表里装着max_episode_len个数组,数组的的维度是(episode个数, n_agents,n_actions) # 把该列表转化成(episode个数, max_episode_len, n_agents,n_actions)的数组 q_evals = torch.stack(q_evals, dim=1) q_targets = torch.stack(q_targets, dim=1) hidden_evals = torch.stack(hidden_evals, dim=1) hidden_targets = torch.stack(hidden_targets, dim=1) return q_evals, q_targets, hidden_evals, hidden_targets def _get_individual_inputs(self, batch, transition_idx): # 取出所有episode上该transition_idx的经验,u_onehot要取出所有,因为要用到上一条 obs, obs_next, u_onehot = batch['o'][:, transition_idx], \ batch['o_next'][:, transition_idx], batch['u_onehot'][:] episode_num = obs.shape[0] inputs, inputs_next = [], [] inputs.append(obs) inputs_next.append(obs_next) # 给obs添加上一个动作、agent编号 if self.args.last_action: if transition_idx == 0: # 如果是第一条经验,就让前一个动作为0向量 inputs.append(torch.zeros_like(u_onehot[:, transition_idx])) else: inputs.append(u_onehot[:, transition_idx - 1]) inputs_next.append(u_onehot[:, transition_idx]) if self.args.reuse_network: # 因为当前的obs三维的数据,每一维分别代表(episode编号,agent编号,obs维度),直接在dim_1上添加对应的向量 # 即可,比如给agent_0后面加(1, 0, 0, 0, 0),表示5个agent中的0号。而agent_0的数据正好在第0行,那么需要加的 # agent编号恰好就是一个单位矩阵,即对角线为1,其余为0 inputs.append( torch.eye(self.args.n_agents).unsqueeze(0).expand( episode_num, -1, -1)) inputs_next.append( torch.eye(self.args.n_agents).unsqueeze(0).expand( episode_num, -1, -1)) # 要把obs中的三个拼起来,并且要把episode_num个episode、self.args.n_agents个agent的数据拼成40条(40,96)的数据, # 因为这里所有agent共享一个神经网络,每条数据中带上了自己的编号,所以还是自己的数据 inputs = torch.cat( [x.reshape(episode_num * self.args.n_agents, -1) for x in inputs], dim=1) inputs_next = torch.cat([ x.reshape(episode_num * self.args.n_agents, -1) for x in inputs_next ], dim=1) return inputs, inputs_next def get_qtran(self, batch, local_opt_actions, hidden_evals, hidden_targets=None, hat=False): episode_num, max_episode_len, _, _ = hidden_evals.shape s = batch['s'][:, :max_episode_len] s_next = batch['s_next'][:, :max_episode_len] u_onehot = batch['u_onehot'][:, :max_episode_len] v_state = s.clone() # s和s_next没有n_agents维度,每个agent的joint_q网络都需要, 所以要把s转化成四维 s = s.unsqueeze(-2).expand(-1, -1, self.n_agents, -1) s_next = s_next.unsqueeze(-2).expand(-1, -1, self.n_agents, -1) # 添加agent编号对应的one-hot向量 ''' 因为当前的inputs三维的数据,每一维分别代表(episode编号,agent编号,inputs维度),直接在后面添加对应的向量 即可,比如给agent_0后面加(1, 0, 0, 0, 0),表示5个agent中的0号。而agent_0的数据正好在第0行,那么需要加的 agent编号恰好就是一个单位矩阵,即对角线为1,其余为0 ''' action_onehot = torch.eye( self.n_agents).unsqueeze(0).unsqueeze(0).expand( episode_num, max_episode_len, -1, -1) s_eval = torch.cat([s, action_onehot], dim=-1) s_target = torch.cat([s_next, action_onehot], dim=-1) if self.args.cuda: s_eval = s_eval.cuda() s_target = s_target.cuda() v_state = v_state.cuda() u_onehot = u_onehot.cuda() hidden_evals = hidden_evals.cuda() hidden_targets = hidden_targets.cuda() local_opt_actions = local_opt_actions.cuda() if hat: # 神经网络输出的q_eval、q_target的维度为(episode_num * max_episode_len * n_agents, n_actions) q_evals = self.eval_joint_q(s_eval, hidden_evals, local_opt_actions) q_targets = None v = None # 把q_eval维度变回(episode_num, max_episode_len, n_agents, n_actions) q_evals = q_evals.view(episode_num, max_episode_len, -1, self.n_actions) else: q_evals = self.eval_joint_q(s_eval, hidden_evals, u_onehot) q_targets = self.target_joint_q(s_target, hidden_targets, local_opt_actions) v = self.v(v_state, hidden_evals) # 把q_eval、q_target维度变回(episode_num, max_episode_len, n_agents, n_actions) q_evals = q_evals.view(episode_num, max_episode_len, -1, self.n_actions) q_targets = q_targets.view(episode_num, max_episode_len, -1, self.n_actions) # 把v维度变回(episode_num, max_episode_len) v = v.view(episode_num, -1) return q_evals, q_targets, v def init_hidden(self, episode_num): # 为每个episode中的每个agent都初始化一个eval_hidden、target_hidden self.eval_hidden = torch.zeros( (episode_num, self.n_agents, self.args.rnn_hidden_dim)) self.target_hidden = torch.zeros( (episode_num, self.n_agents, self.args.rnn_hidden_dim)) def save_model(self, train_step): num = str(train_step // self.args.save_cycle) if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) torch.save(self.eval_rnn.state_dict(), self.model_dir + '/' + num + '_rnn_net_params.pkl') torch.save(self.eval_joint_q.state_dict(), self.model_dir + '/' + num + '_joint_q_params.pkl') torch.save(self.v.state_dict(), self.model_dir + '/' + num + '_v_params.pkl')
class QtranBase: def __init__(self, args): self.n_actions = args.n_actions self.n_agents = args.n_agents self.state_shape = args.state_shape self.obs_shape = args.obs_shape self.args = args rnn_input_shape = self.obs_shape # 根据参数决定RNN的输入维度 if args.last_action: rnn_input_shape += self.n_actions # 当前agent的上一个动作的one_hot向量 if args.reuse_network: rnn_input_shape += self.n_agents # 神经网络 self.eval_rnn = RNN(rnn_input_shape, args) # 每个agent选动作的网络 self.target_rnn = RNN(rnn_input_shape, args) self.eval_joint_q = QtranQBase(args) # Joint action-value network self.target_joint_q = QtranQBase(args) self.v = QtranV(args) if self.args.cuda: self.eval_rnn.cuda() self.target_rnn.cuda() self.eval_joint_q.cuda() self.target_joint_q.cuda() self.v.cuda() self.model_dir = args.model_dir + '/' + args.alg + '/' + args.map # 如果存在模型则加载模型 if self.args.load_model: if os.path.exists(self.model_dir + '/rnn_net_params.pkl'): path_rnn = self.model_dir + '/rnn_net_params.pkl' path_joint_q = self.model_dir + '/joint_q_params.pkl' path_v = self.model_dir + '/v_params.pkl' self.eval_rnn.load_state_dict(torch.load(path_rnn)) self.eval_joint_q.load_state_dict(torch.load(path_joint_q)) self.v.load_state_dict(torch.load(path_v)) print('Successfully load the model: {}, {} and {}'.format( path_rnn, path_joint_q, path_v)) else: raise Exception("No model!") # 让target_net和eval_net的网络参数相同 self.target_rnn.load_state_dict(self.eval_rnn.state_dict()) self.target_joint_q.load_state_dict(self.eval_joint_q.state_dict()) self.eval_parameters = list(self.eval_joint_q.parameters()) + \ list(self.v.parameters()) + \ list(self.eval_rnn.parameters()) if args.optimizer == "RMS": self.optimizer = torch.optim.RMSprop(self.eval_parameters, lr=args.lr) # 执行过程中,要为每个agent都维护一个eval_hidden # 学习过程中,要为每个episode的每个agent都维护一个eval_hidden、target_hidden self.eval_hidden = None self.target_hidden = None print('Init alg QTRAN-base') def learn(self, batch, max_episode_len, train_step, epsilon=None): # train_step表示是第几次学习,用来控制更新target_net网络的参数 ''' 在learn的时候,抽取到的数据是四维的,四个维度分别为 1——第几个episode 2——episode中第几个transition 3——第几个agent的数据 4——具体obs维度。因为在选动作时不仅需要输入当前的inputs,还要给神经网络输入hidden_state, hidden_state和之前的经验相关,因此就不能随机抽取经验进行学习。所以这里一次抽取多个episode,然后一次给神经网络 传入每个episode的同一个位置的transition ''' episode_num = batch['o'].shape[0] self.init_hidden(episode_num) for key in batch.keys(): # 把batch里的数据转化成tensor if key == 'u': batch[key] = torch.tensor(batch[key], dtype=torch.long) else: batch[key] = torch.tensor(batch[key], dtype=torch.float32) u, r, avail_u, avail_u_next, terminated = batch['u'], batch['r'], batch['avail_u'], \ batch['avail_u_next'], batch['terminated'] mask = (1 - batch["padded"].float()).squeeze( -1) # 用来把那些填充的经验的TD-error置0,从而不让它们影响到学习 if self.args.cuda: u = u.cuda() r = r.cuda() avail_u = avail_u.cuda() avail_u_next = avail_u_next.cuda() terminated = terminated.cuda() mask = mask.cuda() # 得到每个agent对应的Q和hidden_states,维度为(episode个数, max_episode_len, n_agents, n_actions/hidden_dim) individual_q_evals, individual_q_targets, hidden_evals, hidden_targets = self._get_individual_q( batch, max_episode_len) # 得到当前时刻和下一时刻每个agent的局部最优动作及其one_hot表示 individual_q_clone = individual_q_evals.clone() individual_q_clone[avail_u == 0.0] = -999999 individual_q_targets[avail_u_next == 0.0] = -999999 opt_onehot_eval = torch.zeros(*individual_q_clone.shape) opt_action_eval = individual_q_clone.argmax(dim=3, keepdim=True) opt_onehot_eval = opt_onehot_eval.scatter(-1, opt_action_eval[:, :].cpu(), 1) opt_onehot_target = torch.zeros(*individual_q_targets.shape) opt_action_target = individual_q_targets.argmax(dim=3, keepdim=True) opt_onehot_target = opt_onehot_target.scatter( -1, opt_action_target[:, :].cpu(), 1) # ---------------------------------------------L_td------------------------------------------------------------- # 计算joint_q和v # joint_q、v的维度为(episode个数, max_episode_len, 1), 而且joint_q在后面的l_nopt还要用到 joint_q_evals, joint_q_targets, v = self.get_qtran( batch, hidden_evals, hidden_targets, opt_onehot_target) # loss y_dqn = r.squeeze(-1) + self.args.gamma * joint_q_targets * ( 1 - terminated.squeeze(-1)) td_error = joint_q_evals - y_dqn.detach() l_td = ((td_error * mask)**2).sum() / mask.sum() # ---------------------------------------------L_td------------------------------------------------------------- # ---------------------------------------------L_opt------------------------------------------------------------ # 将局部最优动作的Q值相加 # 这里要使用individual_q_clone,它把不能执行的动作Q值改变了,使用individual_q_evals可能会使用不能执行的动作的Q值 q_sum_opt = individual_q_clone.max(dim=-1)[0].sum( dim=-1) # (episode个数, max_episode_len) # 重新得到joint_q_hat_opt,它和joint_q_evals的区别是前者输入的动作是局部最优动作,后者输入的动作是执行的动作 # (episode个数, max_episode_len) joint_q_hat_opt, _, _ = self.get_qtran(batch, hidden_evals, hidden_targets, opt_onehot_eval, hat=True) opt_error = q_sum_opt - joint_q_hat_opt.detach( ) + v # 计算l_opt时需要将joint_q_hat_opt固定 l_opt = ((opt_error * mask)**2).sum() / mask.sum() # ---------------------------------------------L_opt------------------------------------------------------------ # ---------------------------------------------L_nopt----------------------------------------------------------- # 每个agent的执行动作的Q值,(episode个数, max_episode_len, n_agents, 1) q_individual = torch.gather(individual_q_evals, dim=-1, index=u).squeeze(-1) q_sum_nopt = q_individual.sum(dim=-1) # (episode个数, max_episode_len) nopt_error = q_sum_nopt - joint_q_evals.detach( ) + v # 计算l_nopt时需要将joint_q_evals固定 nopt_error = nopt_error.clamp(max=0) l_nopt = ((nopt_error * mask)**2).sum() / mask.sum() # ---------------------------------------------L_nopt----------------------------------------------------------- # print('l_td is {}, l_opt is {}, l_nopt is {}'.format(l_td, l_opt, l_nopt)) loss = l_td + self.args.lambda_opt * l_opt + self.args.lambda_nopt * l_nopt # loss = l_td + self.args.lambda_opt * l_opt self.optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(self.eval_parameters, self.args.grad_norm_clip) self.optimizer.step() if train_step > 0 and train_step % self.args.target_update_cycle == 0: self.target_rnn.load_state_dict(self.eval_rnn.state_dict()) self.target_joint_q.load_state_dict(self.eval_joint_q.state_dict()) def _get_individual_q(self, batch, max_episode_len): episode_num = batch['o'].shape[0] q_evals, q_targets, hidden_evals, hidden_targets = [], [], [], [] for transition_idx in range(max_episode_len): inputs, inputs_next = self._get_individual_inputs( batch, transition_idx) # 给obs加last_action、agent_id if self.args.cuda: inputs = inputs.cuda() inputs_next = inputs_next.cuda() self.eval_hidden = self.eval_hidden.cuda() self.target_hidden = self.target_hidden.cuda() # 要用第一条经验把target网络的hidden_state初始化好,直接用第二条经验传入target网络不对 if transition_idx == 0: _, self.target_hidden = self.target_rnn( inputs, self.eval_hidden) q_eval, self.eval_hidden = self.eval_rnn( inputs, self.eval_hidden ) # inputs维度为(40,96),得到的q_eval维度为(40,n_actions) q_target, self.target_hidden = self.target_rnn( inputs_next, self.target_hidden) hidden_eval, hidden_target = self.eval_hidden.clone( ), self.target_hidden.clone() # 把q_eval维度重新变回(8, 5,n_actions) q_eval = q_eval.view(episode_num, self.n_agents, -1) q_target = q_target.view(episode_num, self.n_agents, -1) hidden_eval = hidden_eval.view(episode_num, self.n_agents, -1) hidden_target = hidden_target.view(episode_num, self.n_agents, -1) q_evals.append(q_eval) q_targets.append(q_target) hidden_evals.append(hidden_eval) hidden_targets.append(hidden_target) # 得的q_eval和q_target是一个列表,列表里装着max_episode_len个数组,数组的的维度是(episode个数, n_agents,n_actions) # 把该列表转化成(episode个数, max_episode_len, n_agents,n_actions)的数组 q_evals = torch.stack(q_evals, dim=1) q_targets = torch.stack(q_targets, dim=1) hidden_evals = torch.stack(hidden_evals, dim=1) hidden_targets = torch.stack(hidden_targets, dim=1) return q_evals, q_targets, hidden_evals, hidden_targets def _get_individual_inputs(self, batch, transition_idx): # 取出所有episode上该transition_idx的经验,u_onehot要取出所有,因为要用到上一条 obs, obs_next, u_onehot = batch['o'][:, transition_idx], \ batch['o_next'][:, transition_idx], batch['u_onehot'][:] episode_num = obs.shape[0] inputs, inputs_next = [], [] inputs.append(obs) inputs_next.append(obs_next) # 给obs添加上一个动作、agent编号 if self.args.last_action: if transition_idx == 0: # 如果是第一条经验,就让前一个动作为0向量 inputs.append(torch.zeros_like(u_onehot[:, transition_idx])) else: inputs.append(u_onehot[:, transition_idx - 1]) inputs_next.append(u_onehot[:, transition_idx]) if self.args.reuse_network: # 因为当前的obs三维的数据,每一维分别代表(episode编号,agent编号,obs维度),直接在dim_1上添加对应的向量 # 即可,比如给agent_0后面加(1, 0, 0, 0, 0),表示5个agent中的0号。而agent_0的数据正好在第0行,那么需要加的 # agent编号恰好就是一个单位矩阵,即对角线为1,其余为0 inputs.append( torch.eye(self.args.n_agents).unsqueeze(0).expand( episode_num, -1, -1)) inputs_next.append( torch.eye(self.args.n_agents).unsqueeze(0).expand( episode_num, -1, -1)) # 要把obs中的三个拼起来,并且要把episode_num个episode、self.args.n_agents个agent的数据拼成40条(40,96)的数据, # 因为这里所有agent共享一个神经网络,每条数据中带上了自己的编号,所以还是自己的数据 inputs = torch.cat( [x.reshape(episode_num * self.args.n_agents, -1) for x in inputs], dim=1) inputs_next = torch.cat([ x.reshape(episode_num * self.args.n_agents, -1) for x in inputs_next ], dim=1) # TODO 检查inputs_next是不是相当于inputs向后移动一条 return inputs, inputs_next def get_qtran(self, batch, hidden_evals, hidden_targets, local_opt_actions, hat=False): episode_num, max_episode_len, _, _ = hidden_targets.shape states = batch['s'][:, :max_episode_len] states_next = batch['s_next'][:, :max_episode_len] u_onehot = batch['u_onehot'][:, :max_episode_len] if self.args.cuda: states = states.cuda() states_next = states_next.cuda() u_onehot = u_onehot.cuda() hidden_evals = hidden_evals.cuda() hidden_targets = hidden_targets.cuda() local_opt_actions = local_opt_actions.cuda() if hat: # 神经网络输出的q_eval、q_target、v的维度为(episode_num * max_episode_len, 1) q_evals = self.eval_joint_q(states, hidden_evals, local_opt_actions) q_targets = None v = None # 把q_eval维度变回(episode_num, max_episode_len) q_evals = q_evals.view(episode_num, -1, 1).squeeze(-1) else: q_evals = self.eval_joint_q(states, hidden_evals, u_onehot) q_targets = self.target_joint_q(states_next, hidden_targets, local_opt_actions) v = self.v(states, hidden_evals) # 把q_eval、q_target、v维度变回(episode_num, max_episode_len) q_evals = q_evals.view(episode_num, -1, 1).squeeze(-1) q_targets = q_targets.view(episode_num, -1, 1).squeeze(-1) v = v.view(episode_num, -1, 1).squeeze(-1) return q_evals, q_targets, v def init_hidden(self, episode_num): # 为每个episode中的每个agent都初始化一个eval_hidden、target_hidden self.eval_hidden = torch.zeros( (episode_num, self.n_agents, self.args.rnn_hidden_dim)) self.target_hidden = torch.zeros( (episode_num, self.n_agents, self.args.rnn_hidden_dim)) def save_model(self, train_step): num = str(train_step // self.args.save_cycle) if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) torch.save(self.eval_rnn.state_dict(), self.model_dir + '/' + num + '_rnn_net_params.pkl') torch.save(self.eval_joint_q.state_dict(), self.model_dir + '/' + num + '_joint_q_params.pkl') torch.save(self.v.state_dict(), self.model_dir + '/' + num + '_v_params.pkl')