################################## if opt.multiScale: netMix = NetU_MultiScale(ngf, nDep, nz, bSkip=opt.skipConnections, nc=N + 5, ncIn=5, bTanh=False, bCopyIn=opt.coordCopy, Ubottleneck=opt.Ubottleneck) else: netMix =NetUskip(ngf, nDep, nz, bSkip=opt.skipConnections, nc=N + 5, ncIn=5, bTanh=False, bCopyIn=opt.coordCopy, Ubottleneck=opt.Ubottleneck)##copy coords more often device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print ("device",device) Gnets=[netMix] if opt.refine: netRefine=NetUskip(ngf, nDep, nz, bSkip=True, nc=5, ncIn=4 * 3 + 2 + 2, bTanh=False) Gnets +=[netRefine] if opt.cLoss>=100: from network import ColorReconstruction netR = ColorReconstruction(50, 1)# Gnets+=[netR] elif opt.cLoss==10: from network import PerceptualF netR=PerceptualF() else: netR = None if opt.zPeriodic: Gnets += [learnedWN] for net in [netD] + Gnets: try: net.apply(weights_init) except Exception as e: print (e,"weightinit") pass
################################## netMix = NetUskip(ngf, nDep, nz, bSkip=opt.skipConnections, nc=3, ncIn=3, bTanh=True, Ubottleneck=opt.Ubottleneck) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("device", device) Gnets = [netMix] if opt.cLoss >= 100: from network import ColorReconstruction netR = ColorReconstruction(50, 1) # Gnets += [netR] elif opt.cLoss == 10: from network import PerceptualF netR = PerceptualF() else: netR = None if opt.zPeriodic: Gnets += [learnedWN] for net in [netD] + Gnets: try: net.apply(weights_init) except Exception as e: print(e, "weightinit") pass