def lte_shutdown(lte: LTE, detach=True): if lte.isconnected(): print(">> disconnecting LTE") lte.disconnect() if detach and lte.isattached(): print(">> detaching LTE") lte.detach() print(">> de-initializing LTE") lte.deinit(detach=False, reset=False)
class Connection: def __init__(self): self.lte = LTE() def nb_connect(self, band=20, apn="nb.inetd.gdsp"): counter1 = 0 counter2 = 0 if not self.lte.isattached(): print("Attaching to LTE...") self.lte.attach(band=band, apn=apn) while not self.lte.isattached(): counter1 += 1 print(str(counter1) + ' seconds elapsed') if counter1 >= 50: import machine machine.reset() time.sleep(1) if not self.lte.isconnected(): print("Obtaining IP address...") self.lte.connect() while not self.lte.isconnected(): counter2 += 1 print(str(counter2) + ' seconds elapsed') time.sleep(0.25) print("Network ready ...") def nb_disconnect(self): if self.lte.isconnected(): self.lte.disconnect() while self.lte.isattached(): try: self.lte.dettach() except OSError as e: print(e, type(e)) else: print("Network is now disconnected")
class NetworkConnector: def __init__(self): self.logger = logging.get_logger(__name__) self.lte = LTE() def _attach(self): """ Attaches to the 1nce network """ self.lte.attach() while not self.lte.isattached(): time.sleep(0.5) print(".", end="") self.logger.info("Sim attached to iot.1nce.net") def connect(self): """ Connects to the 1nce network """ self._attach() self.lte.connect() while not self.lte.isconnected(): time.sleep(0.5) self.logger.info("Sim connected to iot.1nce.net") def disconnect(self): self.lte.disconnect() self.logger.info("Sim disconnected from iot.1nce.net") def _send_at_command(self, command): """ Sends AT command over the modem :rtype: Response string """ self.lte.pppsuspend() resp = self.lte.send_at_cmd(command) self.lte.pppresume() return resp def get_reception(self): """ Gets the current reception to the 1nce network :return: Number Reception to the 1nce network """ return self._send_at_command("AT+CSQ") def get_ip_address(self): """" Gets the Device it's Local IP address :return IP Address """ resp = self._send_at_command("AT+CGPADDR=1") self.logger.info(resp) search = re.search(r"\"([1-2]?\d?\d\.[1-2]?\d?\d\.[1-2]?\d?\d\.[1-2]?\d?\d)\"", resp) if search: return search.group(1) return None
from network import LTE import time import socket lte = LTE() #Vodafone UK apn=nb.inetd.gdsp print("Attempting to attach...", end="") lte.attach(band=20, apn="ep.inetd.gdsp") for j in range(10): print(".", end="") time.sleep(1) if lte.isattached(): print("\nAttached in attempt #" + str(j + 1)) break lte.connect() print("Attempting to connect..", end="") for i in range(10): print(".", end="") if lte.isconnected(): print("\nConnected in attempt #" + str(i + 1)) break s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.settimeout(20) s.connect(("3.9.21.110", 6789)) result = s.send(b'helloworld') print("Sent bytes: " + str(result)) lte.disconnect() lte.dettach()
if lte.isconnected():\ print(" OK")\ break\ print('.', end='')\ time.sleep(1)\ \ # Once connect() succeeds, any call requiring Internet access will\ # use the active LTE connection.\ return lte\ \ # Clean disconnection of the LTE network is required for future\ # successful connections without a complete power cycle between.\ def endLTE():\ \ print("Disonnecting LTE ... ", end='')\ lte.disconnect()\ print("OK")\ time.sleep(1)\ print("Detaching LTE ... ", end='')\ lte.dettach()\ print("OK")\ \ # Sets the internal real-time clock.\ # Needs LTE for Internet access.\ \ def pushtoDatabase(stickNumber, moistureValue, lightValue, temperatureValue):\ stringStickNumber = str(stickNumber)\ firebase.patch('https://growkit-020.firebaseio.com/Pins/4444/Plants/Stick'+stringStickNumber+'', \{'Water': moistureValue, 'Light': lightValue, 'Temperature': temperatureValue\})\ \ '''if(stickNumber == 1):\ firebase.patch('https://growkit-020.firebaseio.com/Pins/4444/Plants/Stick', \{'Water': moistureValue, 'Light': lightValue, 'Temperature': temperatureValue\})\
class StartIoT: def __init__(self, network=LTE_M): self._network = network self.lte = LTE() try: self.lte.deinit() self.lte.reset() except: pass sleep(5) self.lte.init() sleep(5) self._assure_modem_fw() def _assure_modem_fw(self): response = self.lte.send_at_cmd('ATI1') if response != None: lines = response.split('\r\n') fw_id = lines[1][0:3] is_nb = fw_id == 'UE6' if is_nb: print('Modem is using NB-IoT firmware (%s/%s).' % (lines[1], lines[2])) else: print('Modem in using LTE-M firmware (%s/%s).' % (lines[1], lines[2])) if not is_nb and self._network == NB_IOT: print('You cannot connect using NB-IoT with wrong modem firmware! Please re-flash the modem with the correct firmware.') raise WrongNetwork if is_nb and self._network == LTE_M: print('You cannot connect using LTE-M with wrong modem firmware! Please re-flash the modem with the correct firmware.') raise WrongNetwork else: print('Failed to determine modem firmware. Rebooting device...') reset() # Reboot the device def send_at_cmd_pretty(self, cmd): print('>', cmd) response = self.lte.send_at_cmd(cmd) if response != None: lines = response.split('\r\n') for line in lines: if len(line.strip()) != 0: print('>>', line) else: print('>> No response.') return response def connect(self): # NB-IoT if (self._network == NB_IOT): self.send_at_cmd_pretty('AT+CFUN=0') self.send_at_cmd_pretty('AT+CEMODE=0') self.send_at_cmd_pretty('AT+CEMODE?') self.send_at_cmd_pretty('AT!="clearscanconfig"') self.send_at_cmd_pretty('AT!="addscanfreq band=%s dl-earfcn=%s"' % (BAND, EARFCN)) self.send_at_cmd_pretty('AT+CGDCONT=1,"IP","%s"' % APN) self.send_at_cmd_pretty('AT+COPS=1,2,"%s"' % COPS) self.send_at_cmd_pretty('AT+CFUN=1') # LTE-M (Cat M1) else: self.send_at_cmd_pretty('AT+CFUN=0') self.send_at_cmd_pretty('AT!="clearscanconfig"') self.send_at_cmd_pretty('AT!="addscanfreq band=%s dl-earfcn=%s"' % (BAND, EARFCN)) self.send_at_cmd_pretty('AT+CGDCONT=1,"IP","%s"' % APN) self.send_at_cmd_pretty('AT+CFUN=1') self.send_at_cmd_pretty('AT+CSQ') # For a range scan: # AT!="addscanfreqrange band=20 dl-earfcn-min=3450 dl-earfcn-max=6352" print('Attaching...') seconds = 0 while not self.lte.isattached() and seconds < attach_timeout: sleep(0.25) seconds += 0.25 if self.lte.isattached(): print('Attached!') else: print('Failed to attach to LTE (timeout)!') raise AttachTimeout self.lte.connect() print('Connecting...') seconds = 0 while not self.lte.isconnected() and seconds < connect_timeout: sleep(0.25) seconds += 0.25 if self.lte.isconnected(): print('Connected!') else: print('Failed to connect to LTE (timeout)!') raise ConnectTimeout def disconnect(self): if self.lte.isconnected(): self.lte.disconnect() def dettach(self): if self.lte.isattached(): self.lte.dettach()
class LteComms: def __init__(self): self.message_storage = 'AT+CPMS="SM", "SM", "SM"' gc.collect() try: self.lte = LTE() time.sleep(4) except: print("initialize LTE object?") self.lte.reset() time.sleep(4) print("delay 4 secs") def at(self, cmd): print("modem command: {}".format(cmd)) r = self.lte.send_at_cmd(cmd).split('\r\n') r = list(filter(None, r)) print("response={}".format(r)) return r def attach_LTE(self): gc.collect() time.sleep(10.0) if self.lte.isattached(): try: print("LTE was already attached, disconnecting...") if self.lte.isconnected(): print("disconnect") self.lte.disconnect() except: print("Exception during disconnect") try: if self.lte.isattached(): print("detach") self.lte.dettach() except: print("Exception during dettach") try: print("resetting modem...") self.lte.reset() except: print("Exception during reset") print("delay 5 secs") time.sleep(5.0) # enable network registration and location information, unsolicited result code self.at('AT+CEREG=2') # print("full functionality level") self.at('AT+CFUN=1') time.sleep(1.0) # using Hologram SIM self.at('AT+CGDCONT=1,"IP","hologram"') print("attempt to attach cell modem to base station...") # lte.attach() # do not use attach with custom init for Hologram SIM self.at("ATI") time.sleep(2.0) i = 0 while self.lte.isattached() == False: # get EPS Network Registration Status: # +CEREG: <stat>[,[<tac>],[<ci>],[<AcT>]] # <tac> values: # 0 - not registered # 1 - registered, home network # 2 - not registered, but searching... # 3 - registration denied # 4 - unknown (out of E-UTRAN coverage) # 5 - registered, roaming r = self.at('AT+CEREG?') try: r0 = r[0] # +CREG: 2,<tac> r0x = r0.split(',') # ['+CREG: 2',<tac>] tac = int(r0x[1]) # 0..5 print("tac={}".format(tac)) except IndexError: tac = 0 print("Index Error!!!") # get signal strength # +CSQ: <rssi>,<ber> # <rssi>: 0..31, 99-unknown r = self.at('AT+CSQ') # extended error report # r =self.at('AT+CEER') # if lte.isattached(): # print("Modem attached (isattached() function worked)!!!") # break # if (tac==1) or (tac==5): # print("Modem attached!!!") # break i = i + 5 print("not attached: {} secs".format(i)) # while self.lte.isattached(): # # self.receive_and_forward_to_chat() # continue # print("Modem not attached") print("set to check messages on sim") self.at(self.message_storage) def connect_lte_data(self): self.at('AT+CEREG?') print("Attempt to connect") if self.lte.isattached() == False: print("Not attached, try again, will fail") else: print("Attached and continue") self.lte.connect() i = 0 while not self.lte.isconnected(): i = i + 1 print("not connected: {}".format(i)) time.sleep(1.0) print("LTE connected for data!!!") # also send this to chat # so just pymesh this to all nodes in leader_mesh_list while self.lte.isconnected(): continue def scrape_webpage(self, url): s = socket.socket() s = ssl.wrap_socket(s) s.connect(socket.getaddrinfo(url, 443)[0][-1]) s.send(b"GET / HTTP/1.0\r\n\r\n") print(s.recv(4096)) s.close() def send_sms(self, number, msg): # this will somehow have to be connected to the chat with a JM msg1 print("set mode to text") self.at('AT+CMGF=1') time.sleep(.5) # msg = ('AT+CMGS="%s"\r%s\0x1a' % (number, msg)) # print(('ATTB+SQNSMSSEND="%s", "%s"' % (number, msg))) print('sendin an sms', end=' ') ans = self.lte.send_at_cmd( ('AT+SQNSMSSEND="%s", "%s"' % (number, msg))).split('\r\n') print(ans) # self.at(msg) time.sleep(4) print("sent!") def receive_and_forward_to_chat(self): # this will somehow have to be connected to the chat with a JM msg1 print("set mode to text") self.at('AT+CMGF=1') msg_list = [] msg_list = self.at('AT+CMGL="ALL"') number_of_messages = 0 if len(msg_list) > 1: print("This'll print if there a msg") if len(msg_list) > 20: print("More then 10 messages, loop") i = 1 while len(msg_list) > 20: print("This is the inner loop running %s times" % i) msg_list = self.at('AT+CMGL="ALL"') number_of_messages += len(msg_list) self.write_msg_to_file_and_delete(msg_list) time.sleep(15) i += 1 print("This is to get the last group of messages") # you don't scan for messages while it sleep, almost Need # to run this in a thread in the background. time.sleep(10) msg_list = self.at('AT+CMGL="ALL"') number_of_messages += len(msg_list) self.write_msg_to_file_and_delete(msg_list) else: print("The list is less than 10, so straight to file") number_of_messages += len(msg_list) self.write_msg_to_file_and_delete(msg_list) else: print("This prints when no messages") self.at('AT+CMGD=1,4') # Cuz apparently you need to clean out the sim card, it only holds 10 msgs # at('AT+CMGD=1,4') time.sleep(5) actual_messages = (number_of_messages / 2) - 1 print(actual_messages) def msg_parse(self, msg_list): parsed_msg_list = [] msg_list_string = "".join(msg_list) split_msg_list = msg_list_string.split('+CMGL:') for i in range(len(split_msg_list)): temp_string = str(split_msg_list[i]) if temp_string[-2:] == 'OK': parsed_msg_list.append(temp_string[:-2]) else: parsed_msg_list.append(temp_string) return parsed_msg_list def disconnect_LTE(self): self.lte.disconnect() print("LTE Data disconnected") # send to chat def unattach_lte(self): self.lte.detach(reset=True) print("LTE modem deattached") def signal_strength(self): self.at('AT+CSQ') def check_read_sms(self): self.at('AT+CMGF=1') msg_list = self.at('AT+CMGL="ALL"') print(msg_list) def write_msg_to_file_and_delete(self, msg_list): parsed_msg_list = self.msg_parse(msg_list) print("Writing to SMS log") f = open('/sd/www/sms.txt', 'a+') for i in range(len(parsed_msg_list)): if parsed_msg_list[i] != '\r\n': f.write(str(parsed_msg_list[i])) f.write('\r\n') f.close() self.at('AT+CMGD=1,4')
class StartIot(): def __init__(self): self.lte = LTE() self.initModem() # METHOD FOR PRETTY PRINTING AT COMMANDS def send_at_cmd_pretty(self, cmd): response = self.lte.send_at_cmd(cmd) if response != None: lines=response.split('\r\n') print("Response is:< ") for line in lines: if len(line.strip()) != 0: print(line) print(">") else: print("Response is None...") return response # SETUP AND START THE MODEM - ATTACH TO THE NETWORK def initModem(self): print ("Starting modem...") self.send_at_cmd_pretty('AT+CFUN=0') # Change this if you are using the NB1 network (uncomment the next 4 lines) #self.send_at_cmd_pretty('AT+CEMODE=0') #self.send_at_cmd_pretty('AT+CEMODE?') #self.send_at_cmd_pretty('AT!="clearscanconfig"') #self.send_at_cmd_pretty('AT!="addscanfreq band=20 dl-earfcn=6352"') # End change this .... self.send_at_cmd_pretty('AT+CGDCONT=1,"IP","mda.ee"') self.send_at_cmd_pretty('AT+CFUN=1') self.send_at_cmd_pretty('AT+CSQ') print ("Waiting for attachement (To Radio Access Network)...") while not self.lte.isattached(): time.sleep(0.25) else: print ("Attached (To Radio Access Network)...") # CONNECT TO THE NETWORK def connect(self): if not self.lte.isattached(): raise Exception('NOT ATTACHED... call initModem() first') print ("Waiting for connection (To IP network)...") self.lte.connect() # Wait until we get connected to network while not self.lte.isconnected(): machine.idle() print ("Connected (To IP network)!") # OPEN SOCKET AND SEND DATA def send(self, data): if not self.lte.isconnected(): raise Exception('NOT CONNECTED') s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) IP_address = socket.getaddrinfo('172.16.15.14', 1234)[0][-1] s.connect(IP_address) s.send(data) s.close() def disconnect(self): if self.lte.isconnected(): self.lte.disconnect() def dettach(self): if self.lte.isattached(): self.lte.dettach() self.lte.send_at_cmd('AT+CFUN=0') print("Modem offline")
class StartIoT: def __init__(self, network=LTE_M): self._network = network self.lte = LTE() try: self.lte.deinit() self.lte.reset() except: pass sleep(5) self.lte.init() sleep(5) self._assure_modem_fw() def _assure_modem_fw(self): response = self.lte.send_at_cmd('ATI1') if response != None: lines = response.split('\r\n') fw_id = lines[1][0:3] is_nb = fw_id == 'UE6' if is_nb: print('Modem is using NB-IoT firmware (%s/%s).' % (lines[1], lines[2])) else: print('Modem in using LTE-M firmware (%s/%s).' % (lines[1], lines[2])) if not is_nb and self._network == NB_IOT: print( 'You cannot connect using NB-IoT with wrong modem firmware! Please re-flash the modem with the correct firmware.' ) raise WrongNetwork if is_nb and self._network == LTE_M: print( 'You cannot connect using LTE-M with wrong modem firmware! Please re-flash the modem with the correct firmware.' ) raise WrongNetwork else: print('Failed to determine modem firmware. Rebooting device...') reset() # Reboot the device def _get_assigned_ip(self): ip_address = None try: self.lte.pppsuspend() response = self.send_at_cmd_pretty('AT+CGPADDR=1') self.lte.pppresume() lines = response.split('\r\n') sections = lines[1].split('"') ip_address = sections[1] except: print('Failed to retrieve assigned IP from LTE network.') return ip_address def send_at_cmd_pretty(self, cmd): print('>', cmd) response = self.lte.send_at_cmd(cmd) if response != None: lines = response.split('\r\n') for line in lines: if len(line.strip()) != 0: print('>>', line) else: print('>> No response.') return response def connect(self): # NB-IoT if (self._network == NB_IOT): self.send_at_cmd_pretty('AT+CFUN=0') self.send_at_cmd_pretty('AT+CEMODE=0') self.send_at_cmd_pretty('AT+CEMODE?') self.send_at_cmd_pretty('AT!="clearscanconfig"') self.send_at_cmd_pretty('AT!="addscanfreq band=%s dl-earfcn=%s"' % (BAND, EARFCN)) self.send_at_cmd_pretty('AT+CGDCONT=1,"IP","%s"' % APN) self.send_at_cmd_pretty('AT+COPS=1,2,"%s"' % COPS) self.send_at_cmd_pretty('AT+CFUN=1') # LTE-M (Cat M1) else: self.send_at_cmd_pretty('AT+CFUN=0') self.send_at_cmd_pretty('AT!="clearscanconfig"') self.send_at_cmd_pretty('AT!="addscanfreq band=%s dl-earfcn=%s"' % (BAND, EARFCN)) self.send_at_cmd_pretty('AT+CGDCONT=1,"IP","%s"' % APN) self.send_at_cmd_pretty('AT+CFUN=1') self.send_at_cmd_pretty('AT+CSQ') # For a range scan: # AT!="addscanfreqrange band=20 dl-earfcn-min=3450 dl-earfcn-max=6352" print('Attaching...') seconds = 0 while not self.lte.isattached() and seconds < attach_timeout: sleep(0.25) seconds += 0.25 if self.lte.isattached(): print('Attached!') else: print('Failed to attach to LTE (timeout)!') raise AttachTimeout self.lte.connect() print('Connecting...') seconds = 0 while not self.lte.isconnected() and seconds < connect_timeout: sleep(0.25) seconds += 0.25 if self.lte.isconnected(): print('Connected!') else: print('Failed to connect to LTE (timeout)!') raise ConnectTimeout print('Retrieving assigned IP...') ip_address = self._get_assigned_ip() print("Device IP: {}".format(ip_address)) print(ip_address) # Initialise the CoAP module Coap.init(ip_address) # Register the response handler for the requests that the module initiates as a CoAP Client Coap.register_response_handler(self.response_callback) # A CoAP server is needed if CoAP push is used (messages are pushed down from Managed IoT Cloud) # self.setup_coap_server() def setup_coap_server(self): # Add a resource with a default value and a plain text content format r = Coap.add_resource('', media_type=Coap.MEDIATYPE_APP_JSON, value='default_value') # Configure the possible operations on the resource r.callback( Coap.REQUEST_GET | Coap.REQUEST_POST | Coap.REQUEST_PUT | Coap.REQUEST_DELETE, True) # Get the UDP socket created for the CoAP module coap_server_socket = Coap.socket() # Create a new poll object p = uselect.poll() # Register the CoAP module's socket to the poll p.register(coap_server_socket, uselect.POLLIN | uselect.POLLHUP | uselect.POLLERR) # Start a new thread which will handle the sockets of "p" poll _thread.start_new_thread(socket_thread, (p, coap_server_socket)) print('CoAP server running!') # The callback that handles the responses generated from the requests sent to a CoAP Server def response_callback(self, code, id_param, type_param, token, payload): # The ID can be used to pair the requests with the responses print('ID: {}'.format(id_param)) print('Code: {}'.format(code)) print('Type: {}'.format(type_param)) print('Token: {}'.format(token)) print('Payload: {}'.format(payload)) def disconnect(self): if self.lte.isconnected(): self.lte.disconnect() def dettach(self): if self.lte.isattached(): self.lte.dettach() def send(self, data): if not self.lte.isconnected(): raise Exception('Not connected! Unable to send.') id = Coap.send_request(IOTGW_IP, Coap.REQUEST_POST, uri_port=IOTGW_PORT, uri_path=IOTGW_ENDPOINT, payload=data, include_options=True) print('CoAP POST message ID: {}'.format(id)) def pull(self, uri_path='/'): if not self.lte.isconnected(): raise Exception('Not connected! Unable to pull.') id = Coap.send_request(IOTGW_IP, Coap.REQUEST_GET, uri_port=IOTGW_PORT, uri_path=uri_path, include_options=True) Coap.read() print('CoAP GET message ID: {}'.format(id))
def test_lte_ntp(hw, max_drift_secs=4): _logger.info("Starting LTE test...") pycom_util.reset_rgbled() global failures _logger.info("Testing LTE connectivity...") chrono = machine.Timer.Chrono() chrono.start() with CheckStep(FLAG_SD_CARD, suppress_exception=True): hw.mount_sd_card() ou_id = None cc = None cs = None with CheckStep(FLAG_COMM_CONFIG, suppress_exception=True): import os import co2unit_comm os.chdir(hw.SDCARD_MOUNT_POINT) ou_id, cc, cs = co2unit_comm.read_comm_config(hw) with CheckStep(FLAG_TIME_SOURCE, suppress_exception=True): hw.sync_to_most_reliable_rtc() lte = None signal_quality = None try: with CheckStep(FLAG_LTE_FW_API): from network import LTE with CheckStep(FLAG_LTE_INIT): # _logger.info("Give LTE a moment to boot") # LTE init seems to be successful more often if we give it time first # time.sleep_ms(1000) # wdt.feed() _logger.info("Init LTE...") chrono.reset() pycom.nvs_set("lte_on", True) lte = LTE() _logger.info("LTE init ok (%d ms)", chrono.read_ms()) except: return failures try: with CheckStep(FLAG_LTE_ATTACH): _logger.info("LTE attaching... (up to 2 minutes)") chrono.reset() lte.attach() try: while True: wdt.feed() if lte.isattached(): break if chrono.read_ms() > 150 * 1000: raise TimeoutError("Timeout during LTE attach") time.sleep_ms(50) finally: signal_quality = pycom_util.lte_signal_quality(lte) _logger.info("Signal quality: %s", signal_quality) import co2unit_errors co2unit_errors.info( hw, "Self-test. LTE attached: {}. Signal quality {}".format( lte.isattached(), signal_quality)) _logger.info("LTE attach ok (%d ms). Connecting...", chrono.read_ms()) if signal_quality["rssi_raw"] in range(0, 31): led_show_scalar(signal_quality["rssi_raw"], [0, 31]) with CheckStep(FLAG_LTE_CONNECT): chrono.reset() lte.connect() while True: wdt.feed() if lte.isconnected(): break if chrono.read_ms() > 120 * 1000: raise TimeoutError("Timeout during LTE connect") time.sleep_ms(50) _logger.info("LTE connect ok (%d ms)", chrono.read_ms()) with CheckStep(FLAG_COMM_PING, suppress_exception=True): import co2unit_comm for sync_dest in cc.sync_dest: co2unit_comm.send_alive_ping(sync_dest, ou_id, cc, cs) wdt.feed() with CheckStep(FLAG_NTP_FETCH, suppress_exception=True): from machine import RTC import timeutil chrono.reset() irtc = RTC() ts = timeutil.fetch_ntp_time(cc.ntp_host if cc else None) idrift = ts - time.mktime(irtc.now()) if abs(idrift) < max_drift_secs: _logger.info("Drift from NTP: %s s; within threshold (%d s)", idrift, max_drift_secs) else: ntp_tuple = time.gmtime(ts) irtc = RTC() irtc.init(ntp_tuple) hw.ertc.save_time() _logger.info("RTC set from NTP %s; drift was %d s", ntp_tuple, idrift) failures &= ~FLAG_TIME_SOURCE # Clear FLAG_TIME_SOURCE if previously set _logger.info("Got time with NTP (%d ms). Shutting down...", chrono.read_ms()) wdt.feed() with CheckStep(FLAG_LTE_SHUTDOWN): if lte: try: if lte.isconnected(): chrono.reset() lte.disconnect() _logger.info("LTE disconnected (%d ms)", chrono.read_ms()) wdt.feed() if lte.isattached(): chrono.reset() lte.dettach() _logger.info("LTE detached (%d ms)", chrono.read_ms()) wdt.feed() finally: chrono.reset() lte.deinit() pycom.nvs_set("lte_on", False) _logger.info("LTE deinit-ed (%d ms)", chrono.read_ms()) wdt.feed() except: pass show_boot_flags() _logger.info("Failures after LTE test: 0x%04x", failures) display_errors_led() if signal_quality and signal_quality["rssi_raw"] in range(0, 32): led_show_scalar(signal_quality["rssi_raw"], [0, 31]) pycom.rgbled(0x0)
class SequansLTE: """ Synopsis:: sq = SequansLTE() sq.info() sq.firmware_info() sq.at('showphy') See also: - https://git.cicer.de/autonome-zelle/fipy-nbiot-rtd/blob/master/main.py """ def __init__(self, network_manager, settings): self.network_manager = network_manager self.settings = settings from network import LTE self.lte = LTE() import machine self.chrono = machine.Timer.Chrono() self.chrono.start() def start(self): self.lte.init() self.attach() self.connect() def stop(self): self.lte.disconnect() time.sleep(0.25) self.lte.deinit() time.sleep(0.25) def attach(self): log.info('Attaching to LTE') self.lte.attach(band=self.settings.get('networking.lte.band'), apn=self.settings.get('networking.lte.apn')) self.chrono.reset() while True: log.info('Signal strength: {}'.format(self.get_signal_strength())) if self.lte.isattached(): break if self.chrono.read() > self.settings.get( 'networking.lte.attach_timeout'): raise Exception('Attaching to LTE timed out') time.sleep(0.25) def connect(self): log.info('Connecting to LTE') self.lte.connect() self.chrono.reset() while True: if self.lte.isconnected(): break if self.chrono.read() > self.settings.get( 'networking.lte.connect_timeout'): raise Exception('Connecting to LTE timed out') time.sleep(0.25) def imei(self): """ Return IMEI. """ return self.at('AT+CGSN=1') def info(self): """ Get infos from Modem. """ log.info('Signal strength: {}'.format(self.get_signal_strength())) self.at('RRC:setDbgPerm full') self.at('RRC:showcaps') self.at('showver') # https://forum.pycom.io/topic/4022/unable-to-update-gpy-modem-firmware/8 #self.at('AT') #self.at('ATI') #self.at('ATZ') def get_signal_strength(self): csq_at = self.lte.send_at_cmd("AT+CSQ") csq_line_regex = ure.compile("\n") csq_line = csq_line_regex.split(csq_at) csq_string_regex = ure.compile(" ") csq_string = csq_string_regex.split(csq_line[1]) csq_comma = csq_string[1] csq_num_regex = ure.compile(",") csq_num = csq_num_regex.split(csq_comma) csq = csq_num[0] return csq def at(self, command): """ :param command: """ return self.raw('AT!="{}"'.format(command)) def raw(self, command): """ :param command: """ log.info('Sending: {}'.format(command)) answer = self.lte.send_at_cmd(command) log.info('Answer: {}'.format(answer)) return answer def firmware_info(self): """ """ import sqnsupgrade sqnsupgrade.info(verbose=True, debug=True) def unbrick(self): """ """ raise NotImplementedError( 'https://forum.pycom.io/topic/4022/unable-to-update-gpy-modem-firmware/21' )
class NanoGateway: """ Nano gateway class, set up by default for use with TTN, but can be configured for any other network supporting the Semtech Packet Forwarder. Only required configuration is wifi_ssid and wifi_password which are used for connecting to the Internet. """ def __init__(self, id, frequency, datarate, server, port, ntp_server='pool.ntp.org', ntp_period=3600): self.id = id self.server = server self.port = port self.frequency = frequency self.datarate = datarate # self.ssid = ssid # self.password = password self.ntp_server = ntp_server self.ntp_period = ntp_period self.server_ip = None self.rxnb = 0 self.rxok = 0 self.rxfw = 0 self.dwnb = 0 self.txnb = 0 self.sf = self._dr_to_sf(self.datarate) self.bw = self._dr_to_bw(self.datarate) self.stat_alarm = None self.pull_alarm = None self.uplink_alarm = None self.lte = None self.sock = None self.udp_stop = False self.udp_lock = _thread.allocate_lock() self.lora = None self.lora_sock = None self.rtc = machine.RTC() def start(self): """ Starts the LoRaWAN nano gateway. """ pycom.heartbeat(False) self._log('Starting LoRaWAN nano gateway with id: {}', self.id) # # setup WiFi as a station and connect # self.wlan = WLAN(mode=WLAN.STA) # self._connect_to_wifi() # setup LTE CATM1 connection self.lte = LTE(carrier="verizon") self._connect_to_LTE() # get a time sync self._log('Syncing time with {} ...', self.ntp_server) self.rtc.ntp_sync(self.ntp_server, update_period=self.ntp_period) while not self.rtc.synced(): utime.sleep_ms(50) self._log("RTC NTP sync complete") # get the server IP and create an UDP socket self.server_ip = usocket.getaddrinfo(self.server, self.port)[0][-1] self._log('Opening UDP socket to {} ({}) port {}...', self.server, self.server_ip[0], self.server_ip[1]) self.sock = usocket.socket(usocket.AF_INET, usocket.SOCK_DGRAM, usocket.IPPROTO_UDP) self.sock.setsockopt(usocket.SOL_SOCKET, usocket.SO_REUSEADDR, 1) self.sock.setblocking(False) # push the first time immediatelly self._push_data(self._make_stat_packet()) # create the alarms self.stat_alarm = Timer.Alarm( handler=lambda t: self._push_data(self._make_stat_packet()), s=60, periodic=True) self.pull_alarm = Timer.Alarm(handler=lambda u: self._pull_data(), s=25, periodic=True) # start the UDP receive thread self.udp_stop = False _thread.start_new_thread(self._udp_thread, ()) # initialize the LoRa radio in LORA mode self._log('Setting up the LoRa radio at {} Mhz using {}', self._freq_to_float(self.frequency), self.datarate) self.lora = LoRa(mode=LoRa.LORA, frequency=self.frequency, bandwidth=self.bw, sf=self.sf, preamble=8, coding_rate=LoRa.CODING_4_5, tx_iq=True) # create a raw LoRa socket self.lora_sock = usocket.socket(usocket.AF_LORA, usocket.SOCK_RAW) self.lora_sock.setblocking(False) self.lora_tx_done = False self.lora.callback(trigger=(LoRa.RX_PACKET_EVENT | LoRa.TX_PACKET_EVENT), handler=self._lora_cb) self._log('LoRaWAN nano gateway online') def stop(self): """ Stops the LoRaWAN nano gateway. """ self._log('Stopping...') # send the LoRa radio to sleep self.lora.callback(trigger=None, handler=None) self.lora.power_mode(LoRa.SLEEP) # stop the NTP sync self.rtc.ntp_sync(None) # cancel all the alarms self.stat_alarm.cancel() self.pull_alarm.cancel() # signal the UDP thread to stop self.udp_stop = True while self.udp_stop: utime.sleep_ms(50) # disable LTE self.lte.disconnect() self.lte.dettach() def _connect_to_wifi(self): self.wlan.connect(self.ssid, auth=(None, self.password)) while not self.wlan.isconnected(): utime.sleep_ms(50) self._log('WiFi connected to: {}', self.ssid) def _connect_to_LTE(self): print("reset modem") try: self.lte.reset() except: print("Exception during reset") print("delay 5 secs") utime.sleep(5.0) if self.lte.isattached(): try: print("LTE was already attached, disconnecting...") if self.lte.isconnected(): print("disconnect") self.lte.disconnect() except: print("Exception during disconnect") try: if self.lte.isattached(): print("detach") self.lte.dettach() except: print("Exception during dettach") try: print("resetting modem...") self.lte.reset() except: print("Exception during reset") print("delay 5 secs") utime.sleep(5.0) # enable network registration and location information, unsolicited result code self.at('AT+CEREG=2') # print("full functionality level") self.at('AT+CFUN=1') utime.sleep(1.0) # using Hologram SIM self.at('AT+CGDCONT=1,"IP","hologram"') print("attempt to attach cell modem to base station...") # lte.attach() # do not use attach with custom init for Hologram SIM self.at("ATI") utime.sleep(2.0) i = 0 while self.lte.isattached() == False: # get EPS Network Registration Status: # +CEREG: <stat>[,[<tac>],[<ci>],[<AcT>]] # <tac> values: # 0 - not registered # 1 - registered, home network # 2 - not registered, but searching... # 3 - registration denied # 4 - unknown (out of E-UTRAN coverage) # 5 - registered, roaming r = self.at('AT+CEREG?') try: r0 = r[0] # +CREG: 2,<tac> r0x = r0.split(',') # ['+CREG: 2',<tac>] tac = int(r0x[1]) # 0..5 print("tac={}".format(tac)) except IndexError: tac = 0 print("Index Error!!!") # get signal strength # +CSQ: <rssi>,<ber> # <rssi>: 0..31, 99-unknown r = self.at('AT+CSQ') # extended error report # r = at('AT+CEER') if self.lte.isattached(): print("Modem attached (isattached() function worked)!!!") break if (tac == 1) or (tac == 5): print("Modem attached!!!") break i = i + 5 print("not attached: {} secs".format(i)) if (tac != 0): self.blink(BLUE, tac) else: self.blink(RED, 5) utime.sleep(2) self.at('AT+CEREG?') print("connect: start a data session and obtain an IP address") self.lte.connect(cid=3) i = 0 while not self.lte.isconnected(): i = i + 1 print("not connected: {}".format(i)) self.blink(YELLOW, 1) utime.sleep(1.0) print("connected!!!") pycom.rgbled(GREEN) def _dr_to_sf(self, dr): sf = dr[2:4] if sf[1] not in '0123456789': sf = sf[:1] return int(sf) def _dr_to_bw(self, dr): bw = dr[-5:] if bw == 'BW125': return LoRa.BW_125KHZ elif bw == 'BW250': return LoRa.BW_250KHZ else: return LoRa.BW_500KHZ def _sf_bw_to_dr(self, sf, bw): dr = 'SF' + str(sf) if bw == LoRa.BW_125KHZ: return dr + 'BW125' elif bw == LoRa.BW_250KHZ: return dr + 'BW250' else: return dr + 'BW500' def _lora_cb(self, lora): """ LoRa radio events callback handler. """ events = lora.events() if events & LoRa.RX_PACKET_EVENT: self.rxnb += 1 self.rxok += 1 rx_data = self.lora_sock.recv(256) stats = lora.stats() packet = self._make_node_packet(rx_data, self.rtc.now(), stats.rx_timestamp, stats.sfrx, self.bw, stats.rssi, stats.snr) self._push_data(packet) self._log('Received packet: {}', packet) self.rxfw += 1 if events & LoRa.TX_PACKET_EVENT: self.txnb += 1 lora.init(mode=LoRa.LORA, frequency=self.frequency, bandwidth=self.bw, sf=self.sf, preamble=8, coding_rate=LoRa.CODING_4_5, tx_iq=True) def _freq_to_float(self, frequency): """ MicroPython has some inprecision when doing large float division. To counter this, this method first does integer division until we reach the decimal breaking point. This doesn't completely elimate the issue in all cases, but it does help for a number of commonly used frequencies. """ divider = 6 while divider > 0 and frequency % 10 == 0: frequency = frequency // 10 divider -= 1 if divider > 0: frequency = frequency / (10**divider) return frequency def _make_stat_packet(self): now = self.rtc.now() STAT_PK["stat"]["time"] = "%d-%02d-%02d %02d:%02d:%02d GMT" % ( now[0], now[1], now[2], now[3], now[4], now[5]) STAT_PK["stat"]["rxnb"] = self.rxnb STAT_PK["stat"]["rxok"] = self.rxok STAT_PK["stat"]["rxfw"] = self.rxfw STAT_PK["stat"]["dwnb"] = self.dwnb STAT_PK["stat"]["txnb"] = self.txnb return ujson.dumps(STAT_PK) def _make_node_packet(self, rx_data, rx_time, tmst, sf, bw, rssi, snr): RX_PK["rxpk"][0]["time"] = "%d-%02d-%02dT%02d:%02d:%02d.%dZ" % ( rx_time[0], rx_time[1], rx_time[2], rx_time[3], rx_time[4], rx_time[5], rx_time[6]) RX_PK["rxpk"][0]["tmst"] = tmst RX_PK["rxpk"][0]["freq"] = self._freq_to_float(self.frequency) RX_PK["rxpk"][0]["datr"] = self._sf_bw_to_dr(sf, bw) RX_PK["rxpk"][0]["rssi"] = rssi RX_PK["rxpk"][0]["lsnr"] = snr RX_PK["rxpk"][0]["data"] = ubinascii.b2a_base64(rx_data)[:-1] RX_PK["rxpk"][0]["size"] = len(rx_data) return ujson.dumps(RX_PK) def _push_data(self, data): token = uos.urandom(2) packet = bytes([PROTOCOL_VERSION]) + token + bytes( [PUSH_DATA]) + ubinascii.unhexlify(self.id) + data with self.udp_lock: try: self.sock.sendto(packet, self.server_ip) except Exception as ex: self._log('Failed to push uplink packet to server: {}', ex) def _pull_data(self): token = uos.urandom(2) packet = bytes([PROTOCOL_VERSION]) + token + bytes( [PULL_DATA]) + ubinascii.unhexlify(self.id) with self.udp_lock: try: self.sock.sendto(packet, self.server_ip) except Exception as ex: self._log('Failed to pull downlink packets from server: {}', ex) def _ack_pull_rsp(self, token, error): TX_ACK_PK["txpk_ack"]["error"] = error resp = ujson.dumps(TX_ACK_PK) packet = bytes([PROTOCOL_VERSION]) + token + bytes( [PULL_ACK]) + ubinascii.unhexlify(self.id) + resp with self.udp_lock: try: self.sock.sendto(packet, self.server_ip) except Exception as ex: self._log('PULL RSP ACK exception: {}', ex) def _send_down_link(self, data, tmst, datarate, frequency): """ Transmits a downlink message over LoRa. """ self.lora.init(mode=LoRa.LORA, frequency=frequency, bandwidth=self._dr_to_bw(datarate), sf=self._dr_to_sf(datarate), preamble=8, coding_rate=LoRa.CODING_4_5, tx_iq=True) while utime.ticks_cpu() < tmst: pass self.lora_sock.send(data) self._log( 'Sent downlink packet scheduled on {:.3f}, at {:.3f} Mhz using {}: {}', tmst / 1000000, self._freq_to_float(frequency), datarate, data) def _udp_thread(self): """ UDP thread, reads data from the server and handles it. """ while not self.udp_stop: try: data, src = self.sock.recvfrom(1024) _token = data[1:3] _type = data[3] if _type == PUSH_ACK: self._log("Push ack") elif _type == PULL_ACK: self._log("Pull ack") elif _type == PULL_RESP: self.dwnb += 1 ack_error = TX_ERR_NONE tx_pk = ujson.loads(data[4:]) tmst = tx_pk["txpk"]["tmst"] t_us = tmst - utime.ticks_cpu() - 15000 if t_us < 0: t_us += 0xFFFFFFFF if t_us < 20000000: self.uplink_alarm = Timer.Alarm( handler=lambda x: self._send_down_link( ubinascii.a2b_base64(tx_pk["txpk"]["data"]), tx_pk["txpk"]["tmst"] - 50, tx_pk["txpk"][ "datr"], int(tx_pk["txpk"]["freq"] * 1000) * 1000), us=t_us) else: ack_error = TX_ERR_TOO_LATE self._log('Downlink timestamp error!, t_us: {}', t_us) self._ack_pull_rsp(_token, ack_error) self._log("Pull rsp") except usocket.timeout: pass except OSError as ex: if ex.errno != errno.EAGAIN: self._log('UDP recv OSError Exception: {}', ex) except Exception as ex: self._log('UDP recv Exception: {}', ex) # wait before trying to receive again utime.sleep_ms(UDP_THREAD_CYCLE_MS) # we are to close the socket self.sock.close() self.udp_stop = False self._log('UDP thread stopped') def _log(self, message, *args): """ Outputs a log message to stdout. """ print('[{:>10.3f}] {}'.format(utime.ticks_ms() / 1000, str(message).format(*args))) def at(self, cmd): print("modem command: {}".format(cmd)) r = self.lte.send_at_cmd(cmd).split('\r\n') r = list(filter(None, r)) print("response={}".format(r)) return r def blink(self, rgb, n): for i in range(n): pycom.rgbled(rgb) utime.sleep(0.25) pycom.rgbled(BLACK) utime.sleep(0.1)
import socket start = time.ticks_ms() lte = LTE() print("\nModem is activated, time needed (s): ", time.ticks_diff(time.ticks_ms(), start) / 10000) start = time.ticks_ms() lte.attach(band=20, apn="company.iot.dk1.tdc") while not lte.isattached(): time.sleep(0.5) print(".", end="") print("\nAttached to the Network!, time needed (s): ", time.ticks_diff(time.ticks_ms(), start) / 10000) start = time.ticks_ms() lte.connect() # starting a data section and obtaining an ip address while not lte.isconnected(): time.sleep(0.5) print("-", end="") print("Connected to the Network Operator!, time needed (s): ", time.ticks_diff(time.ticks_ms(), start) / 1000) lte.disconnect() # Dissconnect the module and send at commands while lte.disconnect(): #time.sleep(0.5) print("Disconnected!") lte.send_at_cmd("AT+CSQ") # Check the Signal Strength print("-", end="")
class Tracker: def __init__(self, pytrack=None, debug=False): if pytrack is not None: self.pytrack = pytrack else: self.pytrack = Pytrack() self.debug = debug # Instantiate and hold state for sensors (accelerometer, lte, gps, etc) self.accel = LIS2HH12() self.lte = LTE() self.gps = None # Holds the mqtt client to send messages to self.mqttClient = None # If after wakeup, we are in continuous GPS logging state self.continueGPSRead = False # Flag for handling wakeup and logging logic differently if owner is nearby self.checkOwnerNearby = True self.wlan = WLAN() #TODO remove def init(self, bInitLTE=False): ''' Initialize local variables used within the script. Checks for network connectivity. If not able to connect after a timeout, resets the machine in order to try and conenct again. Initializes MQTTClient and checks if we are in a continuous GPS read state after wakeup (saved to self instance variables) ''' # Check if network is connected. If not, attempt to connect if bInitLTE: self.initLTE() else: #TODO remove # Check if network is connected. If not, attempt to connect counter = 0 while not self.wlan.isconnected(): # If we surpass some counter timeout and network is still not connected, reset and attempt to connect again if counter > 100000: machine.reset() machine.idle() counter += 1 # Initialize mqttClient self.mqttClient = self._getMqttClient(self.debug) # Check to see if we are in continued gps read (went to sleep and want to continue reading GPS data) if self._getNVS(ConfigGPS.NVS_SLEEP_CONTINUE_GPS_READ) is not None: self.continueGPSRead = True # Erase this key from NVS pycom.nvs_erase(ConfigGPS.NVS_SLEEP_CONTINUE_GPS_READ) @staticmethod def _getRTC(): ''' Syncs the real time clock with latest time and returns RTC instance ''' rtc = machine.RTC() if not rtc.synced(): # Sync real time clock rtc.ntp_sync("pool.ntp.org") return rtc @staticmethod def _getNVS(key): ''' Looks up at the non volatile storage for a specified key. If it exists, returns the value stored for that key. Otherwise, returns None ''' try: if pycom.nvs_get(key) is not None: return pycom.nvs_get(key) except Exception: # Do nothing, key doesnt exist pass return None @staticmethod def _decodeBytes(data): ''' Attempts to decode a byte array to string format. If not a byte type, just returns the original data ''' try: return data.decode() except (UnicodeDecodeError, AttributeError): pass return data def _getMqttClient(self, debug): # Initialize mqttClient state = False count = 0 mqttClient = None while not state and count < 5: try: count += 1 mqttClient = MQTTClient(ConfigMqtt.CLIENT_ID, ConfigMqtt.SERVER, port=ConfigMqtt.PORT, user=ConfigMqtt.USER, password=ConfigMqtt.PASSWORD) # Set the callback method that will be invoked on subscription to topics mqttClient.set_callback(self.mqttCallback) mqttClient.connect() state = True except Exception as e: if debug: print("Exception on initialize mqtt client: {}".format(e)) time.sleep(0.5) #Subscribe to the disable tracking topic mqttClient.subscribe(topic=ConfigMqtt.TOPIC_TRACKING_STATE) time.sleep(0.5) if self.debug: print("Checking MQTT messages") mqttClient.check_msg() if self.debug: print("Messages checked. Returning MQTT client") return mqttClient def initLTE(self): #TODO remove return ''' If already used, the lte device will have an active connection. If not, need to set up a new connection. ''' lte = self.lte debug = self.debug if lte.isconnected(): return # Modem does not connect successfully without first being reset. if debug: print("Resetting LTE modem ... ", end='') lte.send_at_cmd('AT^RESET') if debug: print("OK") time.sleep(5) lte.send_at_cmd('AT+CFUN=0') time.sleep(5) #send_at_cmd_pretty('AT!="fsm"') # While the configuration of the CGDCONT register survives resets, # the other configurations don't. So just set them all up every time. if debug: print("Configuring LTE ", end='') lte.send_at_cmd('AT!="clearscanconfig"') if debug: print(".", end='') lte.send_at_cmd('AT!="RRC::addScanBand band=26"') if debug: print(".", end='') lte.send_at_cmd('AT!="RRC::addScanBand band=18"') if debug: print(".", end='') lte.send_at_cmd('AT+CGDCONT=1,"IP","soracom.io"') if debug: print(".", end='') lte.send_at_cmd('AT+CGAUTH=1,1,"sora","sora"') print(".", end='') if debug: lte.send_at_cmd('AT+CFUN=1') print(" OK") # If correctly configured for carrier network, attach() should succeed. if not lte.isattached(): if debug: print("Attaching to LTE network ", end='') lte.attach() while True: if lte.isattached(): #send_at_cmd_pretty('AT+COPS?') time.sleep(5) break if debug: print('.', end='') pycom.rgbled(0x0f0000) time.sleep(0.5) if debug: pycom.rgbled(0x000000) time.sleep(1.5) # Once attached, connect() should succeed. if not lte.isconnected(): if debug: print("Connecting on LTE network ", end='') lte.connect() while True: if lte.isconnected(): break if debug: print('.', end='') time.sleep(1) # Once connect() succeeds, any call requiring Internet access will # use the active LTE connection. self.lte = lte def isContinueGPSRead(self): ''' Returns true or false - whether or not we are in a continued gps read state after power cycle / deep sleep. If true, we should jump right to gps read. False if we should execute normal wakeup flow ''' return self.continueGPSRead def getWakeReason(self): ''' Returns the reason why the device was woken up. Return values are from the ConfigWakeup scope ''' if self.continueGPSRead: return ConfigWakeup.WAKE_CONTINUE_GPS elif self.pytrack.get_wake_reason() == WAKE_REASON_ACCELEROMETER: return ConfigWakeup.WAKE_REASON_ACCELEROMATER else: return ConfigWakeup.WAKE_REASON_TIMEOUT def setCheckOwnerNearby(self, bOwnerNearby=True): ''' If bOnwerNearby is set to true (defaults to true here and constructor instantiation), we handle logic for wakup and actively logging location and pushing mqtt messages differently. If checkowner flag is true and owner is detected nearby on device wakeup, we are much less active in wakeups and monitoring ''' self.checkOwnerNearby = bOwnerNearby def isOwnerNearby(self): ''' Logic here checks if a known BLE device is broadcasting nearby. If they are, return true. Else, return false ''' # TODO remove return False bt = Bluetooth() bt.start_scan(ConfigBluetooth.SCAN_ALLOW_TIME) # Scans for 10 seconds while bt.isscanning(): adv = bt.get_adv() if adv and binascii.hexlify(adv.mac) == ConfigBluetooth.MAC_ADDR: try: if self.debug: print("Owner device found: {} Mac addr {}".format( bt.resolve_adv_data(adv.data, Bluetooth.ADV_NAME_CMPL), ConfigBluetooth.MAC_ADDR)) conn = bt.connect(adv.mac) time.sleep(0.05) conn.disconnect() bt.stop_scan() except Exception: bt.stop_scan() return True time.sleep(0.050) return False def handleOwnerNearby(self): ''' If owner is determined to be nearby, puts device in deep sleep for specified amount of time without acceleration wakeup ''' # Current time and last time we wokeup with owner nearby was less than 2 minutes apart. # Go to deep sleep for specified amount of time without accelerometer wakeup self.pytrack.setup_sleep(ConfigWakeup.SLEEP_TIME_OWNER_NEARBY) self.pytrack.go_to_sleep() def mqttCallback(self, topic, msg): ''' Method to handle callbacks of any mqtt topics that we subscribe to. For now, only subscribes to bypass topic which is used to disable gps monitoring and accelerometer wakeup detection. topic - MQTT topic that we are subscribing to and processing the request for msg - Message received from the topic ''' if self.debug: print("In MQTT subscription callback") # Attempt to decode the topic and msg if in byte format topic = self._decodeBytes(topic) msg = self._decodeBytes(msg) # Handle mqtt topic for disabiling the monitoring if topic == ConfigMqtt.TOPIC_TRACKING_STATE: try: bSleep = False sleepTime = ConfigMqtt.SLEEP_TIME_MQTT_DISABLE # First check if this is a plaintext msg (not json format) if msg == ConfigMqtt.ENABLE_TRACKING_MSG: # Tracking is enabled, continue bSleep = False elif msg == ConfigMqtt.DISABLE_TRACKING_MSG: # If tracking is disabled, go to sleep with configured sleep time bSleep = True else: # Structure of the message will be in json format: # { msg: "XXX", "time": 123} where msg value is ON/OFF for disable (OFF) or enable(ON) # and time value is time to disable tracking (will automatically be re-enabled after # time surpasses if this value is present) jMsg = ujson.loads(msg) # Check if the msg is Y. If so, need to stop tracking if jMsg['msg'] == ConfigMqtt.DISABLE_TRACKING_MSG: # Requested to go to sleep, so set the flags bSleep = True # If theres a time with the disable flag, go to sleep for that amount of time if jMsg['time'] and jMsg['time'] is not None: sleepTime = jMsg['time'] # If the flag was set, go to sleep if bSleep: if self.debug: print("Disable tracking from mqtt. Sleeping for {}". format(sleepTime)) self.goToSleep(sleepTime=sleepTime) except ValueError: if self.debug: print('Exception parsing disable tracking mqtt msg') def sendMQTTMessage(self, topic, msg, retain=False): ''' Sends an MQTT message to the specified topic topic - Topic to send to msg - Message to send to topic mqttClient - MQTT Client used to send the message. If not defined, sends to default configured mqtt client in configuration ''' debug = self.debug # If LTE is not setup, initialize it so we can send messages #self.initLTE() if self.mqttClient is None: try: # Instantiate a new MQTTClient self.mqttClient = self._getMqttClient(debug) except: self.mqttClient = None try: if self.mqttClient is not None: # Send the message topic self.mqttClient.publish(topic=topic, msg=msg, retain=retain) except: if debug: print( "Exception occurred attempting to connect to MQTT server") def goToSleep(self, sleepTime=60, bWithInterrupt=False, bSleepGps=True): ''' Puts the py to deepsleep, turning off lte in order to reduce battery consumption. By default, sleeps for 60 seconds and powers down gps. sleepTime - specifies the time (in seconds) to put the device in deep sleep before waking up bWithInterrupt - if True, will wakeup for both timer timeout as well as acceleration interrupt bSleepGps - If True, puts the gps in deepsleep state as well (will take longer to reinitialize and refix gps signal) ''' # Enable wakeup source from INT pin self.pytrack.setup_int_pin_wake_up(False) # Enable activity and inactivity interrupts with acceleration threshold and min duration if bWithInterrupt: self.pytrack.setup_int_wake_up(True, True) self.accel.enable_activity_interrupt( ConfigAccelerometer.INTERRUPT_THRESHOLD, ConfigAccelerometer.INTERRUPT_DURATION) # If mqttClient is defined, disconnect if self.mqttClient is not None: try: self.mqttClient.disconnect() except: if self.debug: print("Exception occurred disconnecting from mqtt client") # Disconnect lte if self.lte is not None and self.lte.isconnected(): try: self.lte.disconnect() time.sleep(1) self.lte.dettach() except: if self.debug: print("Exception disconnecting from lte") # Go to sleep for specified amount of time if no accelerometer wakeup if self.debug: print("Sleeping for {} seconds with accel interrupt? {}".format( sleepTime, bWithInterrupt)) time.sleep(0.5) time.sleep(0.1) self.pytrack.setup_sleep(sleepTime) self.pytrack.go_to_sleep(gps=bSleepGps) def _getGpsFix(self): ''' Attempts to lock on a signal to the gps. Returns true if signal is found, false otherwise ''' # Attempt to get the gps lock for X number of attempts (defined in config) maxTries = max(ConfigGPS.LOCK_FAIL_ATTEMPTS, 1) signalFixTries = maxTries while signalFixTries > 0: signalFixTries -= 1 if self.debug: print("On GPS fix try number {} of {}".format( maxTries - signalFixTries, maxTries)) self.gps.get_fix(debug=False) pycom.heartbeat(False) bIsFixed = False if self.gps.fixed(): # Got the GPS fix, exit out of this while condition if self.debug: pycom.rgbled(0x000f00) bIsFixed = True else: # If couldnt get a signal fix, try again if self.debug: pycom.rgbled(0x0f0000) return bIsFixed def monitorLocation(self, bWithMotion=True): ''' Sends GPS location to Mqtt topic. Continues sending data as long as motion is detected bWithMotion - If true, continues to monitor and send GPS location to topic as long as accelerometer activity is detected. If false, only publishes location once ''' if self.debug: print("Monitoring Location") self.gps = L76GNSS(self.pytrack, timeout=ConfigGPS.LOCK_TIMEOUT, debug=False) self.gps.setAlwaysOn() if not self._getGpsFix(): # Couldnt get a signal so send message to topic for gps not available and exit (go back to sleep) if self.debug: print("Couldnt get a GPS signal after {} attempts".format( ConfigGPS.LOCK_FAIL_ATTEMPTS)) self.sendMQTTMessage(ConfigMqtt.TOPIC_GPS_NOT_AVAILABLE, "-1") return # Otherwise we have a gps signal, so get the coordinates and send to topic coordinates = self.gps.coordinates() self.sendMQTTMessage(ConfigMqtt.TOPIC_GPS, coordinates) # Save current timestamp of log time self._getRTC() # Syncs rtc pycom.nvs_set(ConfigGPS.NVS_LAST_LOCATION_LOG_TIME, utime.time()) # If we want to monitor with motion (send multiple gps coordinates as long as there is motion), start monitoring if bWithMotion & self.accelInMotion(): # Go to sleep for a specified amount of time (keeping GPS alive) to conserve some battery # TODO - check if this is better than setPeriodicMode if self.debug: print("Putting gps in low power and going to sleep") #Save state to nvs (non volatile storage) pycom.nvs_set(ConfigGPS.NVS_SLEEP_CONTINUE_GPS_READ, 1) self.goToSleep(sleepTime=ConfigGPS.SLEEP_BETWEEN_READS, bWithInterrupt=False, bSleepGps=False) def accelInMotion(self, numReads=10): ''' Takes numReads measurements of accelerometer data to detect if there is motion. numReads - Number of measurements to take to detect motion Returns true if delta sensor data is above a threshold (meaning there is active motion), false otherwise ''' accel = self.accel xyzList = list() xyzList.append(accel.acceleration()) for index in range(0, numReads): # Print change from last reading time.sleep(0.5) xyzList.append(accel.acceleration()) deltas = list( map(lambda b, a: abs(b - a), xyzList[-1], xyzList[-2]) ) # Get last element (with -1) and subtract previous element (-2) # If max delta is greater than threshold, return true if max(deltas) >= ConfigAccelerometer.MOTION_CHECK_MIN_THRESHOLD: return True # Get the largest change in x, y, and z and see if that surpasses the threshold minVals = list() maxVals = list() for i in range(3): minVals.append(min(map(lambda a, i=i: a[i], xyzList))) maxVals.append(max(map(lambda a, i=i: a[i], xyzList))) # Get the maximum delta for x, y, z for all logged points deltas = list(map(lambda b, a: b - a, maxVals, minVals)) if self.debug: print("Deltas accel motion {}".format(deltas)) # If any x, y, or z axis in deltas array have a total delta change past the allowed threshold, return true. Otherwise return false return max(deltas) >= ConfigAccelerometer.MOTION_CHECK_MIN_THRESHOLD def logRegularCoordinates(self): ''' On regular timed wakeups, we still log our location every so often. Check the last time the location was logged and if the time is greater than the surpassed time defined in config, log coordinates again ''' lastLogTime = self._getNVS(ConfigGPS.NVS_LAST_LOCATION_LOG_TIME) self._getRTC() # Updates RTC # Compare the last log time with current rtc to see if threshold has passed if (lastLogTime is None or (utime.time() - lastLogTime > ConfigGPS.LOCATION_LOG_INTERVAL)): # Need to update gps as time has elapsed since last log self.monitorLocation(bWithMotion=False) # Only log once def accelWakeup(self): ''' Logic to handle board wakeup interruption due to accelerometer. Sends mqtt messages for wakeup if client is defined. ''' debug = self.debug if debug: print("Accelerometer wakeup") # Check if the owner is nearby (owner moving device). If so, handle differently if self.checkOwnerNearby and self.isOwnerNearby(): # Owner is nearby. If last wake is with 2 minutes, we are most likely riding # so go to sleep for longer time without wakeup self.handleOwnerNearby() # Check the accelerometer is still active (preventing false negatives for alerting of theft) # If we dont ready any new accelerometer motion, exit this function and dont send any accelerometer wakeup or gps msgs if not self.accelInMotion(): if debug: print("Not currently in motion, going back to sleep") return else: if debug: print("Motion detected after wakeup...") # Not a false wakeup, so send a message to the initial accelerometer wakeup topic self.sendMQTTMessage(ConfigMqtt.TOPIC_ACCEL_WAKEUP, "1") # Send GPS updates while there has been continued motion for some time self.monitorLocation(bWithMotion=True)