def __init__(self): self.net = NetworkManager(9999) self.yolo = Yolo() self.yolo.load_model() self.net.addCallback(0x00, self.yolo_callback) while True: try: self.net.spinSocket() except KeyboardInterrupt: self.net.close()
class NetworkManagerWrapper(ManagerInterface): name = "Network Manager" def __init__(self, conf: NetworkManagerConfig): super().__init__(conf) # Build network manager self._network_manager = NetworkManager( port=conf.GRPC_PORT, known_priorities=conf.PRIORITIES, limit_to_known_priorities=conf.LIMIT_PRIORITIES, logfile_dir=conf.OUTPUT_DIR, ) # Add network services self._network_manager.add_service(services.DebugPing()) self._network_manager.add_service( services.LoggingClient( host=conf.LOGGING_SERVER_HOST, port=conf.LOGGING_SERVER_PORT, )) def get_service(self, service_name): return self._network_manager.get_service(service_name) def _start(self): self._network_manager.start() def _stop(self): self._network_manager.stop()
class Main(object): def __init__(self): self.__active = True self.__config = get_config() self.__unhandled_files = [] self.__sleep_time = int(self.__config.get('Settings', 'frequency')) if not CUSTOM_SYNC_PATH: self.__sync_directory_path = self.__config.get('Settings', 'path') else: self.__sync_directory_path = input('Please enter custom sync path: ') self.__storage_manager = StorageManager(self.__sync_directory_path) self.__network_manager = NetworkManager(self.__storage_manager, permanent_connections=['127.0.0.1']) def start(self): self.__network_manager.start_listening() # Main Loop while self.__active: # Check files for changes changed_files = self.__storage_manager.check_files_for_changes() # Ensure network functionality is not already in use if self.__network_manager.in_progress: self.__unhandled_files.extend(changed_files) continue # Add unhandled changes to changed files changed_files.extend(self.__unhandled_files) # If any files have changed and there are active connections if changed_files != [] and self.__network_manager.get_connections() != []: # Iterate through changes and attempt to transmit to active connections # code: O for filename_code_md5 in changed_files: if filename_code_md5[1] == 0 or filename_code_md5[1] == 2: # try: # Send file logging.info('Sending file changes for file name: ' + filename_code_md5[0]) self.__network_manager.transfer_file(filename_code_md5[0], filename_code_md5[2]) changed_files.remove(filename_code_md5) # except Exception as E: # logging.info('Exception:\n' + str(E)) self.__unhandled_files.extend(changed_files) time.sleep(self.__sleep_time)
def __init__(self): self.__active = True self.__config = get_config() self.__unhandled_files = [] self.__sleep_time = int(self.__config.get('Settings', 'frequency')) if not CUSTOM_SYNC_PATH: self.__sync_directory_path = self.__config.get('Settings', 'path') else: self.__sync_directory_path = input('Please enter custom sync path: ') self.__storage_manager = StorageManager(self.__sync_directory_path) self.__network_manager = NetworkManager(self.__storage_manager, permanent_connections=['127.0.0.1'])
def __init__(self): ## # Initial Mode self.encoding = 'utf-8' self.mode = MODE.CLEAR self.current_message_dict = {} self.network_manager = NetworkManager.get_instance() super(Housekeeper, self).__init__()
def __init__(self, conf: NetworkManagerConfig): super().__init__(conf) # Build network manager self._network_manager = NetworkManager( port=conf.GRPC_PORT, known_priorities=conf.PRIORITIES, limit_to_known_priorities=conf.LIMIT_PRIORITIES, logfile_dir=conf.OUTPUT_DIR, ) # Add network services self._network_manager.add_service(services.DebugPing()) self._network_manager.add_service( services.LoggingClient( host=conf.LOGGING_SERVER_HOST, port=conf.LOGGING_SERVER_PORT, ))
def __init__(self): self.encoding = 'utf-8' self.stats = {} self.weather = {'connection': False} self.last_weather_check = time.time() - 9999 self.load_weather() self.network_manager = NetworkManager.get_instance()
def benchmark_running(hypercolumns=4, minicolumns=20): # Patterns parameters hypercolumns = hypercolumns minicolumns = minicolumns # Manager properties dt = 0.001 running_time = 10 values_to_save = [] # Build the network nn = BCPNNFast(hypercolumns, minicolumns) nn.k_inner = False nn.k = 0.0 # Build the manager manager = NetworkManager(nn=nn, dt=dt, values_to_save=values_to_save) time = np.arange(0, running_time, dt) manager.run_network(time, I=0)
def main(argv): #load configuration try: configuration_file = open('config.json','r') CONFIG = json.loads(configuration_file.read()) check_configuration(CONFIG) configuration_file.close() print 'Configuration loaded.' except IOError: print 'missing configuration file' sys.exit(2) except ValueError: print 'configuration file is corrupt' sys.exit(2) print Globals.RESOURCES_RESOURCE_CODE #Load database print '\nLoading Database' DATABASE = Database(CONFIG) #Load encryption key print '\nLoading encryption key' CRYPTO = Crypto(CONFIG, DATABASE) #Create network manager print '\nCreating network manager' NETWORK_MANAGER = NetworkManager(CONFIG, DATABASE, CRYPTO) #Create server print '\nCreating server' SERVER = Server(CONFIG, CRYPTO) #Create block manager print '\nCreating block manager' BLOCK_MANAGER = BlockManager(CONFIG, DATABASE, CRYPTO, NETWORK_MANAGER, SERVER) SERVER.set_blocks_manager(BLOCK_MANAGER) #Connect to nodes print '\nConnecting to network' NETWORK_MANAGER.connect_to_all(BLOCK_MANAGER) print '\nStartup complete, waiting for synchronization' while True: try: cmd = raw_input() if cmd in ['shutdown', 'SHUTDOWN', '^C', '^Z', 'exit', 'EXIT', 'close', 'CLOSE']: break except KeyboardInterrupt: break print 'Shutdown signal received, stopping everything' SERVER.shutdown() NETWORK_MANAGER.shutdown() print 'All was correctly stopped, exiting' sys.exit(0)
class ValutoPyApp(App): theme_cls = ThemeManager() network_manager = NetworkManager() transfer_manager = TransferManager() transaction_manager = TransactionListManager() def build(self): self.icon = 'valuto_logo.png' self.theme_cls.theme_style = 'Dark' self.theme_cls.primary_palette = 'BlueGrey' main_widget = Builder.load_file('main.kv') return main_widget def on_stop(self): self.network_manager.kill_valutod()
def main(argv): #Load configuration print '\nLoading Configuration' CONFIG = load_configuration() #Load database print '\nLoading Database' DATABASE = Database(CONFIG) #Load encryption key print '\nLoading encryption key' CRYPTO = Crypto(CONFIG, DATABASE) #Create network manager print '\nCreating network manager' NETWORK_MANAGER = NetworkManager(CONFIG, DATABASE, CRYPTO) #Create server print '\nCreating server' SERVER = Server(CONFIG, CRYPTO) #Create block manager print '\nCreating block manager' BLOCK_MANAGER = BlockManager(CONFIG, DATABASE, CRYPTO, NETWORK_MANAGER, SERVER) SERVER.set_blocks_manager(BLOCK_MANAGER) #Connect to nodes print '\nConnecting to network' NETWORK_MANAGER.connect_to_all(BLOCK_MANAGER) print '\nStartup complete, waiting for synchronization' while True: try: time.sleep(1) os.system('clear') print 'Ready for Interruption' cmd = raw_input() if cmd in ['shutdown', 'SHUTDOWN', '^C', '^Z', 'exit', 'EXIT', 'close', 'CLOSE']: break except KeyboardInterrupt: break print 'Shutdown signal received, stopping everything' SERVER.shutdown() NETWORK_MANAGER.shutdown() print 'All was correctly stopped, exiting' sys.exit(0)
class YoloServer(object): def __init__(self): self.net = NetworkManager(9999) self.yolo = Yolo() self.yolo.load_model() self.net.addCallback(0x00, self.yolo_callback) while True: try: self.net.spinSocket() except KeyboardInterrupt: self.net.close() def yolo_callback(self, arg): byte_img = bytes(arg['img'], 'ascii') img_decoded = base64.b64decode(byte_img) img = numpy.frombuffer(img_decoded, dtype=numpy.uint8) cv_img = cv2.imdecode(img, flags=1) names = self.yolo.run(numpy.asarray(cv_img), False) return (0x00, {'names': names})
def execute(self): data = self.data language = data['language'] if data['type'][0] == 'SDS': type_summary = 0 else: type_summary = 1 anti_redundancy_method = data['type'][1] corpus_name = data['corpus'] #resumo_size_parameter = data['size'] # para definir el tamanio de los sumarios, en relacion a numero de palabras o sentencias, o fijo use_machine_learning = data['ml'][0] ## VERY IMPORTANT NOW method, classifier, kFold, use_traditional_features = None, None, None, None if use_machine_learning: method, classifier, kFold, use_traditional_features = data['ml'][ 1][0], data['ml'][1][1], data['ml'][1][2], data['ml'][1][3] network = data['network'] network_type = network[0] # tipo de red: noun, tfidf, d2v , mln network_parameters = network[ 1] # todos los parametros del tipo de red que se va a utilizar mln_type_flag = network_type == 'mln' # para verificar en corpus loader si se tiene que cargar para una multilayer network extracted_net_parameters = parameter_extractor(network_type, network_parameters) mln_type = extracted_net_parameters['mln_type'] sw_removal = extracted_net_parameters['sw_removal'] limiar_value = extracted_net_parameters['limiar_value'] limiar_type = extracted_net_parameters['limiar_type'] size_d2v = extracted_net_parameters['size_d2v'] inter_edge_mln = extracted_net_parameters['inter_edge'] limiar_mln = extracted_net_parameters['limiar_mln'] network_measures = data['measures'] #selection_method = data['selection'] ##### #print use_machine_learning #print method, classifier, kFold, use_traditional_features # use_machine_learning and method ---> muy importantes print extracted_net_parameters ''' 1 Corpus loader : cargar el corpus indicado y dejarlo listo para ser pre-procesado ''' #obj = Loader(language=language, type_summary=type_summary, corpus=corpus_name, size=resumo_size_parameter, mln=mln_type_flag, use_ml=use_machine_learning) obj = Loader(language=language, type_summary=type_summary, corpus=corpus_name, mln=mln_type_flag, use_ml=use_machine_learning) loaded_corpus = obj.load( ) # diccionario que tiene como key el nombre del documento o nombre del grupo y como claves los documentos y sus sizes ''' 2. Corpus processing ''' obj = CorpusConversion(loaded_corpus, language, network_type, mln_type, sw_removal) processed_corpus = obj.convert() #for i in processed_corpus.items(): # print i ''' 3. Corpus vectorization ''' vectorized_corpus = None if network_type == 'noun' or mln_type == 'noun': pass else: if network_type == 'mln': network_type_subtype = mln_type else: network_type_subtype = network_type if language == 'eng': obj = Vectorization(processed_corpus, network_type_subtype, size_d2v, language=language) vectorized_corpus = obj.calculate() else: type_summary_inverted = 0 if type_summary == 0: type_summary_inverted = 1 obj = Loader(language=language, type_summary=type_summary_inverted, corpus=corpus_name, mln=mln_type_flag) auxiliar_corpus = obj.load() obj = CorpusConversion(auxiliar_corpus, language, network_type, mln_type, sw_removal) processed_auxiliar = obj.convert() obj = Vectorization(processed_corpus, network_type_subtype, size_d2v, processed_auxiliar, language=language) vectorized_corpus = obj.calculate() ''' 4. Network creation 5. Network prunning ''' obj = NetworkManager(network_type, mln_type, processed_corpus, vectorized_corpus, inter_edge_mln, limiar_mln, limiar_value, limiar_type) complex_networks = obj.create_networks() ''' 6. Node weighting 7. Node ranking 6. Node weighting 7. Machine Learning ''' manageNodes = NodeManager(complex_networks, network_measures) #features = manageNodes.get_network_features() if use_machine_learning: obj = MLRanking(corpus=processed_corpus, method=method, classifier=classifier, kfold=kFold, nodeManager=manageNodes) all_documentRankings = obj.rank_by_machine_learning() else: all_documentRankings = manageNodes.ranking() #for i in all_documentRankings.items(): # print i ''' 8. Summarization ''' obj = SummaryGenerator(processed_corpus, complex_networks, all_documentRankings, anti_redundancy_method) obj.generate_summaries() ''' 9. Validation ''' key = choice(all_documentRankings.keys()) number_of_measures = len(all_documentRankings[key][0]) parameters_to_show_table = [] if limiar_mln is not None: first_value = len(inter_edge_mln) second_value = len(limiar_mln) third_value = number_of_measures parameters_to_show_table.append(inter_edge_mln) parameters_to_show_table.append(limiar_mln) elif limiar_value is not None: first_value = 1 second_value = len(limiar_value) third_value = number_of_measures parameters_to_show_table.append(None) parameters_to_show_table.append(limiar_value) else: first_value = 1 second_value = 1 third_value = number_of_measures print first_value, second_value, third_value obj = Validation(language, type_summary, corpus_name, [first_value, second_value, third_value], self.output_excel, parameters_to_show_table) obj.validate('results.csv') deleteFolders(extras['Automatics'])
from entities.message import * from entities.node import * from entities.group import * from entities.request import * from network.NetworkManager import * from services.MocHandler import MocHandler net = NetworkManager() mac = net.getMacAddress() ev = MocHandler() net.addListener(ev) # start listener #net.startListener() # start node discovery service #net.startNodeDiscovery() msg = Message("FFEEDDCCBBAA", "AABBCCDDEEFF", { "timestamp": "2019-11-07 10:10:10", "message": "Hello test test" }) groupMsg = GroupMessage("FFEEDDCCBBAA", "FFFFAABBCCDDEEFF", { "timestamp": "2019-11-07 10:10:10", "message": "Hello test test" }) broadcastMsg = GroupMessage("FFEEDDCCBBAA", { "timestamp": "2019-11-07 10:10:10", "message": "Hello test test" }) req = Request("FFEEDDCCBBAA", "FFFFAABBCCDDEEFF", {"message": "Hello test test"})
def execute(self): data = self.data language = data['language'] if data['type'][0] == 'SDS': type_summary = 0 else: type_summary = 1 anti_redundancy_method = data['type'][1] corpus_name = data['corpus'] resumo_size_parameter = data[ 'size'] # para definir el tamanio de los sumarios, en relacion a numero de palabras o sentencias, o fijo network = data['network'] network_type = network[0] # tipo de red: noun, tfidf, d2v , mln network_parameters = network[ 1] # todos los parametros del tipo de red que se va a utilizar mln_type_flag = network_type == 'mln' # para verificar en corpus loader si se tiene que cargar para una multilayer network extracted_net_parameters = parameter_extractor(network_type, network_parameters) mln_type = extracted_net_parameters['mln_type'] sw_removal = extracted_net_parameters['sw_removal'] limiar_value = extracted_net_parameters['limiar_value'] limiar_type = extracted_net_parameters['limiar_type'] #distance = extracted_net_parameters['distance'] size_d2v = extracted_net_parameters['size_d2v'] #inference_d2v = extracted_net_parameters['inference_d2v'] inter_edge = extracted_net_parameters['inter_edge'] #intra_edge = extracted_net_parameters['intra_edge'] limiar_mln = extracted_net_parameters['limiar_mln'] print extracted_net_parameters #anti_redundancy_threshold = None # si los documentos no requieren vectorizacion , este es calculado en la generacion de los sumarios # basado en la distancia coseno de las palabras, sin necesidad de generar los vectores de cada documento # si los documentos requierein vectorizacion, entonces este valor sera atribuido a partir del valor calculado en la etapa de vectorizacion network_measures = data['measures'] selection_method = data['selection'] #validation = data['validation'] ''' 0 cargar el corpus indicado y dejarlo listo para ser pre-procesado ''' #obj = Loader(language=language, type_summary=type_summary, corpus=corpus_name, size=resumo_size_parameter, mln=mln_type_flag) obj = Loader(language=language, type_summary=type_summary, corpus=corpus_name, mln=mln_type_flag) loaded_corpus = obj.load( ) # diccionario que tiene como key el nombre del documento o nombre del grupo y como claves los documentos y sus sizes #for i in loaded_corpus.items(): # print i #for i in loaded_corpus.items(): # grupos = i[1] # sentences = grupos[0] # sizes = grupos[1] # for j in sentences: # print j # print j[0] , j[1] top_sentences = dict() # solo para MDS #if anti_redundancy_method is not None: # for i in loaded_corpus.items(): # doc_name = i[0] # tops = i[1][2] # top_sentences[doc_name] = tops ''' 1. Pre-procesamiento de los corpus ''' obj = CorpusConversion(loaded_corpus, language, network_type, mln_type, sw_removal) processed_corpus = obj.convert() #for i in processed_corpus.items(): # print len(i[1][0]) #, len(i[1][1]) ''' 2. Vectorizacion de los corpus (auxiliar - caso sea requerido) ''' vectorized_corpus = None if network_type == 'noun' or mln_type == 'noun': pass else: if network_type == 'mln': network_type_subtype = mln_type else: network_type_subtype = network_type #cargar corpus auxiliar para entrenamiento if language == 'eng': #obj = Vectorization(processed_corpus, network_type, inference_d2v, size_d2v) #obj = Vectorization(processed_corpus, network_type_subtype, inference_d2v, size_d2v) obj = Vectorization(processed_corpus, network_type_subtype, size_d2v) vectorized_corpus = obj.calculate() else: print "cargando nuevo" type_summary_inverted = 0 if type_summary == 0: type_summary_inverted = 1 #obj = Loader(language=language, type_summary=type_summary_inverted, corpus=corpus_name, size=resumo_size_parameter, mln=mln_type_flag) obj = Loader(language=language, type_summary=type_summary_inverted, corpus=corpus_name, mln=mln_type_flag) auxiliar_corpus = obj.load() obj = CorpusConversion(auxiliar_corpus, language, network_type, mln_type, sw_removal) processed_auxiliar = obj.convert() #obj = Vectorization(processed_corpus, network_type, inference_d2v, size_d2v, processed_auxiliar) #obj = Vectorization(processed_corpus, network_type_subtype, inference_d2v, size_d2v, processed_auxiliar) obj = Vectorization(processed_corpus, network_type_subtype, size_d2v, processed_auxiliar) vectorized_corpus = obj.calculate() ''' 3. Creacion de la red y 4. Eliminacion de nodos, limiares ''' #obj = NetworkManager(network_type, mln_type, processed_corpus, vectorized_corpus, distance, inter_edge, limiar_mln, limiar_value) obj = NetworkManager(network_type, mln_type, processed_corpus, vectorized_corpus, inter_edge, limiar_mln, limiar_value, limiar_type) complex_networks = obj.create_networks() #for i in complex_networks.items(): # print i ''' 5. Node weighting and node ranking ''' obj = NodeManager(complex_networks, network_measures) all_documentRankings = obj.ranking() ''' 6. Summarization #corpus, rankings, sentence_selection, anti_redundancy print "Summarization!!!" obj = SummaryGenerator(processed_corpus, complex_networks, all_documentRankings, selection_method, anti_redundancy_method, top_sentences) obj.generate_summaries() ''' '''
from command import CommandParser from network import NetworkManager, ClientDisconnected from response import Response from error import ParseError, ExecutionError, ValidationError from http import HTTPStatus from commands.disconnect import Disconnect from controller import Controller from configparser import ConfigParser from logging.handlers import RotatingFileHandler from logging import Formatter, basicConfig, getLogger, StreamHandler if __name__ == '__main__': config = ConfigParser() config.read('../config.ini') network_manager = NetworkManager(config) parser = CommandParser() # Logging configuration level = config['LOGGING'].get('level', 'ERROR') log_on_console = config['LOGGING'].get('console', False) log_on_console = log_on_console == '1' or log_on_console == 'True' or log_on_console == 'true' filename = config['LOGGING'].get('filename', '/var/log/sc_driver.log') max_bytes = int(config['LOGGING'].get('max_bytes', str(1024 * 1024))) backup_count = int(config['LOGGING'].get('backup_count', str(5))) log_format = '%(asctime)s - %(name)s - %(levelname)s -- %(message)s' formatter = Formatter(log_format) fileHandler = RotatingFileHandler(filename, maxBytes=max_bytes, backupCount=backup_count) consoleHandler = StreamHandler() consoleHandler.setFormatter(formatter) fileHandler.setFormatter(formatter)
sigma=sigma, G=G, tau_z_pre_ampa=tau_z_pre_ampa, tau_z_post_ampa=tau_z_post_ampa, tau_p=tau_p, g_I=g_I, z_transfer=z_transfer, diagonal_zero=False, strict_maximum=strict_maximum, perfect=perfect, k_perfect=k_perfect, always_learning=always_learning) nn.g_beta = 0.0 # Build the manager manager = NetworkManager(nn=nn, dt=dt, values_to_save=values_to_save) w = simple_bcpnn_matrix(minicolumns, w_self, w_next, w_rest) nn.w_ampa = w # Recall T_recall = 0.450 T_cue = 0.050 sequences = [[i for i in range(n_patterns)]] n = 1 aux = calculate_recall_time_quantities(manager, T_recall, T_cue, n, sequences) total_sequence_time, mean, std, success, timings = aux i_ampa = manager.history['i_ampa'] a = manager.history['a'] time = np.linspace(0, manager.T_total, a.shape[0])
g_a=g_a, tau_a=tau_a, sigma=sigma, G=G, tau_z_pre_ampa=tau_z_pre_ampa, tau_z_post_ampa=tau_z_pre_ampa, tau_p=tau_p, z_transfer=False, diagonal_zero=False, strict_maximum=False, perfect=perfect, k_perfect=k_perfect, always_learning=always_learning) # Build the manager manager = NetworkManager(nn=nn, dt=dt, values_to_save=values_to_save) # Build the protocol for training protocol = Protocol() patterns_indexes = [i for i in range(n_patterns)] protocol.simple_protocol(patterns_indexes, training_time=training_time, inter_pulse_interval=inter_pulse_interval, inter_sequence_interval=inter_sequence_interval, epochs=epochs) # Train epoch_history = manager.run_network_protocol(protocol=protocol, verbose=True) z_training = manager.history['z_pre_ampa'] o_training = manager.history['o']
# Recall T_cue = 0.020 T_recall = 1.0 + T_cue n = 1 # Neural Network nn = BCPNNPerfect(hypercolumns, minicolumns, g_w_ampa=g_w_ampa, g_w=g_w, g_a=g_a, tau_a=tau_a, tau_m=tau_m, sigma=sigma, G=G, tau_z_pre_ampa=tau_z_pre_ampa, tau_z_post_ampa=tau_z_post_ampa, tau_p=tau_p, z_transfer=z_transfer, diagonal_zero=diagonal_zero, strict_maximum=strict_maximum, perfect=perfect, k_perfect=k_perfect, always_learning=always_learning, normalized_currents=normalized_currents) # Build the manager manager = NetworkManager(nn=nn, dt=dt, values_to_save=values_to_save) # Protocol matrix = create_orthogonal_canonical_representation(minicolumns, hypercolumns) seq = np.copy(matrix) seq[4] = matrix[2] seq[5:] = matrix[4:-1] nr = build_network_representation(seq, minicolumns, hypercolumns) n_connections = len(seq) - 1 value = 1.0 extension = 10 alpha = 1.0 weights = [value for i in range(n_connections)] weights_collection = [weights] sequences = [seq]
G=G, tau_s=tau_s, tau_z_pre=tau_z_pre, tau_z_post=tau_z_post, tau_a=tau_a, g_a=g_a, g_I=g_I, sigma_out=sigma_out, epsilon=epsilon, prng=np.random, strict_maximum=strict_maximum, perfect=False, normalized_currents=True) # Build the manager manager = NetworkManager(nn=nn, dt=dt, values_to_save=values_to_save) # Just to build the representations manager.run_artificial_protocol(ws=w_self, wn=w_next, wb=w_back, alpha=0.5) w = simple_bcpnn_matrix(minicolumns, w_self, w_next, w_rest, w_back) nn.w = w T_persistence = 0.100 manager.set_persistent_time_with_adaptation_gain(T_persistence=T_persistence) nn.g_beta = 1.0 # Recall T_recall = 1.0 T_cue = 0.080 I_cue = 0 manager.run_network_recall(T_recall=T_recall,