Exemple #1
0
 def block_e(x,res): 
     with tf.variable_scope('Gen_Enc%dx%d' % (2**res, 2**res)):
         with tf.variable_scope('Conv'):
             x = leaky_relu(batchnorm(apply_bias(conv2d(x, fmaps = nf(res-2), kernel = 3, 
                 cf = self.channel_first), cf = self.channel_first), cf = self.channel_first))
         x = downscale2d(x, cf = self.channel_first)
         return x
Exemple #2
0
    def discriminator(self, unknown, input_image):

        assert self.resolution == 2**self.resolution_log2 and self.resolution >= 4

        def nf(stage):
            return min(int(self.fmap_base / (2.0**(stage * self.fmap_decay))),
                       self.fmap_max)

        def fromrgb(x, res):
            with tf.variable_scope('Disc_FromRGB_lod%d' %
                                   (self.resolution_log2 - res)):
                return leaky_relu(
                    apply_bias(conv2d(x,
                                      fmaps=nf(res - 1),
                                      kernel=1,
                                      cf=self.channel_first),
                               cf=self.channel_first))

        def block(x, res):
            layers = []
            with tf.variable_scope('Disc_%dx%d' % (2**res, 2**res)):
                if res > 4:
                    with tf.variable_scope('Conv'):
                        x = leaky_relu(
                            batchnorm(apply_bias(conv2d(x,
                                                        fmaps=nf(res - 2),
                                                        kernel=3,
                                                        cf=self.channel_first),
                                                 cf=self.channel_first),
                                      cf=self.channel_first))
                    x = downscale2d(x, cf=self.channel_first)
                else:
                    with tf.variable_scope('Patch'):
                        x = tf.sigmoid(
                            apply_bias(conv2d(x,
                                              fmaps=1,
                                              kernel=3,
                                              cf=self.channel_first),
                                       cf=self.channel_first))

                return x

        if self.structure == 'linear':
            img = tf.concat([input_image, unknown], axis=self.conc_axis)
            x = fromrgb(img, self.resolution_log2)
            for res in range(self.resolution_log2, 4, -1):
                #print(res, x.shape, nf(res-2))
                lod = self.resolution_log2 - res
                x = block(x, res)
                img = downscale2d(img, cf=self.channel_first)
                y = fromrgb(img, res - 1)
                with tf.variable_scope('Disc_Grow_lod%d' % lod):
                    x = lerp_clip(x, y, self.lod_in - lod)

            x = block(x, 4)

            return x
Exemple #3
0
 def block(x,res): 
     layers = []
     with tf.variable_scope('Disc_%dx%d' % (2**res, 2**res)):
         if res > 4:
             with tf.variable_scope('Conv'):
                 x = leaky_relu(batchnorm(apply_bias(conv2d(x, fmaps = nf(res-2), kernel = 3, 
                               cf = self.channel_first), cf = self.channel_first), cf = self.channel_first))
             x = downscale2d(x, cf = self.channel_first)  
         else:
             with tf.variable_scope('Patch'):
                 x = tf.sigmoid(apply_bias(conv2d(x, fmaps = 1, kernel = 3, 
                               cf = self.channel_first), cf = self.channel_first))
                 
         return x
Exemple #4
0
    def generator(self, labels_in):


        assert self.resolution == 2**self.resolution_log2 and self.resolution >= 4    
        def nf(stage): return min(int(self.fmap_base / (2.0 ** (stage * self.fmap_decay))), self.fmap_max)

        # First Layer from Image: A x A x 3 ==> A x A x Channels(A) 
        # -------------------------------------------------------------------------- 
        def fromrgb(x, res): 
            with tf.variable_scope('Gen_Enc_FromRGB_lod%d' % (self.resolution_log2 - res)):
                return leaky_relu(apply_bias(conv2d(x, 
                    fmaps=nf(res-1), kernel=1, cf = self.channel_first), cf = self.channel_first))

        # Building Blocks Encoder: Input --> Convolution (+Bias) --> Batchnormalisation
        # --> Activation function --> Downsample by factor 2
        # -------------------------------------------------------------------------- 
        def block_e(x,res): 
            with tf.variable_scope('Gen_Enc%dx%d' % (2**res, 2**res)):
                with tf.variable_scope('Conv'):
                    x = leaky_relu(batchnorm(apply_bias(conv2d(x, fmaps = nf(res-2), kernel = 3, 
                        cf = self.channel_first), cf = self.channel_first), cf = self.channel_first))
                x = downscale2d(x, cf = self.channel_first)
                return x

        # =========================================================================
        # Encoder
        # =========================================================================

        if self.structure == 'linear':
            skip = []
            img = labels_in
            x = fromrgb(img, self.resolution_log2)
            #print(x.shape)
            for res in range(self.resolution_log2, 4, -1):
                lod = self.resolution_log2 - res
                x = block_e(x, res)
                #print(x.shape)
                img = downscale2d(img, cf = self.channel_first)
                y = fromrgb(img, res - 1)
                with tf.variable_scope('Gen_Enc_Grow_lod%d' % lod):
                    x = lerp_clip(x, y, self.lod_in - lod)
                skip.append(x) #
                #print('Encoder after', 2**res, "conv", x.shape)

            for res in range(4,0,-1):
                lod = self.resolution_log2 - res
                x = block_e(x, res)
                #print(x.shape)
                if res >= 2: skip.append(x)
            #print("Encoder Output", x.shape)


            combo_out = x 


        # ========================================================================
        # Decoder
        # ========================================================================

        # Last Layer to Image: A x A x Channels(A) ==> A x A x 3 
        # -------------------------------------------------------------------------- 
        def torgb(x, res): # res = 2..resolution_log2
            lod = self.resolution_log2 - res
            with tf.variable_scope('Gen_Dec_ToRGB_lod%d' % lod):
                return apply_bias(conv2d(x, fmaps=self.num_channels, kernel=1, cf = self.channel_first), cf = self.channel_first)

        # Building Blocks Encoder: Input --> Upsampling by factor 2 --> Convolution (+Bias) 
        # --> Batchnormalisation --> Activation 
        # -------------------------------------------------------------------------- 
        def block_d(x,res): 
            layers = []
            with tf.variable_scope('Gen_Dec_%dx%d' % (2**res, 2**res)):
                x = upscale2d(x, cf = self.channel_first)
                with tf.variable_scope('Conv'):
                    x = leaky_relu(batchnorm(apply_bias(conv2d(x, fmaps = nf(res-1), kernel = 3, cf = self.channel_first),
                     cf = self.channel_first), cf = self.channel_first))
                return x

        # Growing the Decoder 
        # ---------------------------------------------------------------------------  
        if self.structure == 'linear':
            #print('Decode Input:', x.shape)
            x = combo_out
            #print('start decoder',x.shape)
            x = block_d(x, 1)                                   # 1x1x512  ==> 2x2x512
            #print(x.shape)
            x = tf.concat([x,skip[-1]], axis=self.conc_axis)    # concat   ==> 2x2x1024
            x = block_d(x, 2)                                   # 2x2x1024 ==> 4x4x512
            #print(x.shape)
            x = tf.concat([x,skip[-2]], axis=self.conc_axis)
            x = block_d(x, 3)                                   # 4x4x1024 ==> 8x8x512
            #print(x.shape)
            x = tf.concat([x,skip[-3]], axis=self.conc_axis)  
            x = block_d(x, 4)                                   # 8x8x1024 ==> 16x16x512
            #print(x.shape)
            #print("-----")
            images_out = torgb(x,4)                             # Extracted Output layer 16x16
            #print("Image Out:", images_out.shape)
            x = tf.concat([x,skip[-4]], axis=self.conc_axis)    # concat   ==> 16x16x1024
            #print('Decode after const:', x.shape)
            for res in range(5,self.resolution_log2+1):  
                lod = self.resolution_log2 - res 
                x   = block_d(x,res)
                #print(x.shape)
                img = torgb(x,res)
                if res  < self.resolution_log2: 
                    x  = tf.concat([x,skip[-res]], axis = self.conc_axis)   
                images_out = upscale2d(images_out, cf = self.channel_first)
                with tf.variable_scope('Gen_Dec_Grow_lod%d' % lod):
                	images_out = lerp_clip(img, images_out, self.lod_in - lod)
                #print("Images Out:", images_out.shape)
                #print('Decode res:', 2**res,'shape x:', x.shape, "shape img out:", images_out.shape)
        #print('output',images_out.shape)
        assert images_out.dtype == tf.as_dtype(self.dtype)
        images_out = tf.identity(images_out, name='images_out')
        return images_out