def categorical_learn_and_validate(build_cnn_fn, hyperpars, imgdat, runopts, networkstr, get_list_of_hits_and_targets_fn): """ Run learning and validation for triamese networks using AdaGrad for learning rate evolution, nesterov momentum; read the data files in chunks into memory. `get_hits_and_targets` should extract a list `[inputs, targets]` from a data slice where `inputs` could be one item or 3 depending on the views studied (so total length is 2 or 4, most likely) """ logger.info("Loading data...") train_sizes, valid_sizes, _ = \ get_and_print_dataset_subsizes(runopts['data_file_list']) # Prepare Theano variables for inputs and targets target_var = T.ivector('targets') inputlist = networkstr['input_list'] # Build the model network = build_cnn_fn(inputlist=inputlist, imgw=imgdat['imgw'], imgh=imgdat['imgh'], convpooldictlist=networkstr['topology'], nhidden=networkstr['nhidden'], dropoutp=networkstr['dropoutp'], noutputs=networkstr['noutputs'], depth=networkstr['img_depth']) logger.info( network_repr.get_network_str(lasagne.layers.get_all_layers(network), get_network=False, incomings=True, outgoings=True)) if runopts['start_with_saved_params'] and \ os.path.isfile(runopts['save_model_file']): logger.info(" Loading parameters file: %s" % \ runopts['save_model_file']) with np.load(runopts['save_model_file']) as f: param_values = [f['arr_%d' % i] for i in range(len(f.files))] lasagne.layers.set_all_param_values(network, param_values) else: # Dump the current network weights to file in case we want to study # intialization trends, etc. np.savez('./initial_parameters.npz', *lasagne.layers.get_all_param_values(network)) # Create a loss expression for training. prediction = lasagne.layers.get_output(network) l2_penalty = lasagne.regularization.regularize_layer_params( lasagne.layers.get_all_layers(network), lasagne.regularization.l2) * networkstr['l2_penalty_scale'] loss = categorical_crossentropy(prediction, target_var) + l2_penalty loss = loss.mean() # Create update expressions for training. params = lasagne.layers.get_all_params(network, trainable=True) logger.info(""" //// Use AdaGrad update schedule for learning rate, see Duchi, Hazan, and Singer (2011) "Adaptive subgradient methods for online learning and stochasitic optimization." JMLR, 12:2121-2159 //// """) updates_adagrad = lasagne.updates.adagrad( loss, params, learning_rate=hyperpars['learning_rate'], epsilon=1e-06) logger.info(""" //// Apply Nesterov momentum using Lisa Lab's modifications. //// """) updates = lasagne.updates.apply_nesterov_momentum( updates_adagrad, params, momentum=hyperpars['momentum']) # Create a loss expression for validation/testing. Note we do a # deterministic forward pass through the network, disabling dropout. test_prediction = lasagne.layers.get_output(network, deterministic=True) test_loss = categorical_crossentropy(test_prediction, target_var) + \ l2_penalty test_loss = test_loss.mean() # Also create an expression for the classification accuracy: test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), target_var), dtype=theano.config.floatX) # Compile a function performing a training step on a mini-batch (by giving # the updates dictionary) and returning the corresponding training loss: inputlist.append(target_var) train_fn = theano.function(inputlist, loss, updates=updates, allow_input_downcast=True) # Compile a second function computing the validation loss and accuracy: val_fn = theano.function(inputlist, [test_loss, test_acc], allow_input_downcast=True) logger.info("Starting training...") # # TODO: early stopping logic goes here... # train_slices = [] for tsize in train_sizes: train_slices.append(slices_maker(tsize, slice_size=50000)) valid_slices = [] for vsize in valid_sizes: valid_slices.append(slices_maker(vsize, slice_size=50000)) train_set = None valid_set = None epoch = 0 for epoch in range(hyperpars['num_epochs']): start_time = time.time() for slicelist in train_slices: shuffle(slicelist) logger.info("Train slices for epoch %d: %s" % (epoch, train_slices)) train_err = 0 train_batches = 0 for i, data_file in enumerate(runopts['data_file_list']): # In each epoch, we do a full pass over the training data: for tslice in train_slices[i]: t0 = time.time() train_set = load_datasubset(data_file, 'train', tslice) _, train_dstream = make_scheme_and_stream( train_set, hyperpars['batchsize']) t1 = time.time() logger.info(" Loading slice {} from {} took {:.3f}s.".format( tslice, data_file, t1 - t0)) logger.debug(" dset sources: {}".format( train_set.provides_sources)) t0 = time.time() for data in train_dstream.get_epoch_iterator(): inputs = get_list_of_hits_and_targets_fn(data) train_err += train_fn(*inputs) train_batches += 1 t1 = time.time() logger.info( " -Iterating over the slice took {:.3f}s.".format(t1 - t0)) del train_set # hint to garbage collector del train_dstream # hint to garbage collector # Dump the current network weights to file at end of slice np.savez(runopts['save_model_file'], *lasagne.layers.get_all_param_values(network)) if runopts['do_validation_pass']: # And a full pass over the validation data t0 = time.time() val_err = 0 val_acc = 0 val_batches = 0 for i, data_file in enumerate(runopts['data_file_list']): for vslice in valid_slices[i]: valid_set = load_datasubset(data_file, 'valid', vslice) _, valid_dstream = make_scheme_and_stream( valid_set, hyperpars['batchsize']) for data in valid_dstream.get_epoch_iterator(): inputs = get_list_of_hits_and_targets_fn(data) err, acc = val_fn(*inputs) val_err += err val_acc += acc val_batches += 1 del valid_set del valid_dstream t1 = time.time() logger.info(" The validation pass took {:.3f}s.".format(t1 - t0)) # Print the results for this epoch: logger.info("\nEpoch {} of {} took {:.3f}s" "\n training loss:\t\t{:.6f}".format( epoch + 1, hyperpars['num_epochs'], time.time() - start_time, train_err / train_batches)) if runopts['do_validation_pass']: logger.info("\n validation loss:\t\t{:.6f}" "\n validation accuracy:\t\t{:.2f} %".format( val_err / val_batches, val_acc / val_batches * 100)) logger.info("---") logger.info("Finished {} epochs.".format(epoch + 1))
def categorical_learn_and_validate( build_cnn_fn, hyperpars, imgdat, runopts, networkstr, get_list_of_hits_and_targets_fn ): """ Run learning and validation for triamese networks using AdaGrad for learning rate evolution, nesterov momentum; read the data files in chunks into memory. `get_hits_and_targets` should extract a list `[inputs, targets]` from a data slice where `inputs` could be one item or 3 depending on the views studied (so total length is 2 or 4, most likely) """ logger.info("Loading data...") train_sizes, valid_sizes, _ = \ get_and_print_dataset_subsizes(runopts['data_file_list']) # Prepare Theano variables for inputs and targets target_var = T.ivector('targets') inputlist = networkstr['input_list'] # Build the model network = build_cnn_fn(inputlist=inputlist, imgw=imgdat['imgw'], imgh=imgdat['imgh'], convpooldictlist=networkstr['topology'], nhidden=networkstr['nhidden'], dropoutp=networkstr['dropoutp'], noutputs=networkstr['noutputs'], depth=networkstr['img_depth'] ) logger.info(network_repr.get_network_str( lasagne.layers.get_all_layers(network), get_network=False, incomings=True, outgoings=True)) if runopts['start_with_saved_params'] and \ os.path.isfile(runopts['save_model_file']): logger.info(" Loading parameters file: %s" % \ runopts['save_model_file']) with np.load(runopts['save_model_file']) as f: param_values = [f['arr_%d' % i] for i in range(len(f.files))] lasagne.layers.set_all_param_values(network, param_values) else: # Dump the current network weights to file in case we want to study # intialization trends, etc. np.savez('./initial_parameters.npz', *lasagne.layers.get_all_param_values(network)) # Create a loss expression for training. prediction = lasagne.layers.get_output(network) l2_penalty = lasagne.regularization.regularize_layer_params( lasagne.layers.get_all_layers(network), lasagne.regularization.l2) * networkstr['l2_penalty_scale'] loss = categorical_crossentropy(prediction, target_var) + l2_penalty loss = loss.mean() # Create update expressions for training. params = lasagne.layers.get_all_params(network, trainable=True) logger.info( """ //// Use AdaGrad update schedule for learning rate, see Duchi, Hazan, and Singer (2011) "Adaptive subgradient methods for online learning and stochasitic optimization." JMLR, 12:2121-2159 //// """) updates_adagrad = lasagne.updates.adagrad( loss, params, learning_rate=hyperpars['learning_rate'], epsilon=1e-06) logger.info( """ //// Apply Nesterov momentum using Lisa Lab's modifications. //// """) updates = lasagne.updates.apply_nesterov_momentum( updates_adagrad, params, momentum=hyperpars['momentum']) # Create a loss expression for validation/testing. Note we do a # deterministic forward pass through the network, disabling dropout. test_prediction = lasagne.layers.get_output(network, deterministic=True) test_loss = categorical_crossentropy(test_prediction, target_var) + \ l2_penalty test_loss = test_loss.mean() # Also create an expression for the classification accuracy: test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), target_var), dtype=theano.config.floatX) # Compile a function performing a training step on a mini-batch (by giving # the updates dictionary) and returning the corresponding training loss: inputlist.append(target_var) train_fn = theano.function(inputlist, loss, updates=updates, allow_input_downcast=True) # Compile a second function computing the validation loss and accuracy: val_fn = theano.function(inputlist, [test_loss, test_acc], allow_input_downcast=True) logger.info("Starting training...") # # TODO: early stopping logic goes here... # train_slices = [] for tsize in train_sizes: train_slices.append(slices_maker(tsize, slice_size=50000)) valid_slices = [] for vsize in valid_sizes: valid_slices.append(slices_maker(vsize, slice_size=50000)) train_set = None valid_set = None epoch = 0 for epoch in range(hyperpars['num_epochs']): start_time = time.time() for slicelist in train_slices: shuffle(slicelist) logger.info("Train slices for epoch %d: %s" % (epoch, train_slices)) train_err = 0 train_batches = 0 for i, data_file in enumerate(runopts['data_file_list']): # In each epoch, we do a full pass over the training data: for tslice in train_slices[i]: t0 = time.time() train_set = load_datasubset(data_file, 'train', tslice) _, train_dstream = make_scheme_and_stream( train_set, hyperpars['batchsize'] ) t1 = time.time() logger.info( " Loading slice {} from {} took {:.3f}s.".format( tslice, data_file, t1 - t0) ) logger.debug( " dset sources: {}".format(train_set.provides_sources) ) t0 = time.time() for data in train_dstream.get_epoch_iterator(): inputs = get_list_of_hits_and_targets_fn(data) train_err += train_fn(*inputs) train_batches += 1 t1 = time.time() logger.info( " -Iterating over the slice took {:.3f}s.".format(t1 - t0) ) del train_set # hint to garbage collector del train_dstream # hint to garbage collector # Dump the current network weights to file at end of slice np.savez(runopts['save_model_file'], *lasagne.layers.get_all_param_values(network)) if runopts['do_validation_pass']: # And a full pass over the validation data t0 = time.time() val_err = 0 val_acc = 0 val_batches = 0 for i, data_file in enumerate(runopts['data_file_list']): for vslice in valid_slices[i]: valid_set = load_datasubset(data_file, 'valid', vslice) _, valid_dstream = make_scheme_and_stream( valid_set, hyperpars['batchsize'] ) for data in valid_dstream.get_epoch_iterator(): inputs = get_list_of_hits_and_targets_fn(data) err, acc = val_fn(*inputs) val_err += err val_acc += acc val_batches += 1 del valid_set del valid_dstream t1 = time.time() logger.info(" The validation pass took {:.3f}s.".format(t1 - t0)) # Print the results for this epoch: logger.info( "\nEpoch {} of {} took {:.3f}s" "\n training loss:\t\t{:.6f}".format( epoch + 1, hyperpars['num_epochs'], time.time() - start_time, train_err / train_batches ) ) if runopts['do_validation_pass']: logger.info( "\n validation loss:\t\t{:.6f}" "\n validation accuracy:\t\t{:.2f} %".format( val_err / val_batches, val_acc / val_batches * 100 ) ) logger.info("---") logger.info("Finished {} epochs.".format(epoch + 1))
def view_layer_activations(build_cnn=None, data_file_list=None, imgw=50, imgh=50, views='xuv', target_idx=5, save_model_file='./params_file.npz', be_verbose=False, convpooldictlist=None, nhidden=None, dropoutp=None, write_db=True, test_all_data=False, debug_print=False): """ Run tests on the reserved test sample ("trainiing" examples with true values to check that were not used for learning or validation); read the data files in chunks into memory. """ print("Loading data for testing...") train_sizes, valid_sizes, test_sizes = \ get_and_print_dataset_subsizes(data_file_list) used_sizes, _ = get_used_data_sizes_for_testing(train_sizes, valid_sizes, test_sizes, test_all_data) # extract timestamp from model file - assume it is the first set of numbers # otherwise just use "now" import re tstamp = str(time.time()).split('.')[0] m = re.search(r"[0-9]+", save_model_file) if m: tstamp = m.group(0) # Prepare Theano variables for inputs and targets input_var_x = T.tensor4('inputs') input_var_u = T.tensor4('inputs') input_var_v = T.tensor4('inputs') inputlist = build_inputlist(input_var_x, input_var_u, input_var_v, views) # Build the model network = build_cnn(inputlist=inputlist, imgw=imgw, imgh=imgh, convpooldictlist=convpooldictlist, nhidden=nhidden, dropoutp=dropoutp, noutputs=noutputs) with np.load(save_model_file) as f: param_values = [f['arr_%d' % i] for i in range(len(f.files))] lasagne.layers.set_all_param_values(network, param_values) print(network_repr.get_network_str( lasagne.layers.get_all_layers(network), get_network=False, incomings=True, outgoings=True)) layers = lasagne.layers.get_all_layers(network) # layer assignment is _highly_ network specific... layer_conv_x1 = lasagne.layers.get_output(layers[1]) layer_conv_u1 = lasagne.layers.get_output(layers[8]) layer_conv_v1 = lasagne.layers.get_output(layers[15]) layer_pool_x1 = lasagne.layers.get_output(layers[2]) layer_pool_u1 = lasagne.layers.get_output(layers[9]) layer_pool_v1 = lasagne.layers.get_output(layers[16]) layer_conv_x2 = lasagne.layers.get_output(layers[3]) layer_conv_u2 = lasagne.layers.get_output(layers[10]) layer_conv_v2 = lasagne.layers.get_output(layers[17]) layer_pool_x2 = lasagne.layers.get_output(layers[4]) layer_pool_u2 = lasagne.layers.get_output(layers[11]) layer_pool_v2 = lasagne.layers.get_output(layers[18]) vis_conv_x1 = theano.function(inputlist, [layer_conv_x1], allow_input_downcast=True, on_unused_input='warn') vis_conv_u1 = theano.function(inputlist, [layer_conv_u1], allow_input_downcast=True, on_unused_input='warn') vis_conv_v1 = theano.function(inputlist, [layer_conv_v1], allow_input_downcast=True, on_unused_input='warn') vis_pool_x1 = theano.function(inputlist, [layer_pool_x1], allow_input_downcast=True, on_unused_input='warn') vis_pool_u1 = theano.function(inputlist, [layer_pool_u1], allow_input_downcast=True, on_unused_input='warn') vis_pool_v1 = theano.function(inputlist, [layer_pool_v1], allow_input_downcast=True, on_unused_input='warn') vis_conv_x2 = theano.function(inputlist, [layer_conv_x2], allow_input_downcast=True, on_unused_input='warn') vis_conv_u2 = theano.function(inputlist, [layer_conv_u2], allow_input_downcast=True, on_unused_input='warn') vis_conv_v2 = theano.function(inputlist, [layer_conv_v2], allow_input_downcast=True, on_unused_input='warn') vis_pool_x2 = theano.function(inputlist, [layer_pool_x2], allow_input_downcast=True, on_unused_input='warn') vis_pool_u2 = theano.function(inputlist, [layer_pool_u2], allow_input_downcast=True, on_unused_input='warn') vis_pool_v2 = theano.function(inputlist, [layer_pool_v2], allow_input_downcast=True, on_unused_input='warn') print("Starting visualization...") test_slices = [] for tsize in used_sizes: test_slices.append(slices_maker(tsize, slice_size=50000)) test_set = None for i, data_file in enumerate(data_file_list): for tslice in test_slices[i]: t0 = time.time() test_set = None if test_all_data: test_set = load_all_datasubsets(data_file, tslice) else: test_set = load_datasubset(data_file, 'test', tslice) _, test_dstream = make_scheme_and_stream(test_set, 1, shuffle=False) t1 = time.time() print(" Loading slice {} from {} took {:.3f}s.".format( tslice, data_file, t1 - t0)) if debug_print: print(" dset sources:", test_set.provides_sources) t0 = time.time() for data in test_dstream.get_epoch_iterator(): # data order in the hdf5 looks like: # ids, hits-u, hits-v, hits-x, planes, segments, zs # (Check the file carefully for data names, etc.) eventids, inputlist, targets = \ get_eventids_hits_and_targets_from_data( data, views, target_idx) conv_x1 = vis_conv_x1(*inputlist) conv_u1 = vis_conv_u1(*inputlist) conv_v1 = vis_conv_v1(*inputlist) pool_x1 = vis_pool_x1(*inputlist) pool_u1 = vis_pool_u1(*inputlist) pool_v1 = vis_pool_v1(*inputlist) conv_x2 = vis_conv_x2(*inputlist) conv_u2 = vis_conv_u2(*inputlist) conv_v2 = vis_conv_v2(*inputlist) pool_x2 = vis_pool_x2(*inputlist) pool_u2 = vis_pool_u2(*inputlist) pool_v2 = vis_pool_v2(*inputlist) vis_file = 'vis_' + str(targets[0]) + '_conv_1_' + tstamp + \ '_' + str(eventids[0]) + '.npy' np.save(vis_file, [conv_x1, conv_u1, conv_v1]) vis_file = 'vis_' + str(targets[0]) + '_pool_1_' + tstamp + \ '_' + str(eventids[0]) + '.npy' np.save(vis_file, [pool_x1, pool_u1, pool_v1]) vis_file = 'vis_' + str(targets[0]) + '_conv_2_' + tstamp + \ '_' + str(eventids[0]) + '.npy' np.save(vis_file, [conv_x2, conv_u2, conv_v2]) vis_file = 'vis_' + str(targets[0]) + '_pool_2_' + tstamp + \ '_' + str(eventids[0]) + '.npy' np.save(vis_file, [pool_x2, pool_u2, pool_v2]) t1 = time.time() print(" -Iterating over the slice took {:.3f}s.".format(t1 - t0)) del test_set del test_dstream
def train(port=55557, num_epochs=500, learning_rate=0.01, momentum=0.9, l2_penalty_scale=1e-04, batchsize=500, save_model_file='./params_file.npz', start_with_saved_params=False): print("Loading data...") # Prepare Theano variables for inputs and targets input_var_x = T.tensor4('inputs') input_var_u = T.tensor4('inputs') input_var_v = T.tensor4('inputs') target_var = T.ivector('targets') # Build the model network = build_cnn(input_var_x, input_var_u, input_var_v) print(network_repr.get_network_str( lasagne.layers.get_all_layers(network), get_network=False, incomings=True, outgoings=True)) if start_with_saved_params and os.path.isfile(save_model_file): with np.load(save_model_file) as f: param_values = [f['arr_%d' % i] for i in range(len(f.files))] lasagne.layers.set_all_param_values(network, param_values) # Create a loss expression for training. prediction = lasagne.layers.get_output(network) l2_penalty = lasagne.regularization.regularize_layer_params( lasagne.layers.get_all_layers(network), lasagne.regularization.l2) * l2_penalty_scale loss = categorical_crossentropy(prediction, target_var) + l2_penalty loss = loss.mean() # Create update expressions for training. params = lasagne.layers.get_all_params(network, trainable=True) print( """ //// Use AdaGrad update schedule for learning rate, see Duchi, Hazan, and Singer (2011) "Adaptive subgradient methods for online learning and stochasitic optimization." JMLR, 12:2121-2159 //// """) updates_adagrad = lasagne.updates.adagrad( loss, params, learning_rate=learning_rate, epsilon=1e-06) print( """ //// Apply Nesterov momentum using Lisa Lab's modifications. //// """) updates = lasagne.updates.apply_nesterov_momentum( updates_adagrad, params, momentum=momentum) # Create a loss expression for validation/testing. Note we do a # deterministic forward pass through the network, disabling dropout. test_prediction = lasagne.layers.get_output(network, deterministic=True) test_loss = categorical_crossentropy(test_prediction, target_var) + \ l2_penalty test_loss = test_loss.mean() # Also create an expression for the classification accuracy: test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), target_var), dtype=theano.config.floatX) # Compile a function performing a training step on a mini-batch (by giving # the updates dictionary) and returning the corresponding training loss: train_fn = theano.function([input_var_x, input_var_u, input_var_v, target_var], loss, updates=updates, allow_input_downcast=True) # Compile a second function computing the validation loss and accuracy: val_fn = theano.function([input_var_x, input_var_u, input_var_v, target_var], [test_loss, test_acc], allow_input_downcast=True) print("Starting training...") train_dstream = ServerDataStream(('train',), port=port, produces_examples=False) # # TODO: early stopping logic goes here... # for epoch in range(num_epochs): # In each epoch, we do a full pass over the training data: train_err = 0 train_batches = 0 start_time = time.time() for data in train_dstream.get_epoch_iterator(): _, inputs, targets = data[0], data[1], data[2] inputx, inputu, inputv = split_inputs_xuv(inputs) train_err += train_fn(inputx, inputu, inputv, targets) train_batches += 1 # And a full pass over the validation data: # val_err = 0 # val_acc = 0 # val_batches = 0 # for data in valid_dstream.get_epoch_iterator(): # _, inputs, targets = data[0], data[1], data[2] # inputx, inputu, inputv = split_inputs_xuv(inputs) # err, acc = val_fn(inputx, inputu, inputv, targets) # val_err += err # val_acc += acc # val_batches += 1 # Dump the current network weights to file np.savez(save_model_file, *lasagne.layers.get_all_param_values(network)) # Then we print the results for this epoch: print("Epoch {} of {} took {:.3f}s".format( epoch + 1, num_epochs, time.time() - start_time)) print(" training loss:\t\t{:.6f}".format(train_err / train_batches)) # print(" validation loss:\t\t{:.6f}".format(val_err / val_batches)) # print(" validation accuracy:\t\t{:.2f} %".format( # val_acc / val_batches * 100)) print("Finished {} epochs.".format(epoch + 1))
def categorical_learn_and_validate(build_cnn=None, num_epochs=500, learning_rate=0.01, momentum=0.9, l2_penalty_scale=1e-04, batchsize=500, imgw=50, imgh=50, views='xuv', target_idx=5, noutputs=11, data_file_list=None, save_model_file='./params_file.npz', start_with_saved_params=False, do_validation_pass=True, convpooldictlist=None, nhidden=None, dropoutp=None, debug_print=False): """ Run learning and validation for triamese networks using AdaGrad for learning rate evolution, nesterov momentum; read the data files in chunks into memory. """ print("Loading data...") train_sizes, valid_sizes, _ = \ get_and_print_dataset_subsizes(data_file_list) # Prepare Theano variables for inputs and targets input_var_x = T.tensor4('inputs') input_var_u = T.tensor4('inputs') input_var_v = T.tensor4('inputs') target_var = T.ivector('targets') inputlist = build_inputlist(input_var_x, input_var_u, input_var_v, views) # Build the model network = build_cnn(inputlist=inputlist, imgw=imgw, imgh=imgh, convpooldictlist=convpooldictlist, nhidden=nhidden, dropoutp=dropoutp, noutputs=noutputs) print(network_repr.get_network_str( lasagne.layers.get_all_layers(network), get_network=False, incomings=True, outgoings=True)) if start_with_saved_params and os.path.isfile(save_model_file): print(" Loading parameters file:", save_model_file) with np.load(save_model_file) as f: param_values = [f['arr_%d' % i] for i in range(len(f.files))] lasagne.layers.set_all_param_values(network, param_values) else: # Dump the current network weights to file in case we want to study # intialization trends, etc. np.savez('./initial_parameters.npz', *lasagne.layers.get_all_param_values(network)) # Create a loss expression for training. prediction = lasagne.layers.get_output(network) l2_penalty = lasagne.regularization.regularize_layer_params( lasagne.layers.get_all_layers(network), lasagne.regularization.l2) * l2_penalty_scale loss = categorical_crossentropy(prediction, target_var) + l2_penalty loss = loss.mean() # Create update expressions for training. params = lasagne.layers.get_all_params(network, trainable=True) print( """ //// Use AdaGrad update schedule for learning rate, see Duchi, Hazan, and Singer (2011) "Adaptive subgradient methods for online learning and stochasitic optimization." JMLR, 12:2121-2159 //// """) updates_adagrad = lasagne.updates.adagrad( loss, params, learning_rate=learning_rate, epsilon=1e-06) print( """ //// Apply Nesterov momentum using Lisa Lab's modifications. //// """) updates = lasagne.updates.apply_nesterov_momentum( updates_adagrad, params, momentum=momentum) # Create a loss expression for validation/testing. Note we do a # deterministic forward pass through the network, disabling dropout. test_prediction = lasagne.layers.get_output(network, deterministic=True) test_loss = categorical_crossentropy(test_prediction, target_var) + \ l2_penalty test_loss = test_loss.mean() # Also create an expression for the classification accuracy: test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), target_var), dtype=theano.config.floatX) # Compile a function performing a training step on a mini-batch (by giving # the updates dictionary) and returning the corresponding training loss: inputlist.append(target_var) train_fn = theano.function(inputlist, loss, updates=updates, allow_input_downcast=True) # Compile a second function computing the validation loss and accuracy: val_fn = theano.function(inputlist, [test_loss, test_acc], allow_input_downcast=True) print("Starting training...") # # TODO: early stopping logic goes here... # train_slices = [] for tsize in train_sizes: train_slices.append(slices_maker(tsize, slice_size=50000)) valid_slices = [] for vsize in valid_sizes: valid_slices.append(slices_maker(vsize, slice_size=50000)) train_set = None valid_set = None epoch = 0 for epoch in range(num_epochs): start_time = time.time() train_err = 0 train_batches = 0 for i, data_file in enumerate(data_file_list): # In each epoch, we do a full pass over the training data: for tslice in train_slices[i]: t0 = time.time() train_set = load_datasubset(data_file, 'train', tslice) _, train_dstream = make_scheme_and_stream(train_set, batchsize) t1 = time.time() print(" Loading slice {} from {} took {:.3f}s.".format( tslice, data_file, t1 - t0)) if debug_print: print(" dset sources:", train_set.provides_sources) t0 = time.time() for data in train_dstream.get_epoch_iterator(): # data order in the hdf5 looks like: # ids, hits-u, hits-v, hits-x, planes, segments, zs # (Check the file carefully for data names, etc.) inputs = get_list_of_hits_and_targets_from_data( data, views, target_idx) train_err += train_fn(*inputs) train_batches += 1 t1 = time.time() print(" -Iterating over the slice took {:.3f}s.".format( t1 - t0)) del train_set # hint to garbage collector del train_dstream # hint to garbage collector if do_validation_pass: # And a full pass over the validation data t0 = time.time() val_err = 0 val_acc = 0 val_batches = 0 for i, data_file in enumerate(data_file_list): for vslice in valid_slices[i]: valid_set = load_datasubset(data_file, 'valid', vslice) _, valid_dstream = make_scheme_and_stream(valid_set, batchsize) for data in valid_dstream.get_epoch_iterator(): # data order in the hdf5 looks like: # ids, hits-u, hits-v, hits-x, planes, segments, zs # (Check the file carefully for data names, etc.) inputs = get_list_of_hits_and_targets_from_data( data, views, target_idx) err, acc = val_fn(*inputs) val_err += err val_acc += acc val_batches += 1 del valid_set del valid_dstream t1 = time.time() print(" The validation pass took {:.3f}s.".format(t1 - t0)) # Dump the current network weights to file at the end of epoch np.savez(save_model_file, *lasagne.layers.get_all_param_values(network)) # Then we print the results for this epoch: print("Epoch {} of {} took {:.3f}s".format( epoch + 1, num_epochs, time.time() - start_time)) print(" training loss:\t\t{:.6f}".format(train_err / train_batches)) if do_validation_pass: print(" validation loss:\t\t{:.6f}".format(val_err / val_batches)) print(" validation accuracy:\t\t{:.2f} %".format( val_acc / val_batches * 100)) print("---") print("Finished {} epochs.".format(epoch + 1))