for label in ['A', 'B', 'C']: axes[label].yaxis.set_ticks_position('none') """ Load data """ LOAD_ORIGINAL_DATA = True if LOAD_ORIGINAL_DATA: label = '33fb5955558ba8bb15a3fdce49dfd914682ef3ea' data_path = original_data_path else: from network_simulations import init_models from config import data_path models = init_models('Fig3') label = models[0].simulation.label """ Create MultiAreaModel instance to have access to data structures """ M = MultiAreaModel({}) # spike data spike_data = {} for area in areas: spike_data[area] = {} for pop in M.structure[area]: spike_data[area][pop] = np.load(os.path.join(data_path, label,
axes['B2'] = panel_factory.new_empty_panel(1, 2, r'', label_position=-0.25) axes['C'] = panel_factory.new_panel(2, 1, r'C', label_position=-0.25) axes['C2'] = panel_factory.new_empty_panel(2, 2, r'', label_position=-0.25) # Simulation if LOAD_ORIGINAL_DATA: data = {} data_labels = [('533d73357fbe99f6178029e6054b571b485f40f6'), ('0adda4a542c3d5d43aebf7c30d876b6c5fd1d63e'), ('33fb5955558ba8bb15a3fdce49dfd914682ef3ea')] data_path = original_data_path else: from network_simulations import init_models from config import data_path models = init_models('Fig2') data_labels = [M.simulation.label for M in models] keys = ['LA', 'HA', 'LA_post'] for key, label in zip(keys, data_labels): fn = os.path.join(data_path, label, 'Analysis/pop_rates.json') with open(fn, 'r') as f: data[key] = json.load(f) """ Create MultiAreaModel instance to have access to data structures """ M = MultiAreaModel({}) labels = ['A', 'B', 'C']
axes[label].yaxis.set_ticks_position('none') """ Load data """ LOAD_ORIGINAL_DATA = True if LOAD_ORIGINAL_DATA: # use T=10500 simulation for spike raster plots label_spikes = '3afaec94d650c637ef8419611c3f80b3cb3ff539' # and T=100500 simulation for all other panels label = '99c0024eacc275d13f719afd59357f7d12f02b77' data_path = original_data_path else: from network_simulations import init_models from config import data_path models = init_models('Fig5') label_spikes = models[0].simulation.label label = models[1].simulation.label """ Create MultiAreaModel instance to have access to data structures """ M = MultiAreaModel({}) # spike data spike_data = {} for area in areas: spike_data[area] = {} for pop in M.structure[area]: spike_data[area][pop] = np.load( os.path.join(data_path, label_spikes, 'recordings', '{}-spikes-{}-{}.npy'.format(label_spikes, area,
'380856f3b32f49c124345c08f5991090860bf9a3', '5a7c6c2d6d48a8b687b8c6853fb4d98048681045', 'c1876856b1b2cf1346430cf14e8d6b0509914ca1', 'a30f6fba65bad6d9062e8cc51f5483baf84a46b7', '1474e1884422b5b2096d3b7a20fd4bdf388af7e0', 'f18158895a5d682db5002489d12d27d7a974146f', '08a3a1a88c19193b0af9d9d8f7a52344d1b17498', '5bdd72887b191ec22a5abcc04ca4a488ea216e32', '99c0024eacc275d13f719afd59357f7d12f02b77' ] data_path = original_data_path label_plot = labels[-1] # chi=1.9 else: from network_simulations import init_models from config import data_path models = init_models('Fig8') labels = [M.simulation.label for M in models] sim_FC = {} for label in labels: fn = os.path.join(data_path, label, 'Analysis', 'functional_connectivity_synaptic_input.npy') sim_FC[label] = np.load(fn) sim_FC_bold = {} for label in [label_plot]: fn = os.path.join(data_path, label, 'Analysis', 'functional_connectivity_bold_signal.npy') sim_FC_bold[label] = np.load(fn) label = label_plot
} LOAD_ORIGINAL_DATA = True if LOAD_ORIGINAL_DATA: labels = [ '33fb5955558ba8bb15a3fdce49dfd914682ef3ea', '5bdd72887b191ec22a5abcc04ca4a488ea216e32', '3afaec94d650c637ef8419611c3f80b3cb3ff539', '99c0024eacc275d13f719afd59357f7d12f02b77' ] data_path = original_data_path else: from network_simulations import init_models from config import data_path models = init_models('Fig6') labels = [M.simulation.label for M in models] area = 'V1' power_spectra = {chi: {} for chi in chi_list} for chi, label in zip(chi_list, labels): fp = os.path.join(data_path, label, 'Analysis', 'power_spectrum_subsample') power_spectra[chi] = { 'f': np.load(os.path.join(fp, 'power_spectrum_subsample_freq.npy')), 'power': np.load(os.path.join(fp, 'power_spectrum_subsample_V1.npy')) } rate_histograms = {chi: {} for chi in chi_list} for chi, label in zip(chi_list, labels): fp = os.path.join(data_path, label, 'Analysis', 'rate_histogram')
if LOAD_ORIGINAL_DATA: labels = [ '33fb5955558ba8bb15a3fdce49dfd914682ef3ea', '1474e1884422b5b2096d3b7a20fd4bdf388af7e0', '99c0024eacc275d13f719afd59357f7d12f02b77', 'f18158895a5d682db5002489d12d27d7a974146f', '08a3a1a88c19193b0af9d9d8f7a52344d1b17498', '5bdd72887b191ec22a5abcc04ca4a488ea216e32' ] label_stat_rate = '99c0024eacc275d13f719afd59357f7d12f02b77' data_path = original_data_path else: from network_simulations import init_models from config import data_path models = init_models('Fig4') labels = [M.simulation.label for M in models] label_stat_rate = labels[2] # chi=1.9 rate_time_series = {label: {} for label in labels} rate_time_series_pops = {label: {} for label in labels} for label in labels: for area in M.area_list: fn = os.path.join(data_path, label, 'Analysis', 'rate_time_series_full', 'rate_time_series_full_{}.npy'.format(area)) rate_time_series[label][area] = np.load(fn) rate_time_series_pops[label][area] = {} for pop in M.structure[area]: fn = os.path.join( data_path, label, 'Analysis', 'rate_time_series_full',
""" Load data """ """ Create MultiAreaModel instance to have access to data structures """ M = MultiAreaModel({}) LOAD_ORIGINAL_DATA = True if LOAD_ORIGINAL_DATA: label = '99c0024eacc275d13f719afd59357f7d12f02b77' data_path = original_data_path else: from network_simulations import init_models from config import data_path models = init_models('Fig7') label = models[0].simulation.label rate_time_series = {} for area in M.area_list: fn = os.path.join(data_path, label, 'Analysis', 'rate_time_series_full', 'rate_time_series_full_{}.npy'.format(area)) rate_time_series[area] = np.load(fn) fn = os.path.join(data_path, label, 'Analysis', 'rate_time_series_full', 'rate_time_series_full_Parameters.json') with open(fn, 'r') as f: rate_time_series['Parameters'] = json.load(f) cross_correlation = {} for area in M.area_list: