Exemple #1
0
    def validation(self, epoch):

        args = self.args
        device = self.device

        # Validating cell line classifier
        cl_category_acc, cl_site_acc, cl_type_acc = \
            valid_cl_clf(device=device,
                             category_clf_net=self.category_clf_net,
                             site_clf_net=self.site_clf_net,
                             type_clf_net=self.type_clf_net,
                             data_loader=self.cl_clf_val_loader, )

        self.val_cl_clf_acc.append([cl_category_acc, cl_site_acc, cl_type_acc])

        # Validating drug target classifier
        drug_target_acc = \
            valid_drug_target(device=device,
                                drug_target_net=self.drug_target_net,
                                data_loader=self.drug_target_val_loader)
        self.val_drug_target_acc.append(drug_target_acc)

        # Validating drug weighted QED regressor
        drug_qed_mse, drug_qed_mae, drug_qed_r2 = \
            valid_drug_qed(device=device,
                            drug_qed_net=self.drug_qed_net,
                            data_loader=self.drug_qed_val_loader)

        self.val_drug_qed_mse.append(drug_qed_mse)
        self.val_drug_qed_mae.append(drug_qed_mae)
        self.val_drug_qed_r2.append(drug_qed_r2)

        # Validating drug response regressor
        resp_mse, resp_mae, resp_r2 = \
            valid_resp(device=device,
                        resp_net=self.resp_net,
                        data_loaders=self.drug_resp_val_loaders)

        # Save the validation results in nested list
        self.val_resp_mse.append(resp_mse)
        self.val_resp_mae.append(resp_mae)
        self.val_resp_r2.append(resp_r2)

        return resp_r2
def main():
    # Training settings and hyper-parameters
    parser = argparse.ArgumentParser(
        description='Multitasking Neural Network for Genes and Drugs')

    # Dataset parameters ######################################################
    # Training and validation data sources
    parser.add_argument('--trn_src',
                        type=str,
                        required=True,
                        help='training source for drug response')
    parser.add_argument('--val_srcs',
                        type=str,
                        required=True,
                        nargs='+',
                        help='validation list of sources for drug response')

    # Pre-processing for dataframes
    parser.add_argument('--lat_scaling',
                        type=str,
                        default='std',
                        help='scaling method for latent drug features',
                        choices=SCALING_METHODS)
    parser.add_argument('--grth_scaling',
                        type=str,
                        default='std',
                        help='scaling method for drug response (growth)',
                        choices=SCALING_METHODS)
    parser.add_argument('--dscptr_scaling',
                        type=str,
                        default='std',
                        help='scaling method for drug feature (descriptor)',
                        choices=SCALING_METHODS)
    parser.add_argument('--rnaseq_scaling',
                        type=str,
                        default='std',
                        help='scaling method for RNA sequence',
                        choices=SCALING_METHODS)
    parser.add_argument('--dscptr_nan_threshold',
                        type=float,
                        default=0.0,
                        help='ratio of NaN values allowed for drug descriptor')
    parser.add_argument('--qed_scaling',
                        type=str,
                        default='none',
                        help='scaling method for drug weighted QED',
                        choices=SCALING_METHODS)

    # Feature usage and partitioning settings
    parser.add_argument('--rnaseq_feature_usage',
                        type=str,
                        default='combat',
                        help='RNA sequence data used',
                        choices=['source_scale', 'combat', 'livermore'])
    parser.add_argument(
        '--drug_feature_usage',
        type=str,
        default='both',
        help='drug features (fp and/or desc, or lat) used',
        choices=['fingerprint', 'descriptor', 'both', 'latent'])
    parser.add_argument('--validation_ratio',
                        type=float,
                        default=0.2,
                        help='ratio for validation dataset')
    parser.add_argument('--disjoint_drugs',
                        action='store_true',
                        help='disjoint drugs between train/validation')
    parser.add_argument('--disjoint_cells',
                        action='store_true',
                        help='disjoint cells between train/validation')

    # Network configuration ###################################################
    # Encoders for drug features and RNA sequence (LINCS 1000)
    parser.add_argument('--gene_layer_dim',
                        type=int,
                        default=1024,
                        help='dimension of layers for RNA sequence')
    parser.add_argument('--gene_latent_dim',
                        type=int,
                        default=256,
                        help='dimension of latent variable for RNA sequence')
    parser.add_argument('--gene_num_layers',
                        type=int,
                        default=2,
                        help='number of layers for RNA sequence')

    parser.add_argument('--drug_layer_dim',
                        type=int,
                        default=4096,
                        help='dimension of layers for drug feature')
    parser.add_argument('--drug_latent_dim',
                        type=int,
                        default=1024,
                        help='dimension of latent variable for drug feature')
    parser.add_argument('--drug_num_layers',
                        type=int,
                        default=2,
                        help='number of layers for drug feature')

    # Using autoencoder for drug/sequence encoder initialization
    parser.add_argument('--autoencoder_init',
                        action='store_true',
                        help='indicator of autoencoder initialization for '
                        'drug/RNA sequence feature encoder')

    # Drug response regression network
    parser.add_argument('--resp_layer_dim',
                        type=int,
                        default=1024,
                        help='dimension of layers for drug response block')
    parser.add_argument('--resp_num_layers_per_block',
                        type=int,
                        default=2,
                        help='number of layers for drug response res block')
    parser.add_argument('--resp_num_blocks',
                        type=int,
                        default=2,
                        help='number of residual blocks for drug response')
    parser.add_argument('--resp_num_layers',
                        type=int,
                        default=2,
                        help='number of layers for drug response')
    parser.add_argument('--resp_dropout',
                        type=float,
                        default=0.0,
                        help='dropout of residual blocks for drug response')
    parser.add_argument('--resp_activation',
                        type=str,
                        default='none',
                        help='activation for response prediction output',
                        choices=['sigmoid', 'tanh', 'none'])

    # Cell line classification network(s)
    parser.add_argument('--cl_clf_layer_dim',
                        type=int,
                        default=256,
                        help='layer dimension for cell line classification')
    parser.add_argument('--cl_clf_num_layers',
                        type=int,
                        default=1,
                        help='number of layers for cell line classification')

    # Drug target family classification network
    parser.add_argument('--drug_target_layer_dim',
                        type=int,
                        default=512,
                        help='dimension of layers for drug target prediction')
    parser.add_argument('--drug_target_num_layers',
                        type=int,
                        default=2,
                        help='number of layers for drug target prediction')

    # Drug weighted QED regression network
    parser.add_argument('--drug_qed_layer_dim',
                        type=int,
                        default=512,
                        help='dimension of layers for drug QED prediction')
    parser.add_argument('--drug_qed_num_layers',
                        type=int,
                        default=2,
                        help='number of layers for drug QED prediction')
    parser.add_argument('--drug_qed_activation',
                        type=str,
                        default='none',
                        help='activation for drug QED prediction output',
                        choices=['sigmoid', 'tanh', 'none'])

    # Training and validation parameters ######################################
    # Drug response regression training parameters
    parser.add_argument('--resp_loss_func',
                        type=str,
                        default='mse',
                        help='loss function for drug response regression',
                        choices=['mse', 'l1'])
    parser.add_argument('--resp_opt',
                        type=str,
                        default='SGD',
                        help='optimizer for drug response regression',
                        choices=['SGD', 'RMSprop', 'Adam'])
    parser.add_argument('--resp_lr',
                        type=float,
                        default=1e-5,
                        help='learning rate for drug response regression')

    # Drug response uncertainty quantification parameters
    parser.add_argument('--resp_uq',
                        action='store_true',
                        help='indicator of drug response uncertainty '
                        'quantification using dropouts')
    parser.add_argument('--resp_uq_dropout',
                        type=float,
                        default=0.5,
                        help='dropout rate for uncertainty quantification')
    parser.add_argument('--resp_uq_length_scale',
                        type=float,
                        default=1.0,
                        help='Prior length-scale that captures our belief '
                        'over the function frequency')
    parser.add_argument('--resp_uq_num_runs',
                        type=int,
                        default=100,
                        help='number of predictions (runs) for uncertainty '
                        'quantification')

    # Cell line classification training parameters
    parser.add_argument('--cl_clf_opt',
                        type=str,
                        default='SGD',
                        help='optimizer for cell line classification',
                        choices=['SGD', 'RMSprop', 'Adam'])
    parser.add_argument('--cl_clf_lr',
                        type=float,
                        default=1e-3,
                        help='learning rate for cell line classification')

    # Drug target family classification training parameters
    parser.add_argument('--drug_target_opt',
                        type=str,
                        default='SGD',
                        help='optimizer for drug target classification '
                        'training',
                        choices=['SGD', 'RMSprop', 'Adam'])
    parser.add_argument('--drug_target_lr',
                        type=float,
                        default=1e-3,
                        help='learning rate for drug target classification')

    # Drug weighted QED regression training parameters
    parser.add_argument('--drug_qed_loss_func',
                        type=str,
                        default='mse',
                        help='loss function for drug QED regression',
                        choices=['mse', 'l1'])
    parser.add_argument('--drug_qed_opt',
                        type=str,
                        default='SGD',
                        help='optimizer for drug rQED regression',
                        choices=['SGD', 'RMSprop', 'Adam'])
    parser.add_argument('--drug_qed_lr',
                        type=float,
                        default=1e-3,
                        help='learning rate for drug QED regression')

    # Starting epoch for drug response validation
    parser.add_argument('--resp_val_start_epoch',
                        type=int,
                        default=0,
                        help='starting epoch for drug response validation')

    # Early stopping based on R2 score of drug response prediction
    parser.add_argument('--early_stop_patience',
                        type=int,
                        default=5,
                        help='patience for early stopping based on drug '
                        'response validation R2 scores ')

    # Global/shared training parameters
    parser.add_argument('--l2_regularization',
                        type=float,
                        default=1e-5,
                        help='L2 regularization for nn weights')
    parser.add_argument('--lr_decay_factor',
                        type=float,
                        default=0.95,
                        help='decay factor for learning rate')
    parser.add_argument('--trn_batch_size',
                        type=int,
                        default=32,
                        help='input batch size for training')
    parser.add_argument('--val_batch_size',
                        type=int,
                        default=256,
                        help='input batch size for validation')
    parser.add_argument('--max_num_batches',
                        type=int,
                        default=1000,
                        help='maximum number of batches per epoch')
    parser.add_argument('--max_num_epochs',
                        type=int,
                        default=100,
                        help='maximum number of epochs')

    # Validation results directory
    parser.add_argument('--val_results_dir',
                        type=str,
                        default=None,
                        help='directory for saved validation results. '
                        'Set to None to skip results saving')

    # Miscellaneous settings ##################################################
    parser.add_argument('--multi_gpu',
                        action='store_true',
                        default=False,
                        help='enables multiple GPU process')
    parser.add_argument('--no_cuda',
                        action='store_true',
                        default=False,
                        help='disables CUDA training')
    parser.add_argument('--rand_state',
                        type=int,
                        default=0,
                        help='random state of numpy/sklearn/pytorch')

    args = parser.parse_args()
    print('Training Arguments:\n' + json.dumps(vars(args), indent=4))

    # Setting up random seed for reproducible and deterministic results
    seed_random_state(args.rand_state)

    # Computation device config (cuda or cpu)
    use_cuda = not args.no_cuda and torch.cuda.is_available()
    device = torch.device('cuda' if use_cuda else 'cpu')

    # Data loaders for training/validation ####################################
    dataloader_kwargs = {
        'timeout': 1,
        'shuffle': 'True',
        # 'num_workers': multiprocessing.cpu_count() if use_cuda else 0,
        'num_workers': NUM_WORKER if use_cuda else 0,
        'pin_memory': True if use_cuda else False,
    }

    # Drug response dataloaders for training/validation
    drug_resp_dataset_kwargs = {
        'data_root': DATA_ROOT,
        'rand_state': args.rand_state,
        'summary': False,
        'int_dtype': np.int8,
        'float_dtype': np.float16,
        'output_dtype': np.float32,
        'lat_scaling': args.lat_scaling,
        'grth_scaling': args.grth_scaling,
        'dscptr_scaling': args.dscptr_scaling,
        'rnaseq_scaling': args.rnaseq_scaling,
        'dscptr_nan_threshold': args.dscptr_nan_threshold,
        'rnaseq_feature_usage': args.rnaseq_feature_usage,
        'drug_feature_usage': args.drug_feature_usage,
        'validation_ratio': args.validation_ratio,
        'disjoint_drugs': args.disjoint_drugs,
        'disjoint_cells': args.disjoint_cells,
    }

    drug_resp_trn_loader = torch.utils.data.DataLoader(
        DrugRespDataset(data_src=args.trn_src,
                        training=True,
                        **drug_resp_dataset_kwargs),
        batch_size=args.trn_batch_size,
        **dataloader_kwargs)

    # List of data loaders for different validation sets
    drug_resp_val_loaders = [
        torch.utils.data.DataLoader(
            DrugRespDataset(data_src=src,
                            training=False,
                            **drug_resp_dataset_kwargs),
            batch_size=args.val_batch_size,
            **dataloader_kwargs) for src in args.val_srcs
    ]

    # Cell line classification dataloaders for training/validation
    cl_clf_dataset_kwargs = {
        'data_root': DATA_ROOT,
        'rand_state': args.rand_state,
        'summary': False,
        'int_dtype': np.int8,
        'float_dtype': np.float16,
        'output_dtype': np.float32,
        'rnaseq_scaling': args.rnaseq_scaling,
        'rnaseq_feature_usage': args.rnaseq_feature_usage,
        'validation_ratio': args.validation_ratio,
    }

    cl_clf_trn_loader = torch.utils.data.DataLoader(
        CLClassDataset(training=True, **cl_clf_dataset_kwargs),
        batch_size=args.trn_batch_size,
        **dataloader_kwargs)

    cl_clf_val_loader = torch.utils.data.DataLoader(
        CLClassDataset(training=False, **cl_clf_dataset_kwargs),
        batch_size=args.val_batch_size,
        **dataloader_kwargs)

    # Drug target family classification dataloaders for training/validation
    drug_target_dataset_kwargs = {
        'data_root': DATA_ROOT,
        'rand_state': args.rand_state,
        'summary': False,
        'int_dtype': np.int8,
        'float_dtype': np.float16,
        'output_dtype': np.float32,
        'dscptr_scaling': args.dscptr_scaling,
        'dscptr_nan_threshold': args.dscptr_nan_threshold,
        'drug_feature_usage': args.drug_feature_usage,
        'validation_ratio': args.validation_ratio,
    }

    drug_target_trn_loader = torch.utils.data.DataLoader(
        DrugTargetDataset(training=True, **drug_target_dataset_kwargs),
        batch_size=args.trn_batch_size,
        **dataloader_kwargs)

    drug_target_val_loader = torch.utils.data.DataLoader(
        DrugTargetDataset(training=False, **drug_target_dataset_kwargs),
        batch_size=args.val_batch_size,
        **dataloader_kwargs)

    # Drug weighted QED regression dataloaders for training/validation
    drug_qed_dataset_kwargs = {
        'data_root': DATA_ROOT,
        'rand_state': args.rand_state,
        'summary': False,
        'int_dtype': np.int8,
        'float_dtype': np.float16,
        'output_dtype': np.float32,
        'qed_scaling': args.qed_scaling,
        'dscptr_scaling': args.dscptr_scaling,
        'dscptr_nan_threshold': args.dscptr_nan_threshold,
        'drug_feature_usage': args.drug_feature_usage,
        'validation_ratio': args.validation_ratio,
    }

    drug_qed_trn_loader = torch.utils.data.DataLoader(
        DrugQEDDataset(training=True, **drug_qed_dataset_kwargs),
        batch_size=args.trn_batch_size,
        **dataloader_kwargs)

    drug_qed_val_loader = torch.utils.data.DataLoader(
        DrugQEDDataset(training=False, **drug_qed_dataset_kwargs),
        batch_size=args.val_batch_size,
        **dataloader_kwargs)

    # Constructing and initializing neural networks ###########################
    # Autoencoder training hyper-parameters
    ae_training_kwarg = {
        'ae_loss_func': 'mse',
        'ae_opt': 'sgd',
        'ae_lr': 2e-1,
        'lr_decay_factor': 1.0,
        'max_num_epochs': 1000,
        'early_stop_patience': 50,
    }

    encoder_kwarg = {
        'model_folder': './models/',
        'data_root': DATA_ROOT,
        'autoencoder_init': args.autoencoder_init,
        'training_kwarg': ae_training_kwarg,
        'device': device,
        'verbose': True,
        'rand_state': args.rand_state,
    }

    # Get RNA sequence encoder
    gene_encoder = get_gene_encoder(
        rnaseq_feature_usage=args.rnaseq_feature_usage,
        rnaseq_scaling=args.rnaseq_scaling,
        layer_dim=args.gene_layer_dim,
        num_layers=args.gene_num_layers,
        latent_dim=args.gene_latent_dim,
        **encoder_kwarg)

    # Get drug feature encoder
    drug_encoder = get_drug_encoder(
        drug_feature_usage=args.drug_feature_usage,
        dscptr_scaling=args.dscptr_scaling,
        dscptr_nan_threshold=args.dscptr_nan_threshold,
        layer_dim=args.drug_layer_dim,
        num_layers=args.drug_num_layers,
        latent_dim=args.drug_latent_dim,
        **encoder_kwarg)

    # Regressor for drug response
    resp_net = RespNet(
        gene_latent_dim=args.gene_latent_dim,
        drug_latent_dim=args.drug_latent_dim,
        gene_encoder=gene_encoder,
        drug_encoder=drug_encoder,
        resp_layer_dim=args.resp_layer_dim,
        resp_num_layers_per_block=args.resp_num_layers_per_block,
        resp_num_blocks=args.resp_num_blocks,
        resp_num_layers=args.resp_num_layers,
        resp_dropout=args.resp_dropout,
        resp_activation=args.resp_activation).to(device)

    print(resp_net)

    # # Sequence classifier for category, site, and type
    # cl_clf_net_kwargs = {
    #     'encoder': gene_encoder,
    #     'input_dim': args.gene_latent_dim,
    #     'condition_dim': len(get_label_dict(DATA_ROOT, 'data_src_dict.txt')),
    #     'layer_dim': args.cl_clf_layer_dim,
    #     'num_layers': args.cl_clf_num_layers, }
    #
    # category_clf_net = ClfNet(
    #     num_classes=len(get_label_dict(DATA_ROOT, 'category_dict.txt')),
    #     **cl_clf_net_kwargs).to(device)
    # site_clf_net = ClfNet(
    #     num_classes=len(get_label_dict(DATA_ROOT, 'site_dict.txt')),
    #     **cl_clf_net_kwargs).to(device)
    # type_clf_net = ClfNet(
    #     num_classes=len(get_label_dict(DATA_ROOT, 'type_dict.txt')),
    #     **cl_clf_net_kwargs).to(device)
    #
    # # Classifier for drug target family prediction
    # drug_target_net = ClfNet(
    #     encoder=drug_encoder,
    #     input_dim=args.drug_latent_dim,
    #     condition_dim=0,
    #     layer_dim=args.drug_target_layer_dim,
    #     num_layers=args.drug_target_num_layers,
    #     num_classes=len(get_label_dict(DATA_ROOT, 'drug_target_dict.txt'))).\
    #     to(device)
    #
    # # Regressor for drug weighted QED prediction
    # drug_qed_net = RgsNet(
    #     encoder=drug_encoder,
    #     input_dim=args.drug_latent_dim,
    #     condition_dim=0,
    #     layer_dim=args.drug_qed_layer_dim,
    #     num_layers=args.drug_qed_num_layers,
    #     activation=args.drug_qed_activation).to(device)

    # Multi-GPU settings
    if args.multi_gpu:
        resp_net = nn.DataParallel(resp_net)
        # category_clf_net = nn.DataParallel(category_clf_net)
        # site_clf_net = nn.DataParallel(site_clf_net)
        # type_clf_net = nn.DataParallel(type_clf_net)
        # drug_target_net = nn.DataParallel(drug_target_net)
        # drug_qed_net = nn.DataParallel(drug_qed_net)

    # Optimizers, learning rate decay, and miscellaneous ######################
    resp_opt = get_optimizer(opt_type=args.resp_opt,
                             networks=resp_net,
                             learning_rate=args.resp_lr,
                             l2_regularization=args.l2_regularization)
    # cl_clf_opt = get_optimizer(opt_type=args.cl_clf_opt,
    #                            networks=[category_clf_net,
    #                                      site_clf_net,
    #                                      type_clf_net],
    #                            learning_rate=args.cl_clf_lr,
    #                            l2_regularization=args.l2_regularization)
    # drug_target_opt = get_optimizer(opt_type=args.drug_target_opt,
    #                                 networks=drug_target_net,
    #                                 learning_rate=args.drug_target_lr,
    #                                 l2_regularization=args.l2_regularization)
    # drug_qed_opt = get_optimizer(opt_type=args.drug_qed_opt,
    #                              networks=drug_qed_net,
    #                              learning_rate=args.drug_qed_lr,
    #                              l2_regularization=args.l2_regularization)

    resp_lr_decay = LambdaLR(optimizer=resp_opt,
                             lr_lambda=lambda e: args.lr_decay_factor**e)
    # cl_clf_lr_decay = LambdaLR(optimizer=cl_clf_opt,
    #                            lr_lambda=lambda e:
    #                            args.lr_decay_factor ** e)
    # drug_target_lr_decay = LambdaLR(optimizer=drug_target_opt,
    #                                 lr_lambda=lambda e:
    #                                 args.lr_decay_factor ** e)
    # drug_qed_lr_decay = LambdaLR(optimizer=drug_qed_opt,
    #                              lr_lambda=lambda e:
    #                              args.lr_decay_factor ** e)

    resp_loss_func = F.l1_loss if args.resp_loss_func == 'l1' \
        else F.mse_loss
    drug_qed_loss_func = F.l1_loss if args.drug_qed_loss_func == 'l1' \
        else F.mse_loss

    # Training/validation loops ###############################################
    val_cl_clf_acc = []
    val_drug_target_acc = []
    val_drug_qed_mse, val_drug_qed_mae, val_drug_qed_r2 = [], [], []
    val_resp_mse, val_resp_mae, val_resp_r2 = [], [], []
    best_r2 = -np.inf
    patience = 0
    start_time = time.time()

    # Create folder for validation results if not exist
    if args.val_results_dir.lower() != 'none':
        try:
            os.makedirs(args.val_results_dir)
        except OSError as e:
            if e.errno != errno.EEXIST:
                raise
    else:
        args.val_results_dir = None

    # Early stopping is decided on the validation set with the same
    # data source as the training dataloader
    val_index = 0
    for idx, loader in enumerate(drug_resp_val_loaders):
        if loader.dataset.data_source == args.trn_src:
            val_index = idx

    for epoch in range(args.max_num_epochs):

        print('=' * 80 + '\nTraining Epoch %3i:' % (epoch + 1))
        epoch_start_time = time.time()

        resp_lr_decay.step(epoch)
        # cl_clf_lr_decay.step(epoch)
        # drug_target_lr_decay.step(epoch)
        # drug_qed_lr_decay.step(epoch)

        # # Training cell line classifier
        # train_cl_clf(device=device,
        #              category_clf_net=category_clf_net,
        #              site_clf_net=site_clf_net,
        #              type_clf_net=type_clf_net,
        #              data_loader=cl_clf_trn_loader,
        #              max_num_batches=args.max_num_batches,
        #              optimizer=cl_clf_opt)
        #
        # # Training drug target classifier
        # train_drug_target(device=device,
        #                   drug_target_net=drug_target_net,
        #                   data_loader=drug_target_trn_loader,
        #                   max_num_batches=args.max_num_batches,
        #                   optimizer=drug_target_opt)
        #
        # # Training drug weighted QED regressor
        # train_drug_qed(device=device,
        #                drug_qed_net=drug_qed_net,
        #                data_loader=drug_qed_trn_loader,
        #                max_num_batches=args.max_num_batches,
        #                loss_func=drug_qed_loss_func,
        #                optimizer=drug_qed_opt)

        # Training drug response regressor
        train_resp(device=device,
                   resp_net=resp_net,
                   data_loader=drug_resp_trn_loader,
                   max_num_batches=args.max_num_batches,
                   loss_func=resp_loss_func,
                   optimizer=resp_opt)

        print('\nValidation Results:')

        if epoch >= args.resp_val_start_epoch:

            # # Validating cell line classifier
            # cl_category_acc, cl_site_acc, cl_type_acc = \
            #     valid_cl_clf(device=device,
            #                  category_clf_net=category_clf_net,
            #                  site_clf_net=site_clf_net,
            #                  type_clf_net=type_clf_net,
            #                  data_loader=cl_clf_val_loader, )
            # val_cl_clf_acc.append([cl_category_acc, cl_site_acc, cl_type_acc])
            #
            # # Validating drug target classifier
            # drug_target_acc = \
            #     valid_drug_target(device=device,
            #                       drug_target_net=drug_target_net,
            #                       data_loader=drug_target_val_loader)
            # val_drug_target_acc.append(drug_target_acc)
            #
            # # Validating drug weighted QED regressor
            # drug_qed_mse, drug_qed_mae, drug_qed_r2 = \
            #     valid_drug_qed(device=device,
            #                    drug_qed_net=drug_qed_net,
            #                    data_loader=drug_qed_val_loader)
            # val_drug_qed_mse.append(drug_qed_mse)
            # val_drug_qed_mae.append(drug_qed_mae)
            # val_drug_qed_r2.append(drug_qed_r2)

            # Validating drug response regressor
            resp_mse, resp_mae, resp_r2 = \
                valid_resp(epoch=epoch,
                           trn_src=args.trn_src,
                           device=device,

                           resp_net=resp_net,
                           data_loaders=drug_resp_val_loaders,

                           resp_uq=args.resp_uq,
                           resp_uq_dropout=args.resp_uq_dropout,
                           resp_uq_num_runs=args.resp_uq_num_runs,

                           val_results_dir=args.val_results_dir)

            # Save the validation results in nested list
            val_resp_mse.append(resp_mse)
            val_resp_mae.append(resp_mae)
            val_resp_r2.append(resp_r2)

            # Record the best R2 score (same data source)
            # and check for early stopping if no improvement for epochs
            if resp_r2[val_index] > best_r2:
                patience = 0
                best_r2 = resp_r2[val_index]
            else:
                patience += 1
            if patience >= args.early_stop_patience:
                print('Validation results does not improve for %d epochs ... '
                      'invoking early stopping.' % patience)
                break

        print('Epoch Running Time: %.1f Seconds.' %
              (time.time() - epoch_start_time))

    # val_cl_clf_acc = np.array(val_cl_clf_acc).reshape(-1, 3)
    # val_drug_target_acc = np.array(val_drug_target_acc)
    # val_drug_qed_mse = np.array(val_drug_qed_mse)
    # val_resp_mae = np.array(val_resp_mae)
    val_resp_r2 = np.array(val_resp_r2)
    val_resp_mse, val_resp_mae, val_resp_r2 = \
        np.array(val_resp_mse).reshape(-1, len(args.val_srcs)), \
        np.array(val_resp_mae).reshape(-1, len(args.val_srcs)), \
        np.array(val_resp_r2).reshape(-1, len(args.val_srcs))

    print('Program Running Time: %.1f Seconds.' % (time.time() - start_time))

    # Print overall validation results
    print('=' * 80)
    print('Overall Validation Results:\n')

    print('\tBest Results from Different Models (Epochs):')
    # # Print best accuracy for cell line classifiers
    # clf_targets = ['Cell Line Categories',
    #                'Cell Line Sites',
    #                'Cell Line Types', ]
    # best_acc = np.amax(val_cl_clf_acc, axis=0)
    # best_acc_epochs = np.argmax(val_cl_clf_acc, axis=0)
    #
    # for index, clf_target in enumerate(clf_targets):
    #     print('\t\t%-24s Best Accuracy: %.3f%% (Epoch = %3d)'
    #           % (clf_target, best_acc[index],
    #              best_acc_epochs[index] + 1 + args.resp_val_start_epoch))
    #
    # # Print best predictions for drug classifiers and regressor
    # print('\t\tDrug Target Family \t Best Accuracy: %.3f%% (Epoch = %3d)'
    #       % (np.max(val_drug_target_acc),
    #          (np.argmax(val_drug_target_acc) +
    #           1 + args.resp_val_start_epoch)))
    #
    # print('\t\tDrug Weighted QED \t Best R2 Score: %+6.4f '
    #       '(Epoch = %3d, MSE = %8.6f, MAE = %8.6f)'
    #       % (np.max(val_drug_qed_r2),
    #          (np.argmax(val_drug_qed_r2) +
    #           1 + args.resp_val_start_epoch),
    #          val_drug_qed_mse[np.argmax(val_drug_qed_r2)],
    #          val_drug_qed_mae[np.argmax(val_drug_qed_r2)]))

    # Print best R2 scores for drug response regressor
    val_data_sources = \
        [loader.dataset.data_source for loader in drug_resp_val_loaders]
    best_r2 = np.amax(val_resp_r2, axis=0)
    best_r2_epochs = np.argmax(val_resp_r2, axis=0)

    for index, data_source in enumerate(val_data_sources):
        print('\t\t%-6s \t Best R2 Score: %+6.4f '
              '(Epoch = %3d, MSE = %8.2f, MAE = %6.2f)' %
              (data_source, best_r2[index],
               best_r2_epochs[index] + args.resp_val_start_epoch + 1,
               val_resp_mse[best_r2_epochs[index], index],
               val_resp_mae[best_r2_epochs[index], index]))

    # Print best epoch and all the corresponding validation results
    # Picking the best epoch using R2 score from same data source
    best_epoch = val_resp_r2[:, val_index].argmax()
    print('\n\tBest Results from the Same Model (Epoch = %3d):' %
          (best_epoch + 1 + args.resp_val_start_epoch))
    # for index, clf_target in enumerate(clf_targets):
    #     print('\t\t%-24s Accuracy: %.3f%%'
    #           % (clf_target, val_cl_clf_acc[best_epoch, index]))
    #
    # # Print best predictions for drug classifiers and regressor
    # print('\t\tDrug Target Family \t Accuracy: %.3f%% '
    #       % (val_drug_target_acc[best_epoch]))
    #
    # print('\t\tDrug Weighted QED \t R2 Score: %+6.4f '
    #       '(MSE = %8.6f, MAE = %6.6f)'
    #       % (val_drug_qed_r2[best_epoch],
    #          val_drug_qed_mse[best_epoch],
    #          val_drug_qed_mae[best_epoch]))

    for index, data_source in enumerate(val_data_sources):
        print(
            '\t\t%-6s \t R2 Score: %+6.4f '
            '(MSE = %8.2f, MAE = %6.2f)' %
            (data_source, val_resp_r2[best_epoch, index],
             val_resp_mse[best_epoch, index], val_resp_mae[best_epoch, index]))

    import pickle
    with open("validation_lists.pkl", 'wb') as fp:
        pickle.dump(
            {
                "val_resp_mae": val_resp_mae,
                "val_resp_mse": val_resp_mse,
                "val_resp_r2": val_resp_r2,
                "best_epoch": best_epoch
            }, fp)