def unet_road_detection(x, dropout, is_training, weight_decay, crop, num_input_bands, num_classes, crop_size, extract_features): x = tf.reshape(x, shape=[-1, crop, crop, num_input_bands]) conv1_1 = _conv_layer(x, [3, 3, num_input_bands, 64], "conv1_1", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME', activation='elu') conv1_2 = _conv_layer(conv1_1, [3, 3, 64, 64], "conv1_2", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME', activation='elu') s_pool1 = crop_size pool1 = _max_pool(conv1_2, [1, 2, 2, 1], [1, 2, 2, 1], 'pool1', pad='SAME') conv2_1 = _conv_layer(pool1, [3, 3, 64, 128], "conv2_1", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME', activation='elu') conv2_2 = _conv_layer(conv2_1, [3, 3, 128, 128], "conv2_2", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME', activation='elu') s_pool2 = math.ceil(s_pool1 / float(2)) # s_pool2 = math.ceil(float(s_pool1 - 2 + 1) / float(2)) pool2 = _max_pool(conv2_2, [1, 2, 2, 1], [1, 2, 2, 1], 'pool2', pad='SAME') conv3_1 = _conv_layer(pool2, [3, 3, 128, 256], "conv3_1", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME', activation='elu') conv3_2 = _conv_layer(conv3_1, [3, 3, 256, 256], "conv3_2", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME', activation='elu') s_pool3 = math.ceil(s_pool2 / float(2)) # s_pool3 = math.ceil(float(s_pool2 - 2 + 1) / float(2)) pool3 = _max_pool(conv3_2, [1, 2, 2, 1], [1, 2, 2, 1], 'pool3', pad='SAME') conv4_1 = _conv_layer(pool3, [3, 3, 256, 512], "conv4_1", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME', activation='elu') conv4_2 = _conv_layer(conv4_1, [3, 3, 512, 512], "conv4_2", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME', activation='elu') # s_pool4 = math.ceil(s_pool3 / float(2)) # pool4 = _max_pool(conv4_2, [1, 2, 2, 1], [1, 2, 2, 1], 'pool4', pad='SAME') # # conv5_1 = _conv_layer(pool4, [3, 3, 512, 1024], "conv5_1", weight_decay, is_training, # strides=[1, 1, 1, 1], pad='SAME', activation='elu') # conv5_2 = _conv_layer(conv5_1, [3, 3, 1024, 1024], "conv5_2", weight_decay, is_training, # strides=[1, 1, 1, 1], pad='SAME', activation='elu') # ---------------------------------End of encoder---------------------------------- aspp = atrous_spatial_pyramid_pooling(conv4_2, [6, 12, 18], weight_decay, is_training) # deconv4_1 = _deconv_layer(aspp, [2, 2, 512, 1024], _get_shape(conv5_2), 'deconv4_1', weight_decay, # [1, 2, 2, 1], pad='SAME', has_bias=True) # # deconv4_2 = _crop_and_concat(conv2_2, deconv2_1, (s_pool2, s_pool2), (s_pool3*2, s_pool3*2)) # deconv4_2 = tf.concat(values=[conv4_2, deconv4_1], axis=-1) # deconv4_3 = _conv_layer(deconv4_2, [3, 3, 1024, 512], "deconv4_3", weight_decay, is_training, # strides=[1, 1, 1, 1], pad='SAME') # deconv4_4 = _conv_layer(deconv4_3, [3, 3, 512, 512], "deconv4_4", weight_decay, is_training, # strides=[1, 1, 1, 1], pad='SAME') deconv3_1 = _deconv_layer(aspp, [2, 2, 256, 512], _get_shape(conv4_2), 'deconv3_1', weight_decay, [1, 2, 2, 1], pad='SAME', has_bias=True) # deconv3_2 = _crop_and_concat(conv2_2, deconv2_1, (s_pool2, s_pool2), (s_pool3*2, s_pool3*2)) deconv3_2 = tf.concat(values=[conv3_2, deconv3_1], axis=-1) deconv3_3 = _conv_layer(deconv3_2, [3, 3, 512, 256], "deconv3_3", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME') deconv3_4 = _conv_layer(deconv3_3, [3, 3, 256, 256], "deconv3_4", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME') deconv2_1 = _deconv_layer(deconv3_4, [2, 2, 128, 256], _get_shape(conv3_2), 'deconv2_1', weight_decay, [1, 2, 2, 1], pad='SAME', has_bias=True) # deconv2_2 = _crop_and_concat(conv2_2, deconv2_1, (s_pool2, s_pool2), (s_pool3*2, s_pool3*2)) deconv2_2 = tf.concat(values=[conv2_2, deconv2_1], axis=-1) deconv2_3 = _conv_layer(deconv2_2, [3, 3, 256, 128], "deconv2_3", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME') deconv2_4 = _conv_layer(deconv2_3, [3, 3, 128, 128], "deconv2_4", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME') deconv1_1 = _deconv_layer(deconv2_4, [2, 2, 64, 128], _get_shape(deconv2_4), 'deconv1_1', weight_decay, [1, 2, 2, 1], pad='SAME', has_bias=True) # deconv1_2 = _crop_and_concat(conv1_2, deconv1_1, (s_pool2, s_pool2), (s_pool2, s_pool2)) deconv1_2 = tf.concat(values=[conv1_2, deconv1_1], axis=-1) deconv1_3 = _conv_layer(deconv1_2, [3, 3, 128, 64], "deconv1_2", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME') deconv1_4 = _conv_layer(deconv1_3, [3, 3, 64, 64], "deconv1_3", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME') with tf.variable_scope('conv_classifier') as scope: kernel = _variable_with_weight_decay( 'weights', shape=[1, 1, 64, num_classes], ini=tf.contrib.layers.xavier_initializer_conv2d(dtype=tf.float32), weight_decay=weight_decay) biases = _variable_on_cpu('biases', [num_classes], tf.constant_initializer(0.0)) conv = tf.nn.conv2d(deconv1_4, kernel, [1, 1, 1, 1], padding='SAME') conv_classifier = tf.nn.bias_add(conv, biases, name=scope.name) return conv_classifier
def unet(x, dropout, is_training, weight_decay, crop, num_input_bands, num_classes, crop_size, extract_features): x = tf.reshape(x, shape=[-1, crop, crop, num_input_bands]) conv1_1 = _conv_layer(x, [3, 3, num_input_bands, 64], "conv1_1", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME') conv1_2 = _conv_layer(conv1_1, [3, 3, 64, 64], "conv1_2", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME') s_pool1 = crop_size pool1 = _max_pool(conv1_2, [1, 2, 2, 1], [1, 2, 2, 1], 'pool1', pad='SAME') conv2_1 = _conv_layer(pool1, [3, 3, 64, 128], "conv2_1", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME') conv2_2 = _conv_layer(conv2_1, [3, 3, 128, 128], "conv2_2", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME') s_pool2 = math.ceil(s_pool1 / float(2)) # s_pool2 = math.ceil(float(s_pool1 - 2 + 1) / float(2)) pool2 = _max_pool(conv2_2, [1, 2, 2, 1], [1, 2, 2, 1], 'pool2', pad='SAME') conv3_1 = _conv_layer(pool2, [3, 3, 128, 256], "conv3_1", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME') conv3_2 = _conv_layer(conv3_1, [3, 3, 256, 256], "conv3_2", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME') s_pool3 = math.ceil(s_pool2 / float(2)) # s_pool3 = math.ceil(float(s_pool2 - 2 + 1) / float(2)) print(s_pool1, s_pool2, s_pool3) # pool3 = _max_pool(conv3_2, [1, 2, 2, 1], [1, 2, 2, 1], 'pool3', pad='SAME') # # conv4_1 = _conv_layer(pool2, [3, 3, 128, 256], "conv3_1", weight_decay, is_training, # strides=[1, 1, 1, 1], pad='SAME') # conv4_2 = _conv_layer(conv3_1, [3, 3, 256, 256], "conv3_2", weight_decay, is_training, # strides=[1, 1, 1, 1], pad='SAME') # ------------------------End of encoder----------------------------- new_shape = [ tf.shape(conv3_2)[0], tf.shape(conv3_2)[1] * 2, tf.shape(conv3_2)[2] * 2, tf.shape(conv3_2)[3] // 2 ] try: output_shape = tf.pack(new_shape) except: output_shape = tf.stack(new_shape) deconv2_1 = _deconv_layer(conv3_2, [2, 2, 128, 256], output_shape, 'deconv2_1', weight_decay, [1, 2, 2, 1], pad='SAME', has_bias=True) # deconv2_2 = _crop_and_concat(conv2_2, deconv2_1, (s_pool2, s_pool2), (s_pool3*2, s_pool3*2)) deconv2_2 = tf.concat(values=[conv2_2, deconv2_1], axis=-1) deconv2_3 = _conv_layer(deconv2_2, [3, 3, 256, 128], "deconv2_3", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME') deconv2_4 = _conv_layer(deconv2_3, [3, 3, 128, 128], "deconv2_4", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME') new_shape = [ tf.shape(deconv2_4)[0], tf.shape(deconv2_4)[1] * 2, tf.shape(deconv2_4)[2] * 2, tf.shape(deconv2_4)[3] // 2 ] try: output_shape = tf.pack(new_shape) except: output_shape = tf.stack(new_shape) deconv1_1 = _deconv_layer(deconv2_4, [2, 2, 64, 128], output_shape, 'deconv1_1', weight_decay, [1, 2, 2, 1], pad='SAME', has_bias=True) # deconv1_2 = _crop_and_concat(conv1_2, deconv1_1, (s_pool2, s_pool2), (s_pool2, s_pool2)) deconv1_2 = tf.concat(values=[conv1_2, deconv1_1], axis=-1) deconv1_3 = _conv_layer(deconv1_2, [3, 3, 128, 64], "deconv1_2", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME') deconv1_4 = _conv_layer(deconv1_3, [3, 3, 64, 64], "deconv1_3", weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME') with tf.variable_scope('conv_classifier') as scope: kernel = _variable_with_weight_decay( 'weights', shape=[1, 1, 64, num_classes], ini=tf.contrib.layers.xavier_initializer_conv2d(dtype=tf.float32), weight_decay=weight_decay) biases = _variable_on_cpu('biases', [num_classes], tf.constant_initializer(0.0)) conv = tf.nn.conv2d(deconv1_4, kernel, [1, 1, 1, 1], padding='SAME') conv_classifier = tf.nn.bias_add(conv, biases, name=scope.name) # resize to 32x32 or 64x64 # save only the first 64 maps if extract_features is True: return [tf.image.resize_bilinear(conv1_1, [32, 32]), 64], \ [tf.image.resize_bilinear(conv3_2, [32, 32]), 256], \ [tf.image.resize_bilinear(deconv1_4, [32, 32]), 64], conv_classifier else: return conv_classifier
def fcn_25_2_2x(x, dropout, is_training, crop_size, weight_decay, num_input_bands, num_classes, extract_features): # Reshape input picture x = tf.reshape(x, shape=[-1, crop_size, crop_size, num_input_bands]) # print x.get_shape() conv1_1 = _conv_layer(x, [3, 3, num_input_bands, 64], 'conv1_1', weight_decay, is_training, batch_norm=True) conv1_2 = _conv_layer(conv1_1, [3, 3, 64, 64], 'conv1_2', weight_decay, is_training, batch_norm=True) pool1 = _max_pool(conv1_2, kernel=[1, 2, 2, 1], strides=[1, 2, 2, 1], name='pool_1') conv2_1 = _conv_layer(pool1, [3, 3, 64, 128], 'conv2_1', weight_decay, is_training, batch_norm=True) conv2_2 = _conv_layer(conv2_1, [3, 3, 128, 128], 'conv2_2', weight_decay, is_training, batch_norm=True) pool2 = _max_pool(conv2_2, kernel=[1, 2, 2, 1], strides=[1, 2, 2, 1], name='pool_2') # reshape = tf.reshape(pool3, [-1, 7*7*256]) # fc1 = _fc_layer(pool2, layerShape=[3, 3, 128, 1024], name='fc1', weight_decay=weight_decay) fc1 = _conv_layer(pool2, layer_shape=[3, 3, 128, 1024], name='fc1', weight_decay=weight_decay, is_training=is_training, strides=[1, 1, 1, 1], pad='SAME', activation='relu', batch_norm=False, has_activation=True) drop_fc1 = tf.nn.dropout(fc1, dropout) # fc2 = _fc_layer(drop_fc1, layerShape=[1, 1, 1024, 1024], name='fc2', weight_decay=weight_decay) fc2 = _conv_layer(drop_fc1, layer_shape=[1, 1, 1024, 1024], name='fc2', weight_decay=weight_decay, is_training=is_training, strides=[1, 1, 1, 1], pad='SAME', activation='relu', batch_norm=False, has_activation=True) drop_fc2 = tf.nn.dropout(fc2, dropout) # score_fr = _score_layer(drop_fc2, 'score_fr', weight_decay) score_fr = _conv_layer( drop_fc2, [1, 1, drop_fc2.get_shape()[3].value, num_classes], 'score_fr', weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME', batch_norm=False, has_activation=False) new_shape = [ tf.shape(pool1)[0], tf.shape(pool1)[1], tf.shape(pool1)[2], num_classes ] try: output_shape = tf.pack(new_shape) except: output_shape = tf.stack(new_shape) # upscore2 = _upscore_layer(score_fr, layerShape=tf.shape(pool1), name='upscore2', # weight_decay=weight_decay, ksize=4, stride=2) upscore2 = _deconv_layer( score_fr, [4, 4, num_classes, score_fr.get_shape()[3].value], output_shape, 'upscore2', weight_decay, strides=[1, 2, 2, 1], pad='SAME') # score_pool4 = _score_layer(pool1, "score_pool1", weight_decay) score_pool4 = _conv_layer( pool1, [1, 1, pool1.get_shape()[3].value, num_classes], 'score_pool1', weight_decay, is_training, strides=[1, 1, 1, 1], pad='SAME', batch_norm=False, has_activation=False) fuse_pool4 = tf.add(upscore2, score_pool4) new_shape = [tf.shape(x)[0], tf.shape(x)[1], tf.shape(x)[2], num_classes] try: output_shape = tf.pack(new_shape) except: output_shape = tf.stack(new_shape) # upscore3 = _upscore_layer(fuse_pool4, layerShape=tf.shape(x), name='upscore3', weight_decay=weight_decay, # ksize=4, stride=2) upscore3 = _deconv_layer( fuse_pool4, [4, 4, num_classes, fuse_pool4.get_shape()[3].value], output_shape, 'upscore3', weight_decay, strides=[1, 2, 2, 1], pad='SAME') return upscore3