Exemple #1
0
 def testShape(self):
     shape = [10, 5]
     gradients = tf.random_normal(shape)
     net = networks.Sgd()
     state = net.initial_state_for_inputs(gradients)
     update, _ = net(gradients, state)
     self.assertEqual(update.get_shape().as_list(), shape)
Exemple #2
0
 def testNonTrainable(self):
     """Tests the network doesn't contain trainable variables."""
     shape = [10, 5]
     gradients = tf.random_normal(shape)
     net = networks.Sgd()
     state = net.initial_state_for_inputs(gradients)
     net(gradients, state)
     variables = nn.get_variables_in_module(net)
     self.assertEqual(len(variables), 0)
Exemple #3
0
    def testResults(self):
        """Tests network produces zero updates with learning rate equal to zero."""
        shape = [10]
        learning_rate = 0.01
        gradients = tf.random_normal(shape)
        net = networks.Sgd(learning_rate=learning_rate)
        state = net.initial_state_for_inputs(gradients)
        update, _ = net(gradients, state)

        with self.test_session() as sess:
            gradients_np, update_np = sess.run([gradients, update])
            self.assertAllEqual(update_np, -learning_rate * gradients_np)