class TD3MultiAgent: def __init__(self): self.max_action = 1 self.policy_freq = 2 self.policy_freq_it = 0 self.batch_size = 512 self.discount = 0.99 self.replay_buffer = int(1e5) self.device = 'cuda' self.state_dim = 24 self.action_dim = 2 self.max_action = 1 self.policy_noise = 0.1 self.agents = 1 self.random_period = 1e4 self.tau = 5e-3 self.replay_buffer = ReplayBuffer(self.replay_buffer) self.actor = Actor(self.state_dim, self.action_dim, self.max_action).to(self.device) self.actor_target = Actor(self.state_dim, self.action_dim, self.max_action).to(self.device) self.actor_target.load_state_dict(self.actor.state_dict()) self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=1e-4) # self.actor.load_state_dict(torch.load('actor2.pth')) # self.actor_target.load_state_dict(torch.load('actor2.pth')) self.noise = OUNoise(2, 32) self.critic = Critic(48, self.action_dim).to(self.device) self.critic_target = Critic(48, self.action_dim).to(self.device) self.critic_target.load_state_dict(self.critic.state_dict()) self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=3e-4) def select_action_with_noise(self, state, i): import pdb ratio = len(self.replay_buffer)/self.random_period if len(self.replay_buffer)>self.random_period: state = torch.FloatTensor(state[i,:]).to(self.device) action = self.actor(state).cpu().data.numpy() if self.policy_noise != 0: action = (action + self.noise.sample()) return action.clip(-self.max_action,self.max_action) else: q= self.noise.sample() return q def step(self, i): if len(self.replay_buffer)>self.random_period/2: # Sample mini batch # if True: import pdb s, a, r, s_, d = self.replay_buffer.sample(self.batch_size) state = torch.FloatTensor(s[:,i,:]).to(self.device) action = torch.FloatTensor(a[:,i,:]).to(self.device) next_state = torch.FloatTensor(s_[:,i,:]).to(self.device) a_state = torch.FloatTensor(s).to(self.device).reshape(-1,48) a_action = torch.FloatTensor(a).to(self.device).reshape(-1,4) a_next_state = torch.FloatTensor(s_).to(self.device).reshape(-1,48) done = torch.FloatTensor(1 - d[:,i]).to(self.device) reward = torch.FloatTensor(r[:,i]).to(self.device) # pdb.set_trace() # Select action with the actor target and apply clipped noise noise = torch.FloatTensor(a[:,i,:]).data.normal_(0, self.policy_noise).to(self.device) noise = noise.clamp(-0.1,0.1) # NOISE CLIP WTF? next_action = (self.actor_target(next_state) + noise).clamp(-self.max_action, self.max_action) # Compute the target Q value target_Q1, target_Q2 = self.critic_target(a_next_state, next_action) target_Q = torch.min(target_Q1, target_Q2) target_Q = reward.reshape(-1,1) + (done.reshape(-1,1) * self.discount * target_Q).detach() # Get current Q estimates current_Q1, current_Q2 = self.critic(a_state, action) # Compute critic loss critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q) # Optimize the critic self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() # Delayed policy updates if self.policy_freq_it % self.policy_freq == 0: # Compute actor loss actor_loss = -self.critic.Q1(a_state, self.actor(state)).mean() # Optimize the actor self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # Update the frozen target models for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) self.policy_freq_it += 1 return True def reset(self): self.policy_freq_it = 0 self.noise.reset()
class DyNODESacAgent(object): """DyNODE-SAC.""" def __init__(self, obs_shape, action_shape, device, model_kind, kind='D', step_MVE=5, hidden_dim=256, discount=0.99, init_temperature=0.01, alpha_lr=1e-3, alpha_beta=0.9, actor_lr=1e-3, actor_beta=0.9, actor_log_std_min=-10, actor_log_std_max=2, critic_lr=1e-3, critic_beta=0.9, critic_tau=0.005, critic_target_update_freq=2, model_lr=1e-3, log_interval=100): self.device = device self.discount = discount self.critic_tau = critic_tau self.critic_target_update_freq = critic_target_update_freq self.log_interval = log_interval self.step_MVE = step_MVE self.model_kind = model_kind self.actor = Actor(obs_shape, action_shape, hidden_dim, actor_log_std_min, actor_log_std_max).to(device) self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=actor_lr, betas=(actor_beta, 0.999)) self.critic = Critic(obs_shape, action_shape, hidden_dim).to(device) self.critic_target = Critic(obs_shape, action_shape, hidden_dim).to(device) self.critic_target.load_state_dict(self.critic.state_dict()) self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=critic_lr, betas=(critic_beta, 0.999)) self.log_alpha = torch.tensor(np.log(init_temperature)).to(device) self.log_alpha.requires_grad = True self.target_entropy = -np.prod( action_shape) # set target entropy to -|A| self.log_alpha_optimizer = torch.optim.Adam([self.log_alpha], lr=alpha_lr, betas=(alpha_beta, 0.999)) if self.model_kind == 'dynode_model': self.model = DyNODE(obs_shape, action_shape, hidden_dim_p=200, hidden_dim_r=200).to(device) elif self.model_kind == 'nn_model': self.model = NN_Model(obs_shape, action_shape, hidden_dim_p=200, hidden_dim_r=200, kind=kind).to(device) else: assert 'model is not supported' self.model_optimizer = torch.optim.Adam(self.model.parameters(), lr=model_lr) self.train() self.critic_target.train() def train(self, training=True): self.training = training self.actor.train(training) self.critic.train(training) self.model.train(training) @property def alpha(self): return self.log_alpha.exp() def select_action(self, obs): with torch.no_grad(): obs = torch.FloatTensor(obs).to(self.device) obs = obs.unsqueeze(0) mu, _, _, _ = self.actor(obs, compute_pi=False, compute_log_pi=False) return mu.cpu().data.numpy().flatten() def sample_action(self, obs): with torch.no_grad(): obs = torch.FloatTensor(obs).to(self.device) obs = obs.unsqueeze(0) mu, pi, _, _ = self.actor(obs, compute_log_pi=False) return pi.cpu().data.numpy().flatten() def update_model(self, replay_buffer, L, step): if self.model_kind == 'dynode_model': obs_m, action_m, reward_m, next_obs_m, _ = replay_buffer.sample_dynode( ) transition_loss, reward_loss = self.model.loss( obs_m, action_m, reward_m, next_obs_m) model_loss = transition_loss + reward_loss elif self.model_kind == 'nn_model': obs, action, reward, next_obs, _ = replay_buffer.sample() transition_loss, reward_loss = self.model.loss( obs, action, reward, next_obs) model_loss = transition_loss + reward_loss else: assert 'model is not supported' # Optimize the Model self.model_optimizer.zero_grad() model_loss.backward() self.model_optimizer.step() if step % self.log_interval == 0: L.log('train/model_loss', model_loss, step) def MVE_prediction(self, replay_buffer, L, step): obs, action, reward, next_obs, not_done = replay_buffer.sample() trajectory = [] next_ob = next_obs with torch.no_grad(): while len(trajectory) < self.step_MVE: ob = next_ob _, act, _, _ = self.actor(ob) rew, next_ob = self.model(ob, act) trajectory.append([ob, act, rew, next_ob]) _, next_action, log_pi, _ = self.actor(next_ob) target_Q1, target_Q2 = self.critic_target(next_ob, next_action) ret = torch.min(target_Q1, target_Q2) - self.alpha.detach() * log_pi critic_loss = 0 for ob, act, rew, _ in reversed(trajectory): current_Q1, current_Q2 = self.critic(ob, act) ret = rew + self.discount * ret # critic_loss = critic_loss + utils.huber(current_Q1 - ret).mean() + utils.huber(current_Q2 - ret).mean() critic_loss = critic_loss + F.mse_loss( current_Q1, ret) + F.mse_loss(current_Q2, ret) current_Q1, current_Q2 = self.critic(obs, action) ret = reward + self.discount * ret # critic_loss = critic_loss + utils.huber(current_Q1 - ret).mean() + utils.huber(current_Q2 - ret).mean() critic_loss = critic_loss + F.mse_loss(current_Q1, ret) + F.mse_loss( current_Q2, ret) critic_loss = critic_loss / (self.step_MVE + 1) self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() # actor _, pi, log_pi, log_std = self.actor(obs) actor_Q1, actor_Q2 = self.critic(obs.detach(), pi) actor_Q = torch.min(actor_Q1, actor_Q2) actor_loss = (self.alpha.detach() * log_pi - actor_Q).mean() # optimize the actor self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() self.log_alpha_optimizer.zero_grad() alpha_loss = (self.alpha * (-log_pi - self.target_entropy).detach()).mean() alpha_loss.backward() self.log_alpha_optimizer.step() def update_critic(self, obs, action, reward, next_obs, not_done, L, step): with torch.no_grad(): _, policy_action, log_pi, _ = self.actor(next_obs) target_Q1, target_Q2 = self.critic_target(next_obs, policy_action) target_V = torch.min(target_Q1, target_Q2) - self.alpha.detach() * log_pi target_Q = reward + (not_done * self.discount * target_V) # get current Q estimates current_Q1, current_Q2 = self.critic(obs, action) critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss( current_Q2, target_Q) if step % self.log_interval == 0: L.log('train_critic/loss', critic_loss, step) # Optimize the critic self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() self.critic.log(L, step) def update_actor_and_alpha(self, obs, L, step): _, pi, log_pi, log_std = self.actor(obs) actor_Q1, actor_Q2 = self.critic(obs, pi) actor_Q = torch.min(actor_Q1, actor_Q2) actor_loss = (self.alpha.detach() * log_pi - actor_Q).mean() if step % self.log_interval == 0: L.log('train_actor/loss', actor_loss, step) L.log('train_actor/target_entropy', self.target_entropy, step) entropy = 0.5 * log_std.shape[1] * ( 1.0 + np.log(2 * np.pi)) + log_std.sum(dim=-1) if step % self.log_interval == 0: L.log('train_actor/entropy', entropy.mean(), step) # optimize the actor self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() self.actor.log(L, step) self.log_alpha_optimizer.zero_grad() alpha_loss = (self.alpha * (-log_pi - self.target_entropy).detach()).mean() if step % self.log_interval == 0: L.log('train_alpha/loss', alpha_loss, step) L.log('train_alpha/value', self.alpha, step) alpha_loss.backward() self.log_alpha_optimizer.step() def update(self, replay_buffer, L, step): if step < 2000: for _ in range(2): obs, action, reward, next_obs, not_done = replay_buffer.sample( ) self.update_critic(obs, action, reward, next_obs, not_done, L, step) self.update_actor_and_alpha(obs, L, step) if step % self.log_interval == 0: L.log('train/batch_reward', reward.mean(), step) else: obs, action, reward, next_obs, not_done = replay_buffer.sample() if step % self.log_interval == 0: L.log('train/batch_reward', reward.mean(), step) self.MVE_prediction(replay_buffer, L, step) self.update_critic(obs, action, reward, next_obs, not_done, L, step) self.update_actor_and_alpha(obs, L, step) if step % self.critic_target_update_freq == 0: utils.soft_update_params(self.critic.Q1, self.critic_target.Q1, self.critic_tau) utils.soft_update_params(self.critic.Q2, self.critic_target.Q2, self.critic_tau) def save(self, model_dir, step): torch.save(self.actor.state_dict(), '%s/actor_%s.pt' % (model_dir, step)) torch.save(self.critic.state_dict(), '%s/critic_%s.pt' % (model_dir, step)) def save_model(self, model_dir, step): torch.save(self.model.state_dict(), '%s/model_%s.pt' % (model_dir, step)) def load(self, model_dir, step): self.actor.load_state_dict( torch.load('%s/actor_%s.pt' % (model_dir, step))) self.critic.load_state_dict( torch.load('%s/critic_%s.pt' % (model_dir, step)))
class Agent(): """ Interacts with and learns from the environment. """ def __init__(self, state_size, action_size, fc1_units, fc2_units): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action random_seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = torch.manual_seed(SEED) # Actor Network (w/ Target Network) self.actor_local = Actor(state_size, action_size, fc1_units, fc2_units).to(device) self.actor_target = Actor(state_size, action_size, fc1_units, fc2_units).to(device) self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR) # Critic Network (w/ Target Network) self.critic_local = Critic(state_size, action_size, fc1_units, fc2_units).to(device) self.critic_target = Critic(state_size, action_size, fc1_units, fc2_units).to(device) self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC, weight_decay=WEIGHT_DECAY) # Noise process self.noise = OrnsteinUhlenbeck(action_size, SEED) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, SEED, device) def step(self, time_step, state, action, reward, next_state, done): """Save experience in replay memory, and use random sample from buffer to learn.""" self.memory.add(state, action, reward, next_state, done) # Learn only every N_TIME_STEPS if time_step % N_TIME_STEPS != 0: return # Learn if enough samples are available in replay buffer if len(self.memory) > BATCH_SIZE: for i in range(N_LEARN_UPDATES): experiences = self.memory.sample() self.learn(experiences, GAMMA) def act(self, state, add_noise=True): """ Returns actions for given state as per current policy. """ state = torch.from_numpy(state).float().to(device) self.actor_local.eval() with torch.no_grad(): action = self.actor_local(state).cpu().data.numpy() self.actor_local.train() if add_noise: action += self.noise.sample() return np.clip(action, -1, 1) def reset(self): self.noise.reset() def learn(self, experiences, gamma): """Update policy and value parameters using given batch of experience tuples. Q_targets = r + γ * critic_target(next_state, actor_target(next_state)) where: actor_target(state) -> action critic_target(state, action) -> Q-value Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences # ---------------------------- update critic ---------------------------- # # Get predicted next-state actions and Q values from target models actions_next = self.actor_target(next_states) Q_targets_next = self.critic_target(next_states, actions_next) # Compute Q targets from current states (y_i) Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) # Compute critic loss Q_expected = self.critic_local(states, actions) critic_loss = F.mse_loss(Q_expected, Q_targets) # Minimize the loss self.critic_optimizer.zero_grad() critic_loss.backward() torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1) self.critic_optimizer.step() # ---------------------------- update actor ---------------------------- # # Compute actor loss actions_pred = self.actor_local(states) actor_loss = -self.critic_local(states, actions_pred).mean() # Minimize the loss self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # ----------------------- update target networks ----------------------- # self.soft_update(self.critic_local, self.critic_target, TAU) self.soft_update(self.actor_local, self.actor_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model: PyTorch model (weights will be copied from) target_model: PyTorch model (weights will be copied to) tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data) def store(self): torch.save(self.actor_local.state_dict(), 'checkpoint_actor.pth') torch.save(self.critic_local.state_dict(), 'checkpoint_critic.pth') def load(self): if os.path.isfile('checkpoint_actor.pth') and os.path.isfile( 'checkpoint_critic.pth'): print("=> loading checkpoints for Actor and Critic... ") self.actor_local.load_state_dict('checkpoint_actor') self.critic_local.load_state_dict('checkpoint_critic') print("done !") else: print("no checkpoints found for Actor and Critic...")
class A2C(): def __init__(self, state_dim, action_dim, action_lim, update_type='soft', lr_actor=1e-4, lr_critic=1e-3, tau=1e-3, mem_size=1e6, batch_size=256, gamma=0.99, other_cars=False, ego_dim=None): self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.joint_model = False if len(state_dim) == 3: self.model = ActorCriticCNN(state_dim, action_dim, action_lim) self.model_optim = optim.Adam(self.model.parameters(), lr=lr_actor) self.target_model = ActorCriticCNN(state_dim, action_dim, action_lim) self.target_model.load_state_dict(self.model.state_dict()) self.model.to(self.device) self.target_model.to(self.device) self.joint_model = True else: self.actor = Actor(state_dim, action_dim, action_lim, other_cars=other_cars, ego_dim=ego_dim) self.actor_optim = optim.Adam(self.actor.parameters(), lr=lr_actor) self.target_actor = Actor(state_dim, action_dim, action_lim, other_cars=other_cars, ego_dim=ego_dim) self.target_actor.load_state_dict(self.actor.state_dict()) self.target_actor.eval() self.critic = Critic(state_dim, action_dim, other_cars=other_cars, ego_dim=ego_dim) self.critic_optim = optim.Adam(self.critic.parameters(), lr=lr_critic, weight_decay=1e-2) self.target_critic = Critic(state_dim, action_dim, other_cars=other_cars, ego_dim=ego_dim) self.target_critic.load_state_dict(self.critic.state_dict()) self.target_critic.eval() self.actor.to(self.device) self.target_actor.to(self.device) self.critic.to(self.device) self.target_critic.to(self.device) self.action_lim = action_lim self.tau = tau # hard update if tau is None self.update_type = update_type self.batch_size = batch_size self.gamma = gamma if self.joint_model: mem_size = mem_size//100 self.memory = Memory(int(mem_size), action_dim, state_dim) mu = np.zeros(action_dim) sigma = np.array([0.5, 0.05]) self.noise = OrnsteinUhlenbeckActionNoise(mu, sigma) self.target_noise = OrnsteinUhlenbeckActionNoise(mu, sigma) self.initialised = True self.training = False def select_action(self, obs): with torch.no_grad(): obs = torch.FloatTensor(np.expand_dims(obs, axis=0)).to(self.device) if self.joint_model: action, _ = self.model(obs) action = action.data.cpu().numpy().flatten() else: action = self.actor(obs).data.cpu().numpy().flatten() if self.training: action += self.noise() return action else: return action def append(self, obs0, action, reward, obs1, terminal1): self.memory.append(obs0, action, reward, obs1, terminal1) def reset_noise(self): self.noise.reset() self.target_noise.reset() def train(self): if self.joint_model: self.model.train() self.target_model.train() else: self.actor.train() self.target_actor.train() self.critic.train() self.target_critic.train() self.training = True def eval(self): if self.joint_model: self.model.eval() self.target_model.eval() else: self.actor.eval() self.target_actor.eval() self.critic.eval() self.target_critic.eval() self.training = False def save(self, folder, episode, previous=None, solved=False): filename = lambda type, ep : folder + '%s' % type + \ (not solved) * ('_ep%d' % (ep)) + \ (solved * '_solved') + '.pth' if self.joint_model: torch.save(self.model.state_dict(), filename('model', episode)) torch.save(self.target_model.state_dict(), filename('target_model', episode)) else: torch.save(self.actor.state_dict(), filename('actor', episode)) torch.save(self.target_actor.state_dict(), filename('target_actor', episode)) torch.save(self.critic.state_dict(), filename('critic', episode)) torch.save(self.target_critic.state_dict(), filename('target_critic', episode)) if previous is not None and previous > 0: if self.joint_model: os.remove(filename('model', previous)) os.remove(filename('target_model', previous)) else: os.remove(filename('actor', previous)) os.remove(filename('target_actor', previous)) os.remove(filename('critic', previous)) os.remove(filename('target_critic', previous)) def load_actor(self, actor_filepath): qualifier = '_' + actor_filepath.split("_")[-1] folder = actor_filepath[:actor_filepath.rfind("/")+1] filename = lambda type : folder + '%s' % type + qualifier if self.joint_model: self.model.load_state_dict(torch.load(filename('model'), map_location=self.device)) self.target_model.load_state_dict(torch.load(filename('target_model'), map_location=self.device)) else: self.actor.load_state_dict(torch.load(filename('actor'), map_location=self.device)) self.target_actor.load_state_dict(torch.load(filename('target_actor'), map_location=self.device)) def load_all(self, actor_filepath): self.load_actor(actor_filepath) qualifier = '_' + actor_filepath.split("_")[-1] folder = actor_filepath[:actor_filepath.rfind("/")+1] filename = lambda type : folder + '%s' % type + qualifier if not self.joint_model: self.critic.load_state_dict(torch.load(filename('critic'), map_location=self.device)) self.target_critic.load_state_dict(torch.load(filename('target_critic'), map_location=self.device)) def update(self, target_noise=True): try: minibatch = self.memory.sample(self.batch_size) # dict of ndarrays except ValueError as e: print('Replay memory not big enough. Continue.') return None, None states = Variable(torch.FloatTensor(minibatch['obs0'])).to(self.device) actions = Variable(torch.FloatTensor(minibatch['actions'])).to(self.device) rewards = Variable(torch.FloatTensor(minibatch['rewards'])).to(self.device) next_states = Variable(torch.FloatTensor(minibatch['obs1'])).to(self.device) terminals = Variable(torch.FloatTensor(minibatch['terminals1'])).to(self.device) if self.joint_model: target_actions, _ = self.target_model(next_states) if target_noise: for sample in range(target_actions.shape[0]): target_actions[sample] += self.target_noise() target_actions[sample].clamp(-self.action_lim, self.action_lim) _, target_qvals = self.target_model(next_states, target_actions=target_actions) y = rewards + self.gamma * (1 - terminals) * target_qvals _, model_qvals = self.model(states, target_actions=actions) value_loss = F.mse_loss(y, model_qvals) model_actions, _ = self.model(states) _, model_qvals = self.model(states, target_actions=model_actions) action_loss = -model_qvals.mean() self.model_optim.zero_grad() (value_loss + action_loss).backward() self.model_optim.step() else: target_actions = self.target_actor(next_states) if target_noise: for sample in range(target_actions.shape[0]): target_actions[sample] += self.target_noise() target_actions[sample].clamp(-self.action_lim, self.action_lim) target_critic_qvals = self.target_critic(next_states, target_actions) y = rewards + self.gamma * (1 - terminals) * target_critic_qvals # optimise critic critic_qvals = self.critic(states, actions) value_loss = F.mse_loss(y, critic_qvals) self.critic_optim.zero_grad() value_loss.backward() self.critic_optim.step() # optimise actor action_loss = -self.critic(states, self.actor(states)).mean() self.actor_optim.zero_grad() action_loss.backward() self.actor_optim.step() # optimise target networks if self.update_type == 'soft': if self.joint_model: soft_update(self.target_model, self.model, self.tau) else: soft_update(self.target_actor, self.actor, self.tau) soft_update(self.target_critic, self.critic, self.tau) else: if self.joint_model: hard_update(self.target_model, self.model) else: hard_update(self.target_actor, self.actor) hard_update(self.target_critic, self.critic) return action_loss.item(), value_loss.item()
avg_loss_critic = torch.tensor(loss_critic).mean().item() win_score = vis.line( X=[i], Y=[avg_score], win=win_score, update="append") if win_score else vis.line( X=[i], Y=[avg_score], opts=dict(title="Average Score", xlabel="Episodes")) win_actor_score = vis.line( X=[i], Y=[avg_score_actor], win=win_actor_score, update="append") if win_actor_score else vis.line( X=[i], Y=[avg_score_actor], opts=dict(title="Average Actor Score", xlabel="Episodes")) win_critic_loss = vis.line( X=[i], Y=[avg_loss_critic], win=win_critic_loss, update="append") if win_critic_loss else vis.line( X=[i], Y=[avg_loss_critic], opts=dict(title="Average Critic Loss", xlabel="Episodes")) print( "Episode: {}/{}, Score: {:.4f}, Score Actor: {:.4f}, Loss Critic: {:.7f}, Noise Std: {:.4f}" .format(i + 1, args.episodes, avg_score, avg_score_actor, avg_loss_critic, noise_std)) score_actor = [] loss_critic = [] score = 0 env.close() torch.save(actor.state_dict(), "checkpoint_ddpg.pth")
class DDPG(): """ Deep Deterministic Policy Gradients Agent used to interaction with and learn from an environment """ def __init__(self, state_size: int, action_size: int, num_agents: int, epsilon, random_seed: int): """ Initialize a DDPG Agent Object :param state_size: dimension of state (input) :param action_size: dimension of action (output) :param num_agents: number of concurrent agents in the environment :param epsilon: initial value of epsilon for exploration :param random_seed: random seed """ self.state_size = state_size self.action_size = action_size self.num_agents = num_agents self.seed = random.seed(random_seed) self.device = torch.device( "cuda:0" if torch.cuda.is_available() else "cpu") self.t_step = 0 # Hyperparameters self.buffer_size = 1000000 self.batch_size = 128 self.update_every = 10 self.num_updates = 10 self.gamma = 0.99 self.tau = 0.001 self.lr_actor = 0.0001 self.lr_critic = 0.001 self.weight_decay = 0 self.epsilon = epsilon self.epsilon_decay = 0.97 self.epsilon_min = 0.005 # Networks (Actor: State -> Action, Critic: (State,Action) -> Value) self.actor_local = Actor(self.state_size, self.action_size, random_seed).to(self.device) self.actor_target = Actor(self.state_size, self.action_size, random_seed).to(self.device) self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=self.lr_actor) self.critic_local = Critic(self.state_size, self.action_size, random_seed).to(self.device) self.critic_target = Critic(self.state_size, self.action_size, random_seed).to(self.device) self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=self.lr_critic, weight_decay=self.weight_decay) # Initialize actor and critic networks to start with same parameters self.soft_update(self.actor_local, self.actor_target, tau=1) self.soft_update(self.critic_local, self.critic_target, tau=1) # Noise Setup self.noise = OUNoise(self.action_size, random_seed) # Replay Buffer Setup self.memory = ReplayBuffer(self.buffer_size, self.batch_size) def __str__(self): return "DDPG_Agent" def train(self, env, brain_name, num_episodes=200, max_time=1000, print_every=10): """ Interacts with and learns from a given Unity Environment :param env: Unity Environment the agents is trying to learn :param brain_name: Brain for Environment :param num_episodes: Number of episodes to train :param max_time: How long each episode runs for :param print_every: How often in episodes to print a running average :return: Returns episodes scores and 100 episode averages as lists """ # --------- Set Everything up --------# scores = [] avg_scores = [] scores_deque = deque(maxlen=print_every) # -------- Simulation Loop --------# for episode_num in range(1, num_episodes + 1): # Reset everything env_info = env.reset(train_mode=True)[brain_name] states = env_info.vector_observations episode_scores = np.zeros(self.num_agents) self.reset_noise() # Run the episode for t in range(max_time): actions = self.act(states, self.epsilon) env_info = env.step(actions)[brain_name] next_states, rewards, dones = env_info.vector_observations, env_info.rewards, env_info.local_done self.step(states, actions, rewards, next_states, dones) episode_scores += rewards states = next_states if np.any(dones): break # -------- Episode Finished ---------# self.epsilon *= self.epsilon_decay self.epsilon = max(self.epsilon, self.epsilon_min) scores.append(np.mean(episode_scores)) scores_deque.append(np.mean(episode_scores)) avg_scores.append(np.mean(scores_deque)) if episode_num % print_every == 0: print( f'Episode: {episode_num} \tAverage Score: {round(np.mean(scores_deque), 2)}' ) torch.save( self.actor_local.state_dict(), f'{PATH}\checkpoints\{self.__str__()}_Actor_Multiple.pth') torch.save( self.critic_local.state_dict(), f'{PATH}\checkpoints\{self.__str__()}_Critic_Multiple.pth') # -------- All Episodes finished Save parameters and scores --------# # Save Model Parameters torch.save(self.actor_local.state_dict(), f'{PATH}\checkpoints\{self.__str__()}_Actor_Multiple.pth') torch.save(self.critic_local.state_dict(), f'{PATH}\checkpoints\{self.__str__()}_Critic_Multiple.pth') # Save mean score per episode (of the 20 agents) f = open(f'{PATH}\scores\{self.__str__()}_Multiple_Scores.txt', 'w') scores_string = "\n".join([str(score) for score in scores]) f.write(scores_string) f.close() # Save average scores for 100 window average f = open(f'{PATH}\scores\{self.__str__()}_Multiple_AvgScores.txt', 'w') avgScores_string = "\n".join([str(score) for score in avg_scores]) f.write(avgScores_string) f.close() return scores, avg_scores def step(self, states, actions, rewards, next_states, dones): """ what the agent needs to do for every time step that occurs in the environment. Takes in a (s,a,r,s',d) tuple and saves it to memeory and learns from experiences. Note: this is not the same as a step in the environment. Step is only called once per environment time step. :param states: array of states agent used to select actions :param actions: array of actions taken by agents :param rewards: array of rewards for last action taken in environment :param next_states: array of next states after actions were taken :param dones: array of bools representing if environment is finished or not """ # Save experienced in replay memory for agent_num in range(self.num_agents): self.memory.add(states[agent_num], actions[agent_num], rewards[agent_num], next_states[agent_num], dones[agent_num]) # Learn "num_updates" times every "update_every" time step self.t_step += 1 if len(self.memory ) > self.batch_size and self.t_step % self.update_every == 0: self.t_step = 0 for _ in range(self.num_updates): experiences = self.memory.sample() self.learn(experiences) def act(self, states, epsilon, add_noise=True): """ Returns actions for given states as per current policy. Policy comes from the actor network. :param states: array of states from the environment :param epsilon: probability of exploration :param add_noise: bool on whether or not to potentially have exploration for action :return: clipped actions """ states = torch.from_numpy(states).float().to(self.device) self.actor_local.eval() # Sets to eval mode (no gradients) with torch.no_grad(): actions = self.actor_local(states).cpu().data.numpy() self.actor_local.train() # Sets to train mode (gradients back on) if add_noise and epsilon > np.random.random(): actions += [self.noise.sample() for _ in range(self.num_agents)] return np.clip(actions, -1, 1) def reset_noise(self): """ resets to noise parameters """ self.noise.reset() def learn(self, experiences): """ Update actor and critic networks using a given batch of experiences Q_targets = r + γ * critic_target(next_state, actor_target(next_state)) where: actor_target(states) -> actions critic_target(states, actions) -> Q-value :param experiences: tuple of arrays (states, actions, rewards, next_states, dones) sampled from the replay buffer """ states, actions, rewards, next_states, dones = experiences # -------------------- Update Critic -------------------- # # Use target networks for getting next actions and q values and calculate q_targets next_actions = self.actor_target(next_states) next_q_targets = self.critic_target(next_states, next_actions) q_targets = rewards + (self.gamma * next_q_targets * (1 - dones)) # Compute critic loss (Same as DQN Loss) q_expected = self.critic_local(states, actions) critic_loss = F.mse_loss(q_expected, q_targets) # Minimize loss self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() # -------------------- Update Actor --------------------- # # Computer actor loss (maximize mean of Q(states,actions)) action_preds = self.actor_local(states) # Optimizer minimizes and we want to maximize so multiply by -1 actor_loss = -1 * self.critic_local(states, action_preds).mean() # Minimize the loss self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() #---------------- Update Target Networks ---------------- # self.soft_update(self.critic_local, self.critic_target, self.tau) self.soft_update(self.actor_local, self.actor_target, self.tau) def soft_update(self, local_network, target_network, tau): """ soft update newtwork parametes θ_target = τ*θ_local + (1 - τ)*θ_target :param local_network: PyTorch Network that is always up to date :param target_network: PyTorch Network that is not up to date :param tau: update (interpolation) parameter """ for target_param, local_param in zip(target_network.parameters(), local_network.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)