class Agent(): def __init__(self, alpha, beta, input_dims, tau, n_actions, gamma=0.99, max_size=50000, fc1_dims=400, fc2_dims=300, batch_size=32): self.gamma = gamma self.tau = tau self.batch_size = batch_size self.alpha = alpha self.beta = beta self.memory = ReplayBuffer(max_size, input_dims, n_actions) self.noise = OUActionNoise(mu=np.zeros(n_actions)) self.actor = ActorNetwork(alpha, input_dims, fc1_dims, fc2_dims, n_actions=n_actions, name='actor') self.critic = CriticNetwork(beta, input_dims, fc1_dims, fc2_dims, n_actions=n_actions, name='critic') self.target_actor = ActorNetwork(alpha, input_dims, fc1_dims, fc2_dims, n_actions=n_actions, name='target_actor') self.target_critic = CriticNetwork(beta, input_dims, fc1_dims, fc2_dims, n_actions=n_actions, name='target_critic') self.update_network_parameters( tau=1) # for the first time target_actor and actor are same def choose_action(self, observation): self.actor.eval( ) # we are setting our actor network to eval mode because we have batch normalization layer # and we dont want to calculate statistics for that layer at this step state = T.tensor([observation], dtype=T.float).to(self.actor.device) mu = self.actor.forward(state).to(self.actor.device) mu_prime = mu + T.tensor(self.noise(), dtype=T.float).to( self.actor.device) self.actor.train() return mu_prime.cpu().detach().numpy()[0] def remember(self, state, action, reward, state_, done): self.memory.store_transition(state, action, reward, state_, done) def save_models(self): self.actor.save_checkpoint() self.target_actor.save_checkpoint() self.critic.save_checkpoint() self.target_critic.save_checkpoint() def load_models(self): self.actor.load_checkpoint() self.target_actor.load_checkpoint() self.critic.load_checkpoint() self.target_critic.load_checkpoint() def learn(self): if self.memory.mem_cntr < self.batch_size: return states, actions, rewards, states_, done = self.memory.sample_buffer( self.batch_size) states = T.tensor(states, dtype=T.float).to(self.actor.device) states_ = T.tensor(states_, dtype=T.float).to(self.actor.device) actions = T.tensor(actions, dtype=T.float).to(self.actor.device) rewards = T.tensor(rewards, dtype=T.float).to(self.actor.device) done = T.tensor(done).to(self.actor.device) target_actions = self.target_actor.forward(states_) critic_value_ = self.target_critic.forward(states_, target_actions) critic_value = self.critic.forward(states, actions) critic_value_[done] = 0.0 critic_value_ = critic_value_.view(-1) target = rewards + self.gamma * critic_value_ target = target.view(self.batch_size, 1) self.critic.optimizer.zero_grad() critic_loss = F.mse_loss(target, critic_value) critic_loss.backward() self.critic.optimizer.step() self.actor.optimizer.zero_grad() actor_loss = -self.critic.forward(states, self.actor.forward(states)) actor_loss = T.mean(actor_loss) actor_loss.backward() self.actor.optimizer.step() self.update_network_parameters( ) # sending tau None so that local tau variable there takes the value of class tau variable def update_network_parameters(self, tau=None): if tau is None: tau = self.tau actor_params = self.actor.named_parameters() critic_params = self.critic.named_parameters() target_actor_params = self.target_actor.named_parameters() target_critic_params = self.target_critic.named_parameters() critic_state_dict = dict(critic_params) actor_state_dict = dict(actor_params) target_critic_state_dict = dict(target_critic_params) target_actor_state_dict = dict(target_actor_params) for name in critic_state_dict: critic_state_dict[name] = tau * critic_state_dict[name].clone() + ( 1 - tau) * target_critic_state_dict[name].clone() for name in actor_state_dict: actor_state_dict[name] = tau * actor_state_dict[name].clone() + ( 1 - tau) * target_actor_state_dict[name].clone() self.target_critic.load_state_dict(critic_state_dict) self.target_actor.load_state_dict(actor_state_dict)
class DdpgAgent: """ A Deep Deterministic Policy Gradient Agent. Interacts with and learns from the environment. """ def __init__(self, num_agents, state_size, action_size, random_seed): """ Initialize an Agent object. Params ====== num_agents (int): number of agents observed at the same time. multiple agents are handled within the class. state_size (int): dimension of each state action_size (int): dimension of each action random_seed (int): random seed """ if random_seed is not None: random.seed(random_seed) np.random.seed(random_seed) self.t_step = 0 # A counter that increases each time the "step" function is executed self.state_size = state_size self.action_size = action_size # Actor Network (w/ Target Network) self.actor_local = ActorNetwork(state_size, action_size, USE_BATCH_NORM, random_seed, fc1_units=FC1_UNITS, fc2_units=FC2_UNITS, fc3_units=FC3_UNITS).to(device) self.actor_target = ActorNetwork(state_size, action_size, USE_BATCH_NORM, random_seed, fc1_units=FC1_UNITS, fc2_units=FC2_UNITS, fc3_units=FC3_UNITS).to(device) self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR, weight_decay=WEIGHT_DECAY_ACTOR) # self.actor_optimizer = optim.RMSprop(self.actor_local.parameters(), lr=LR_ACTOR, # weight_decay=WEIGHT_DECAY_ACTOR) # Also solves it, but Adam quicker # Critic Network (w/ Target Network) self.critic_local = CriticNetwork(state_size, action_size, USE_BATCH_NORM, random_seed, fc1_units=FC1_UNITS, fc2_units=FC2_UNITS, fc3_units=FC3_UNITS).to(device) self.critic_target = CriticNetwork(state_size, action_size, USE_BATCH_NORM, random_seed, fc1_units=FC1_UNITS, fc2_units=FC2_UNITS, fc3_units=FC3_UNITS).to(device) self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC, weight_decay=WEIGHT_DECAY_CRITIC) # self.critic_optimizer = optim.RMSprop(self.critic_local.parameters(), lr=LR_CRITIC, # weight_decay=WEIGHT_DECAY_CRITIC) # Also solves it, but Adam quicker # Make sure target is initiated with the same weight as the local network self.soft_update(self.actor_local, self.actor_target, 1) self.soft_update(self.critic_local, self.critic_target, 1) # Setting default modes for the networks # Target networks do not need to train, so always eval() # Local networks, in training mode, unless altered in code - eg when acting. self.actor_local.train() self.actor_target.eval() self.critic_local.train() self.critic_target.eval() # Action Noise process (encouraging exploration during training) # Could consider parameter noise in future as a potentially better alternative / addition if ACTION_NOISE_METHOD == 'initial': self.noise = InitialOrnsteinUhlenbeckActionNoise( shape=(num_agents, action_size), random_seed=random_seed, x0=0, mu=0, theta=NOISE_THETA, sigma=NOISE_SIGMA) elif ACTION_NOISE_METHOD == 'adjusted': self.noise = AdjustedOrnsteinUhlenbeckActionNoise( shape=(num_agents, action_size), random_seed=random_seed, x0=0, mu=0, sigma=NOISE_SIGMA, theta=NOISE_THETA, dt=NOISE_DT, sigma_delta=NOISE_SIGMA_DELTA, ) else: raise ValueError('Unknown action noise method: ' + ACTION_NOISE_METHOD) # Replay memory self.memory = ReplayBuffer( buffer_size=REPLAY_BUFFER_SIZE, batch_size=BATCH_SIZE, sampling_method=REPLAY_BUFFER_SAMPLING_METHOD, random_seed=random_seed) def step(self, states, actions, rewards, next_states, dones): """Save experience in replay memory, and use random sample from buffer to learn.""" self.t_step += 1 # Save experience / reward self.memory.add(states, actions, rewards, next_states, dones) # Learn, if enough samples are available in memory, every UPDATE_EVERY steps if self.t_step % UPDATE_EVERY == 0: if len(self.memory) > BATCH_SIZE: experiences = self.memory.sample() self.learn(experiences, GAMMA) def act(self, states, add_action_noise=False): """Returns actions for given state as per current policy.""" states = torch.from_numpy(states).float().to(device) self.actor_local.eval( ) # train state is set right before actual training with torch.no_grad( ): # All calcs here with no_grad, but many examples didn't do this. Weirdly, this is slower.. return np.clip( self.actor_local(states).cpu().data.numpy() + (self.noise.sample() if add_action_noise else 0), -1, 1) def reset(self): self.noise.reset() def learn(self, experiences, gamma): """ Update policy and value parameters using given batch of experience tuples. Q_targets = r + γ * critic_target(next_state, actor_target(next_state)) where: actor_target(state) -> action critic_target(state, action) -> Q-value Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): reward discount factor """ states, actions, rewards, next_states, dones = experiences self.actor_local.train( ) # critic_local is always in train state, but actor_local goes into eval with acting # Critic # Get predicted next-state actions and Q values from target models actions_next = self.actor_target(next_states) Q_targets_next = self.critic_target(next_states, actions_next) # Compute Q targets for current states (y_i) Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) # Compute critic loss Q_expected = self.critic_local(states, actions) critic_loss = F.mse_loss(Q_expected, Q_targets) # Minimize the loss self.critic_optimizer.zero_grad() critic_loss.backward() if CLIP_GRADIENT_CRITIC: torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1) self.critic_optimizer.step() # Actor # Compute actor loss actions_pred = self.actor_local(states) actor_loss = -self.critic_local(states, actions_pred).mean() # Minimize the loss self.actor_optimizer.zero_grad() actor_loss.backward() if CLIP_GRADIENT_ACTOR: torch.nn.utils.clip_grad_norm_(self.actor_local.parameters(), 1) self.actor_optimizer.step() # Soft-Update of Target Networks self.soft_update(self.critic_local, self.critic_target, TAU) self.soft_update(self.actor_local, self.actor_target, TAU) def soft_update(self, local_model, target_model, tau): """ Soft update target model parameters from local model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model: PyTorch model (weights will be copied from) target_model: PyTorch model (weights will be copied to) tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
class Agent(object): def __init__(self, alpha, beta, input_dims, action_bound, tau, env, gamma=0.99, n_actions=2, max_size=1000000, layer1_size=400, layer2_size=300, batch_size=64): self.gamma = gamma self.tau = tau self.memory = ReplayBuffer(max_size, input_dims, n_actions) self.batch_size = batch_size self.action_bound = action_bound self.actor = ActorNetwork(alpha, input_dims, layer1_size, layer2_size, n_actions=n_actions, name='Actor') self.critic = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions=n_actions, name='Critic') self.target_actor = ActorNetwork(alpha, input_dims, layer1_size, layer2_size, n_actions=n_actions, name='TargetActor') self.target_critic = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions=n_actions, name='TargetCritic') self.noise = OUActionNoise(mu=np.zeros(n_actions)) self.update_network_parameters(tau=1) def choose_action(self, observation): self.actor.eval() observation = T.tensor(observation, dtype=T.float).to(self.actor.device) mu = self.actor.forward(observation).to(self.actor.device) mu_prime = mu + T.tensor(self.noise(), dtype=T.float).to( self.actor.device) self.actor.train() return (mu_prime * T.tensor(self.action_bound)).cpu().detach().numpy() def remember(self, state, action, reward, new_state, done): self.memory.store_transition(state, action, reward, new_state, done) def learn(self): if self.memory.mem_cntr < self.batch_size: return state, action, reward, new_state, done = \ self.memory.sample_buffer(self.batch_size) reward = T.tensor(reward, dtype=T.float).to(self.critic.device) done = T.tensor(done).to(self.critic.device) new_state = T.tensor(new_state, dtype=T.float).to(self.critic.device) action = T.tensor(action, dtype=T.float).to(self.critic.device) state = T.tensor(state, dtype=T.float).to(self.critic.device) self.target_actor.eval() self.target_critic.eval() self.critic.eval() target_actions = self.target_actor.forward(new_state) critic_value_ = self.target_critic.forward(new_state, target_actions) critic_value = self.critic.forward(state, action) target = [] for j in range(self.batch_size): target.append(reward[j] + self.gamma * critic_value_[j] * done[j]) target = T.tensor(target).to(self.critic.device) target = target.view(self.batch_size, 1) self.critic.train() self.critic.optimizer.zero_grad() critic_loss = F.mse_loss(target, critic_value) critic_loss.backward() self.critic.optimizer.step() self.critic.eval() self.actor.optimizer.zero_grad() mu = self.actor.forward(state) self.actor.train() actor_loss = -self.critic.forward(state, mu) actor_loss = T.mean(actor_loss) actor_loss.backward() self.actor.optimizer.step() self.update_network_parameters() def update_network_parameters(self, tau=None): if tau is None: tau = self.tau actor_params = self.actor.named_parameters() critic_params = self.critic.named_parameters() target_actor_params = self.target_actor.named_parameters() target_critic_params = self.target_critic.named_parameters() critic_state_dict = dict(critic_params) actor_state_dict = dict(actor_params) target_critic_dict = dict(target_critic_params) target_actor_dict = dict(target_actor_params) for name in critic_state_dict: critic_state_dict[name] = tau*critic_state_dict[name].clone() + \ (1-tau)*target_critic_dict[name].clone() self.target_critic.load_state_dict(critic_state_dict) for name in actor_state_dict: actor_state_dict[name] = tau*actor_state_dict[name].clone() + \ (1-tau)*target_actor_dict[name].clone() self.target_actor.load_state_dict(actor_state_dict) """ #Verify that the copy assignment worked correctly target_actor_params = self.target_actor.named_parameters() target_critic_params = self.target_critic.named_parameters() critic_state_dict = dict(target_critic_params) actor_state_dict = dict(target_actor_params) print('\nActor Networks', tau) for name, param in self.actor.named_parameters(): print(name, T.equal(param, actor_state_dict[name])) print('\nCritic Networks', tau) for name, param in self.critic.named_parameters(): print(name, T.equal(param, critic_state_dict[name])) input() """ def save_models(self): self.actor.save_checkpoint() self.target_actor.save_checkpoint() self.critic.save_checkpoint() self.target_critic.save_checkpoint() def load_models(self): self.actor.load_checkpoint() self.target_actor.load_checkpoint() self.critic.load_checkpoint() self.target_critic.load_checkpoint() def check_actor_params(self): current_actor_params = self.actor.named_parameters() current_actor_dict = dict(current_actor_params) original_actor_dict = dict(self.original_actor.named_parameters()) original_critic_dict = dict(self.original_critic.named_parameters()) current_critic_params = self.critic.named_parameters() current_critic_dict = dict(current_critic_params) print('Checking Actor parameters') for param in current_actor_dict: print( param, T.equal(original_actor_dict[param], current_actor_dict[param])) print('Checking critic parameters') for param in current_critic_dict: print( param, T.equal(original_critic_dict[param], current_critic_dict[param])) input()
class Agent: """ This class represents the reinforcement learning agent """ def __init__(self, state_size: int, action_size: int, gamma: float = 0.99, lr_actor: float = 0.001, lr_critic: float = 0.003, weight_decay: float = 0.0001, tau: float = 0.001, buffer_size: int = 100000, batch_size: int = 64): """ :param state_size: how many states does the agent get as input (input size of neural networks) :param action_size: from how many actions can the agent choose :param gamma: discount factor :param lr_actor: learning rate of the actor network :param lr_critic: learning rate of the critic network :param weight_decay: :param tau: soft update parameter :param buffer_size: size of replay buffer :param batch_size: size of learning batch (mini-batch) """ self.tau = tau self.gamma = gamma self.batch_size = batch_size self.actor_local = ActorNetwork(state_size, action_size).to(device) self.actor_target = ActorNetwork(state_size, action_size).to(device) self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=lr_actor) print(self.actor_local) self.critic_local = CriticNetwork(state_size, action_size).to(device) self.critic_target = CriticNetwork(state_size, action_size).to(device) self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=lr_critic, weight_decay=weight_decay) print(self.critic_local) self.hard_update(self.actor_local, self.actor_target) self.hard_update(self.critic_local, self.critic_target) self.memory = ReplayBuffer(action_size, buffer_size, batch_size) # this would probably also work with Gaussian noise instead of Ornstein-Uhlenbeck process self.noise = OUNoise(action_size) def step(self, experience: tuple): """ :param experience: tuple consisting of (state, action, reward, next_state, done) :return: """ self.memory.add(*experience) if len(self.memory) > self.batch_size: experiences = self.memory.sample() self.learn(experiences) def act(self, state, add_noise: bool = True): """ Actor uses the policy to act given a state """ state = torch.from_numpy(state).float().to(device) self.actor_local.eval() with torch.no_grad(): action = self.actor_local.forward(state).cpu().data.numpy() self.actor_local.train() if add_noise: action += self.noise.sample() return np.clip(action, -1, 1) def learn(self, experiences): # Q_targets = r + γ * critic_target(next_state, actor_target(next_state)) # the actor_target returns the next action, this next action is then used (with the state) to estimate # the Q-value with the critic_target network states, actions, rewards, next_states, dones = experiences # region Update Critic actions_next = self.actor_target.forward(next_states) q_expected = self.critic_local.forward(states, actions) q_targets_next = self.critic_target.forward(next_states, actions_next) q_targets = rewards + (self.gamma * q_targets_next * (1 - dones)) # minimize the loss critic_loss = F.mse_loss(q_expected, q_targets) self.critic_optimizer.zero_grad() critic_loss.backward() torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1) self.critic_optimizer.step() # endregion Update Critic # region Update actor # Compute actor loss actions_predictions = self.actor_local.forward(states) actor_loss = -self.critic_local.forward(states, actions_predictions).mean() # Minimize actor loss self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # endregion Update actor # region update target network self.soft_update(self.critic_local, self.critic_target) self.soft_update(self.actor_local, self.actor_target) # endregion update target network def soft_update(self, local_model, target_model): for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(self.tau * local_param.data + (1.0 - self.tau) * target_param.data) def hard_update(self, local_model, target_model): """Copy the weights and biases from the local to the target network""" for target_param, param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(param.data) def reset(self): self.noise.reset()