Exemple #1
0
print(adjac)
print(Z)

new_graph.add_edges_from(adjac)

# Draw the resulting graph
nx.draw(new_graph, with_labels=True, font_weight='bold')

S = [6, 7, 13]
T = [4, 15, 8, 14, 3, 11, 1, 10, 0]

# Conductance
sumOfCond = []

for i in range(len(cluster)):
    sumOfCond.append(conductance(new_graph, cluster[i]))

condScoreS = conductance(new_graph, S)
condScoreT = conductance(new_graph, T)
overallCond = min(sumOfCond)

# Modularity Communities
barbMod = list(greedy_modularity_communities(new_graph))

# Modularity Score
barbModScore = qu.modularity(new_graph, barbMod)

# edge_betweenness_centrality
barbedgeBetweenness = nx.edge_betweenness_centrality(new_graph, None, False)
barbaverageEdge = sum(barbedgeBetweenness.values()) / len(barbedgeBetweenness)
barbtotalEdge = sum(barbedgeBetweenness.values())
    barbaverageEdge = sum(
        barbedgeBetweenness.values()) / len(barbedgeBetweenness)
    barbtotalEdge = sum(barbedgeBetweenness.values())
    print("\n")
    print("\n")
    print("Scores for Cut Distance: ", cutDistance[a])
    print("\n")
    # print sets of nodes, one for each community.
    print("Communities: ", barbMod)
    print("\n")
    # Modularity Score
    print("Modularity: ", barbModScore)
    print("\n")
    # Conductance Score
    sumOfCond = []

    for i in range(len(clusterL)):
        if clusterL[i] == []:
            # catch Division by zero
            continue
        # calculate Cond for current Cluster in list of Clusters
        currentCond = conductance(new_graph, clusterL[i])
        sumOfCond.append(currentCond)
        print("Conductance for: ", clusterL[i], " = ", currentCond)
    overallCond = min(sumOfCond)
    print("Overall Conductance: ", overallCond)
    print("\n")

    # edge_betweenness_centrality
    print("Edge Betweenness Centrality Score: ", barbaverageEdge)
Exemple #3
0
from networkx.algorithms.cuts import conductance
from networkx.algorithms.community import quality as qu

# barbell_graph

barb = nx.barbell_graph(4, 0)
nx.draw(barb, with_labels=True, font_weight='bold')
S = [0, 1, 2, 3]
T = [4, 5, 6, 7]
cluster = [[0, 1, 2, 3], [4, 5, 6, 7]]

# Conductance
sumOfCond = []

for i in range(len(cluster)):
    sumOfCond.append(conductance(barb, cluster[i]))

condScoreS = conductance(barb, S)
condScoreT = conductance(barb, T)
overallCond = min(sumOfCond)

# Modularity Communities
barbMod = list(greedy_modularity_communities(barb))

# Modularity Score
barbModScore = qu.modularity(barb, barbMod)

# edge_betweenness_centrality
barbedgeBetweenness = nx.edge_betweenness_centrality(barb, None, False)
barbaverageEdge = sum(barbedgeBetweenness.values()) / len(barbedgeBetweenness)
barbtotalEdge = sum(barbedgeBetweenness.values())
Exemple #4
0
    # Modularity Score
    print("Modularity: ", ModScore)
    print("\n")
    modularityEnsemble.update({cutDistance[a]: ModScore})

    # Conductance Score
    sumOfCond = []

    for i in range(len(clusterL)):
        if clusterL[i] == []:
            # catch Division by zero
            continue
        if nx.volume(original_graph, clusterL[i]) == 0:
            continue
        # calculate Cond for current Cluster in list of Clusters
        currentCond = conductance(original_graph, clusterL[i])
        sumOfCond.append(currentCond)
        print("Conductance for: ", clusterL[i], " = ", currentCond)

    overallCond = min(sumOfCond)

    print("Overall Conductance: ", overallCond)
    print("\n")
    conductanceEnsemble.update({cutDistance[a]: overallCond})

    # edge betweenness centrality Score
    print("Edge Betweenness Centrality Score: ", averageEdge)
    print("Edge Betweenness Centrality Score: ", totalEdge)
    edgeEnsemble.update({cutDistance[a]: totalEdge})

bestModCut = max(modularityEnsemble, key=modularityEnsemble.get)
# Draw the resulting graph
nx.draw(my_graph, with_labels=True, font_weight='bold')

# Modularity Communities
c = list(greedy_modularity_communities(my_graph))

# Modularity Score
modScore = qu.modularity(my_graph, c)

# Conductance
# S (sequence) – A sequence of nodes in my_graph.
# T (sequence) – A sequence of nodes in my_graph.
S = [0, 1]
T = [2, 3, 4]
condScore = conductance(my_graph, S, T)

# edge_betweenness_centrality
edgeBetweenness = nx.edge_betweenness_centrality(my_graph)
averageEdge = sum(edgeBetweenness.values()) / len(edgeBetweenness)
totalEdge = sum(edgeBetweenness.values())

# print sets of nodes, one for each community.
print("Communities: ", c)

# Modularity Score
print("Modularity: ", modScore)

# Conductance Score
print("Conductance: ", condScore)
Exemple #6
0



import networkx.algorithms.cuts as cuts
import networkx.algorithms.community as community

# Generally, the lower value of
# conductance the better quality the cluster is (Cai 2011).
conductance_list_M = []
part_set_M         = []
for i in range(len(prS_modified)):
    p = i
    while p < len(prS_modified):
        conductance_list_M.append(
            cuts.conductance(G2, prS_modified[i],
                             prS_modified[p]))
        p += 1
conductance_list = []

for i in range(len(prS)):
    p = i + 1
    while p < len(prS):
        conductance_list.append(
            cuts.conductance(G2, prS[i],
                             prS[p]))
        p += 1

print(sum(conductance_list_M))
print(sum(conductance_list))