def predict(G, u, v): if G.is_directed(): return sum(1 / log(G.degree(w)) for w in nx.directed_common_neighbors(G, u, v)) else: return sum(1 / log(G.degree(w)) for w in nx.common_neighbors(G, u, v))
def predict(G, u, v): if G.is_directed(): return len(list(nx.directed_common_neighbors( G, u, v))) * (dict_ce[u][1] + dict_ce[v][2]) else: return len(list(nx.common_neighbors( G, u, v))) * (dict_ce[u][0] + dict_ce[v][0])
def predict(G, u, v): if G.is_directed(): union_size = len(set(G._succ[u]) | set(G._pred[v])) if union_size == 0: return 0 return len(list(nx.directed_common_neighbors(G, u, v))) / union_size else: union_size = len(set(G[u]) | set(G[v])) if union_size == 0: return 0 return len(list(nx.common_neighbors(G, u, v))) / union_size
def predict(G, u, v): if G.is_directed(): return sum(dict_ce[w][0] for w in nx.directed_common_neighbors(G, u, v)) else: return sum(dict_ce[w][0] for w in nx.common_neighbors(G, u, v))
def predict(G, u, v): if G.is_directed(): return len(list(nx.directed_common_neighbors(G, u, v))) else: return len(list(nx.common_neighbors(G, u, v)))