Exemple #1
0
def random_binary_dgm(n=10, p=0.2):
    G = nx.gnr_graph(n, p)
    dgm = DGM()
    dgm.add_nodes_from(G.nodes())
    dgm.add_edges_from(G.edges())
    nx.set_node_attributes(dgm, 'CPD', { node: TableFactor(random_table_factor(dgm.in_degree(node) + 1), list(dgm.predecessors(node)) + [node]) for node in dgm.nodes() })
    return dgm
Exemple #2
0
def named_subgraph_responses(client):

    route = API_LATEST + "/network/subgraph"
    responses = {}

    slow_graph = clean_graph_dict(nx.gnr_graph(200, p=0.05, seed=42))
    nodes = [{"id": "3"}, {"id": "29"}, {"id": "18"}]

    init_post_requests = [
        # name, file or object, is-fast
        ("subgraph_response_fast",
         get_payload("network_subgraph_request.json"), True),
        (
            "subgraph_response_slow",
            json.dumps(dict(graph=slow_graph, nodes=nodes)),
            False,
        ),
    ]

    for name, payload, isfast in init_post_requests:

        response = client.post(route, data=payload)
        responses[name] = response
        result_route = response.json()["result_route"]

        if isfast:
            # trigger the svg render here so it's ready to get later.
            client.get(result_route + "/img?media_type=svg")
            time.sleep(0.5)

    yield responses
Exemple #3
0
def generate_random_watershed_solve_request(context,
                                            n_nodes=55,
                                            pct_tmnt=0.5,
                                            seed=42):

    g = nx.relabel_nodes(nx.gnr_graph(n=n_nodes, p=0.0, seed=seed),
                         lambda x: str(x))

    request = generate_random_watershed_solve_request_from_graph(
        g, context, pct_tmnt=pct_tmnt)

    return request
Exemple #4
0
 def graph_sel(graphType, n, p):
     '''
     Funzione che genera e restituisce un grafo del tipo prescelto.
     Viene invocata solo se, nell'inizializzazione del repository,
     non viene direttamente specifica un grafo ma solo un graph type.
     '''
     return {
         'gn': lambda: nx.gn_graph(n),
         'gnr': lambda: nx.gnr_graph(n, p),
         'gnc': lambda: nx.gnc_graph(n),
         'scale_free': lambda: nx.scale_free_graph(n),
         'erdos_renyi': lambda: nx.erdos_renyi_graph(n, p, directed=True),
         'nSCC_graph': lambda: self.nSCC_graph(n)
     }.get(graphType, graphType)()
Exemple #5
0
def generate_n_random_valid_watershed_graphs(
    n_graphs: int = 3,
    min_graph_nodes: int = 20,
    max_graph_nodes: int = 50,
    seed: int = 42,
):

    G = nx.DiGraph()
    numpy.random.seed(seed)
    for i in range(n_graphs):
        n_nodes = numpy.random.randint(min_graph_nodes, max_graph_nodes)
        offset = len(G.nodes())
        g = nx.gnr_graph(n_nodes, 0.0, seed=i)
        G.add_edges_from([((offset + s), (offset + t)) for s, t in g.edges])
    return G
Exemple #6
0
def generate_random_graph(n, p):
    """
    Randamly generate graph.

    Paremeters
    ----------
    p: float
        The redirection probability

    Returns
    -------
    DiGraph
    """

    DG = nx.gnr_graph(n, p)
    return DG
Exemple #7
0
def directed_graphs():
    print("Directed graphs")
    print("Growing network")
    D = nx.gn_graph(10)  # the GN graph
    draw_graph(D)
    G = D.to_undirected()  # the undirected version
    draw_graph(G)
    D = nx.gn_graph(10, kernel=lambda x: x**1.5)  # A_k = k^1.5
    draw_graph(D)
    print("Growing network graph")
    D = nx.gnr_graph(n=11, p=0.3)
    draw_graph(D)
    G = D.to_undirected()
    draw_graph(G)
    print("Growing network with copying graph")
    D = nx.gnc_graph(n=7)
    draw_graph(D)
    G = D.to_undirected()
    draw_graph(G)
    print("Scale-free graph")
    G = nx.scale_free_graph(10)
    draw_graph(G)
Exemple #8
0
def named_validation_responses(client):

    route = API_LATEST + "/network/validate"
    responses = {}
    slow_valid = json.dumps(
        clean_graph_dict(nx.gnr_graph(15000, p=0.05, seed=42)))
    slow_invalid = json.dumps(clean_graph_dict(nx.gnc_graph(15000, seed=42)))

    init_post_requests = [
        ("valid_graph_response_fast",
         get_payload("network_validate_is_valid.json")),
        (
            "invalid_graph_response_fast",
            get_payload("network_validate_is_invalid_cycle.json"),
        ),
        ("valid_graph_response_slow", slow_valid),
        ("invalid_graph_response_slow", slow_invalid),
    ]

    for name, payload in init_post_requests:
        response = client.post(route, data=payload)
        responses[name] = response

    yield responses
Exemple #9
0
Created on Mon Jan 25 19:40:10 2016

@author: hp
"""
import csv
import re
import matplotlib.pyplot as plt
import networkx as nx
from operator import itemgetter
from networkx.algorithms import bipartite
from networkx.utils import (powerlaw_sequence, create_degree_sequence)
#from igraph import Graph, mean
import numpy as nm

#G=nx.gnm_random_graph(2939,30501,directed=True)
D = nx.gnr_graph(49, 0.09083)  # the GNR graph
G = D.to_undirected()  # the undirected version


#nx.draw_random(G1)
print(bipartite.is_bipartite(G))
d = nx.degree(G)
nx.draw(G, nodelist=d.keys())
#nx.draw(G, nodelist=d.keys(), node_size=[v * 20 for v in d.values()])
#plt.savefig("./random/sameNodesize.png")
plt.show()

print('diameter ',nx.diameter(G, e=None))# graph not connected
print('debsity', nx.density(G))
print("clustering coefficient",nx.average_clustering(G))
#print("average degree ", nm.mean(G.degree()))
Exemple #10
0
def watershed_graph():
    g = nx.gnr_graph(n=13, p=0.0, seed=0)
    nx.relabel_nodes(g, lambda x: str(x), copy=False)

    return g
Exemple #11
0
def generate_random_graph_request(n_nodes, seed=0):  # pragma: no cover
    g = nx.gnr_graph(n=n_nodes, p=0.0, seed=seed)
    graph_dict = clean_graph_dict(g)
    return {"graph": graph_dict}
Exemple #12
0
    # draw networkx graph
    nx.draw_networkx_nodes(G, pos, node_size = 200)
    nx.draw_networkx_edges(G, pos)
    nx.draw_networkx_labels(G, pos, labels = labels, font_size = 12)
    if (weighted):
        edge_labels = nx.get_edge_attributes(G, "weight")
        nx.draw_networkx_edge_labels(G, pos, edge_labels = edge_labels)
    # resize graph
    fig = plt.gcf()
    fig.set_size_inches((14, 14), forward = False)
    plt.savefig(fname + "_original.png")
    # clear previous graph
    plt.clf()

fname = "data/directed_weighted_gnr_graph" # path and filename

# Generate directed, weighted GNR graph
G = nx.gnr_graph(n=20, p=0.35, seed=1234)
for (u,v) in G.edges():
    G[u][v]["weight"] = round(random.uniform(0,1),3)

# Plots G using base spring layout
labels = {}    
for node in G.nodes():
    labels[node] = node
pos = nx.spring_layout(G)
draw_graph(G, pos, fname, labels, weighted=True)

# Embeds G, plots and saves results
spectral_embedder(G, fname, directed=nx.is_directed(G), weighted=True, plot=True, symmetric=False)
Exemple #13
0
 def random_gnr(n_var, p=0.2):
     return nx.gnr_graph(n_var, p)
Exemple #14
0
def generate_gnr(params={'n': 20, 'p': 0.2}):

    G = nx.gnr_graph(params['n'], params['p'])

    return G, None
Exemple #15
0
def generateRandomGraph(n, p):
    DG = nx.gnr_graph(n, p)
    return DG
Exemple #16
0
def test_facility_load_reduction(contexts, tmnt_facility):

    context = contexts["default"]

    g = nx.relabel_nodes(nx.gnr_graph(n=3, p=0.0, seed=0), lambda x: str(x))
    data = {
        "2": {
            "area_acres": 9.58071049103565,
            "imp_area_acres": 5.593145122640718,
            "perv_area_acres": 3.9875653683949315,
            "imp_ro_volume_cuft": 228016.14562485245,
            "perv_ro_volume_cuft": 55378.354666523395,
            "runoff_volume_cuft": 283394.50029137585,
            "eff_area_acres": 6.461638142128291,
            "developed_area_acres": 9.58071049103565,
            "TSS_load_lbs": 2258.8814515144954,
            "TCu_load_lbs": 0.9702150595320715,
            "FC_load_mpn": 4140816712319.9717,
            "winter_dwTSS_load_lbs": 251.83974023768664,
            "summer_dwTSS_load_lbs": 330.06583891090344,
            "winter_dwTCu_load_lbs": 0.10816800872990859,
            "summer_dwTCu_load_lbs": 0.14176700035928835,
            "winter_dwFC_load_mpn": 461654242414.25323,
            "summer_dwFC_load_mpn": 605052620628.5996,
            "winter_dry_weather_flow_cuft_psecond": 0.002874213147310695,
            "winter_dry_weather_flow_cuft": 31595.282386474148,
            "summer_dry_weather_flow_cuft_psecond": 0.002874213147310695,
            "summer_dry_weather_flow_cuft": 41409.36365593464,
            "land_surfaces_count": 1,
            "imp_pct": 58.37923114234624,
            "ro_coeff": 0.6744424798321826,
            "TSS_conc_mg/l": 127.68000000000005,
            "TCu_conc_ug/l": 54.84000000000001,
            "FC_conc_mpn/100ml": 51600.0,
            "winter_dwTSS_conc_mg/l": 127.68000000000008,
            "winter_dwTCu_conc_ug/l": 54.84,
            "winter_dwFC_conc_mpn/100ml": 51600.0,
            "summer_dwTSS_conc_mg/l": 127.68000000000005,
            "summer_dwTCu_conc_ug/l": 54.84,
            "summer_dwFC_conc_mpn/100ml": 51599.99999999999,
        },
    }

    data["1"] = tmnt_facility

    nx.set_node_attributes(g, data)
    solve_watershed_loading(g, context)

    assert all([len(dct["node_errors"]) == 0 for n, dct in g.nodes(data=True)])
    assert len(g.nodes["0"]
               ["node_warnings"]) >= 1  # there is no node_id for this node.

    sum_ret = sum(
        nx.get_node_attributes(g, "runoff_volume_cuft_retained").values())
    sum_inflow = sum(nx.get_node_attributes(g, "runoff_volume_cuft").values())
    outflow = g.nodes["0"]["runoff_volume_cuft_total_discharged"]
    assert abs(sum_inflow - sum_ret - outflow) / sum_inflow < 1e-15

    scalers = [
        ("summer_dwTSS_load_lbs_removed",
         "summer_dwTSS_load_lbs_total_removed"),
        ("runoff_volume_cuft_retained", "runoff_volume_cuft_total_retained"),
        (
            "summer_dry_weather_flow_cuft_retained",
            "summer_dry_weather_flow_cuft_total_retained",
        ),
        (
            "summer_dry_weather_flow_cuft_psecond_retained",
            "summer_dry_weather_flow_cuft_psecond_total_retained",
        ),
    ]

    for s, t in scalers:
        outfall_total = g.nodes["0"][t]
        sum_individual = sum(nx.get_node_attributes(g, s).values())

        # assert that these add up
        assert abs(sum_individual - outfall_total) < 1e-6, (s, t)

    tmnt_node = g.nodes["1"]
    params = [
        ("summer_dwTSS_load_lbs", "summer_dwTSS_load_lbs_total_discharged"),
    ]

    if "diversion" not in tmnt_facility.get("facility_type", ""):
        assert tmnt_node["captured_pct"] > 0
        assert tmnt_node["TSS_load_lbs_removed"] > 0
        assert tmnt_node["runoff_volume_cuft_captured"] > 0
        assert tmnt_node["winter_dry_weather_flow_cuft_captured_pct"] > 0
        assert tmnt_node["TSS_load_lbs_inflow"] > tmnt_node[
            "TSS_load_lbs_discharged"]
        assert (tmnt_node["winter_dwTSS_load_lbs_inflow"] >
                tmnt_node["winter_dwTSS_load_lbs_discharged"])

        params += [
            ("TSS_load_lbs", "TSS_load_lbs_total_discharged"),
            ("winter_dwTSS_load_lbs",
             "winter_dwTSS_load_lbs_total_discharged"),
        ]

    for s, t in params:

        outfall_total = g.nodes["0"][t]
        sum_individual = sum(nx.get_node_attributes(g, s).values())

        # assert that load reduction occurred
        assert outfall_total < sum_individual, (s, t)

    assert tmnt_node["summer_dry_weather_flow_cuft_captured_pct"] > 0
    assert (tmnt_node["summer_dwTSS_load_lbs_inflow"] >
            tmnt_node["summer_dwTSS_load_lbs_discharged"])

    for n, dct in g.nodes(data=True):
        if "_nomograph_solution_status" in dct:
            assert "successful" in dct["_nomograph_solution_status"]