Exemple #1
0
 def test_k_truss(self):
     # k=-1
     k_truss_subgraph = nx.k_truss(self.G, -1)
     assert sorted(k_truss_subgraph.nodes()) == list(range(1, 21))
     # k=0
     k_truss_subgraph = nx.k_truss(self.G, 0)
     assert sorted(k_truss_subgraph.nodes()) == list(range(1, 21))
     # k=1
     k_truss_subgraph = nx.k_truss(self.G, 1)
     assert sorted(k_truss_subgraph.nodes()) == list(range(1, 13))
     # k=2
     k_truss_subgraph = nx.k_truss(self.G, 2)
     assert sorted(k_truss_subgraph.nodes()) == list(range(1, 9))
     # k=3
     k_truss_subgraph = nx.k_truss(self.G, 3)
     assert sorted(k_truss_subgraph.nodes()) == []
Exemple #2
0
def test_ktruss_subgraph_Graph_nx(graph_file, nx_ground_truth):
    gc.collect()

    k = 5
    M = utils.read_csv_for_nx(graph_file, read_weights_in_sp=True)
    G = nx.from_pandas_edgelist(M,
                                source="0",
                                target="1",
                                edge_attr="weight",
                                create_using=nx.Graph())
    k_subgraph = cugraph.k_truss(G, k)
    k_truss_nx = nx.k_truss(G, k)

    assert nx.is_isomorphic(k_subgraph, k_truss_nx)
Exemple #3
0
def max_ktruss(G, min_truss, max_truss):
    """Computes, plots and returns max k-truss value
        Searches for a maximum k-truss between min_truss and max_truss
        max_truss can be set arbitrarily large
    """
    verbose = 0
    G_save = G
    itruss = min_truss
    # look for max k-truss
    for truss in range(min_truss, max_truss + 1):
        G_truss = nx.k_truss(G, truss)
        if G_truss.number_of_nodes() == 0: # Max k-truss reached
            print(f'Max-truss = {itruss}')
            break
        else:
            G_save = G_truss
            itruss += 1

    if verbose: print(f"Nodes in k-truss : {G_save.nodes()}")

    return itruss, G_save
def decomposition_democrat(GU, core=False, truss=False):
    # Democrat Graph
    nodes = (
        node
        for node, data in GU.nodes(data=True)
        if data.get("Party") == "Democrat"
    )

    largest_cc = max(nx.connected_components(nx.Graph(GU.subgraph(nodes))), key=len)
    GU_Democrat = GU.subgraph(largest_cc)

    if core:
        nodes = nx.k_core(GU_Democrat, k=12).nodes()
    elif truss:
        nodes = nx.k_truss(GU_Democrat, k=4).nodes()

    node_color = []
    for node in GU_Democrat.nodes():
        if node in nodes:
            node_color.append("yellow")
        else:
            node_color.append("blue")

    d = nx.degree(GU_Democrat)
    sizes = [(d[node] + 1) * 5 for node in GU_Democrat.nodes()]

    # Specify the settings for the Force Atlas 2 algorithm
    forceatlas2 = ForceAtlas2(
        # Behavior alternatives
        outboundAttractionDistribution=True,  # Dissuade hubs
        linLogMode=False,  # NOT IMPLEMENTED
        adjustSizes=False,  # Prevent overlap (NOT IMPLEMENTED)
        edgeWeightInfluence=1.0,

        # Performance
        jitterTolerance=1.0,  # Tolerance
        barnesHutOptimize=True,
        barnesHutTheta=1.2,
        multiThreaded=False,  # NOT IMPLEMENTED

        # Tuning
        scalingRatio=2.0,
        strongGravityMode=False,
        gravity=5.0,

        # Log
        verbose=True)

    positions = forceatlas2.forceatlas2_networkx_layout(GU, pos=None, iterations=2000)

    plt.figure(num=None, figsize=(15, 9), dpi=80, facecolor='w', edgecolor='k')

    sns.set_style('whitegrid')
    sns.set_context('talk')

    # create legend
    plt.scatter([], [], c='yellow', alpha=0.7, s=100, label='Most Influential Democrats')
    plt.legend(scatterpoints=1, frameon=True, labelspacing=1)

    nx.draw_networkx_nodes(GU_Democrat, positions, node_size=sizes, node_color=node_color, alpha=0.7)
    nx.draw_networkx_edges(GU_Democrat, positions, edge_color="grey", alpha=0.08)
    ax = plt.gca()
    ax.collections[0].set_linewidth(0.1)
    ax.set_title('US House Democrat Representatives of 2020 network', fontsize=16);
    plt.axis('off')

    if core:
        plt.savefig("./images/core_democrat.png", format="PNG")
    elif truss:
        plt.savefig("./images/truss_democrat.png", format="PNG")
        return nodes, GU_Democrat
import networkx as nx
import configuration as conf
import utils as ut
from itertools import combinations

if __name__ == "__main__":
    dataset = ut.load_obj(conf.data_dir, conf.dataset)

    G = nx.Graph()
    for v in dataset:
        if len(v) > 1:
            G.add_edges_from([t for t in combinations(v, 2)])
    ut.save_obj(G, conf.data_dir, f'{conf.dataset}_graph')

    trussness_g = {}
    k = 1

    while k < 100:
        ktruss = nx.k_truss(G, k)
        if len(ktruss) > 0:
            trussness_g[k] = ktruss
            k += 1
        else:
            break
    ut.save_obj(trussness_g, conf.data_dir, f'{conf.dataset}_graph_trussness')