def relayout_graph(self, name: str):
        """Расположить вершины графа по какому-то алгоритму.
        Алгоритмы:
            * circular - по кругу
            * kamada_kawai - Kamada-Kawai Algorithm
            * planar - без пересечений ребер
            * random - рандом
            * shell - пока то же, что circular
            * spring - Fruchterman-Reingold Algorithm
        :param name:
        :type name: str
        """
        def kamada_kawai(G):
            return nx.kamada_kawai_layout(G, weight=1)

        # def spectral(G):
        #    return nx.spectral_layout(G, scale=20)

        func_dict = {
            'circular': nx.circular_layout,
            'kamada_kawai': kamada_kawai,
            'planar': nx.planar_layout,
            'random': nx.random_layout,
            'shell': nx.shell_layout,  # TODO
            'spring': nx.spring_layout,
            # 'spectral': spectral
        }
        scale_dict = {
            'circular': 0.5,
            'random': 0.3
        }

        self.calculate_matrix()
        matrix = np.array(self.matrix)
        G = nx.from_numpy_matrix(matrix)  # Получить networkx-граф из матрицы
        try:
            pos = func_dict[name](G)
        except nx.exception.NetworkXException:
            self.box = QMessageBox.critical(self.widget,
                                            'Ошибка', 'Граф не планарен')
            return

        # Расчехлить позиции
        pos = np.array([pos[i] for i in range(len(pos))])

        # Масштабировать
        scale = SupremeSettings()['graphmodule_graph_scale']
        try:
            pos = nx.rescale_layout(pos, scale=scale * scale_dict[name])
        except KeyError:
            pos = nx.rescale_layout(pos, scale=scale)

        # Применить позиции
        for index, position in enumerate(pos):
            x, y = position
            node = self._nodes[self.head[index]]
            if node != self.widget.scene().mouseGrabberItem():
                node.setX(x)
                node.setY(y)
        self._adjust_scene()
Exemple #2
0
def rescale_coords(pos, scale=1, center=0):
    node_list = pos.keys()
    # dict to array
    npos = np.row_stack((pos[x] for x in node_list))
    npos = npos.astype(np.float64)
    npos = nx.rescale_layout(npos, scale=scale) + center
    # array to dict
    return dict(zip(node_list, npos))
def show(G: nx.DiGraph):

    scale = 1000

    pos = graphviz_layout(G, prog='dot')
    new_pos = nx.rescale_layout(pos=np.array(list(pos.values())), scale=scale).tolist()
    for idx,key in enumerate(pos.keys()):
        pos[key] = new_pos[idx]

    nx.set_edge_attributes(G, 'color', 'r')
    labels = nx.get_node_attributes(G, 'fancy_label')

    nx.draw_networkx(G, pos=pos, arrows=True, labels=labels, edge_color='r' )

    # plt.savefig(f"plot_{uuid.uuid4()}.png", dpi=1000)

    plt.show()
    def layout(self):
        """Initialize the CausalModel object by reading the information from the dot file with the passed path.

        The file should be a `dot` file and if it contains multiple graphs, only the first such graph is returned. All graphs _except_ the first are silently ignored.

        Parameters
        ----------
        path : str or file
            Filename or file handle.

        Returns
        -------
        None

        Examples
        --------
        >>> G = CausalModel()
        >>> G.load_model('temp.dot')

        Notes
        -----
        The heavy lifting is done by `networkx.drawing.nx_pydot.read_dot`

        """
        pos = graphviz_layout(self.dag, 'dot')

        keys = list(pos.keys())
        coords = np.array([pos[key] for key in keys])
        coords = nx.rescale_layout(coords, 1)
        pos = dict(zip(keys, coords))

        xs = []
        ys = []

        for key, value in pos.items():
            xs.append(value[0])
            ys.append(value[1])

        # All xx coordinates are the same, switch x and y
        # To make it horizontal instead of vertical
        if len(set(xs)) == 1:
            pos = {key: [-value[1], value[0]] for key, value in pos.items()}

        return pos
 def rescaleCoordinate(self, X, Y, scale):
     coordinates = np.array([[X, Y]])
     return (nx.rescale_layout(coordinates, scale))
Exemple #6
0
degrees = dict()
for node, val in g.degree():
    degrees[node] = val
ids = list(g.nodes())


x = []
y = []
degree = []
for elem in ids:
    degree.append(degrees[elem])
    x.append(pos[elem][0])
    y.append(pos[elem][1])

p = empty(shape=(len(x), 2))
p[:, 0] = asarray(x)
p[:, 1] = asarray(y)
scale = canvas_size // 2 - padding
pos_new = nx.rescale_layout(p, scale=scale)
pos = dict()
for i in range(len(ids)):
    pos[ids[i]] = (pos_new[i][0], pos_new[i][1])
    x[i] = pos_new[i][0] + scale + padding
    y[i] = pos_new[i][1] + scale + padding
conf_list_n = {Id: (X, Y, Degree) for Id, X, Y, Degree in zip(ids, x, y, degree)}

max_weight = 4
time_desease = dict()
for i in ids:
    time_desease[i] = 2
Exemple #7
0
def fruchterman_reingold_layout(
    G,
    k=None,
    pos=None,
    fixed=None,
    iterations=50,
    threshold=1e-4,
    weight="weight",
    scale=1,
    center=None,
    dim=2,
    seed=None,
    min_dist=0.01,
):
    """Position nodes using Fruchterman-Reingold force-directed algorithm.
    Parameters
    ----------
    G : NetworkX graph or list of nodes
        A position will be assigned to every node in G.
    k : float (default=None)
        Optimal distance between nodes.  If None the distance is set to
        1/sqrt(n) where n is the number of nodes.  Increase this value
        to move nodes farther apart.
    pos : dict or None  optional (default=None)
        Initial positions for nodes as a dictionary with node as keys
        and values as a coordinate list or tuple.  If None, then use
        random initial positions.
    fixed : list or None  optional (default=None)
        Nodes to keep fixed at initial position.
    iterations : int  optional (default=50)
        Maximum number of iterations taken
    threshold: float optional (default = 1e-4)
        Threshold for relative error in node position changes.
        The iteration stops if the error is below this threshold.
    weight : string or None   optional (default='weight')
        The edge attribute that holds the numerical value used for
        the edge weight.  If None, then all edge weights are 1.
    scale : number (default: 1)
        Scale factor for positions. Not used unless `fixed is None`.
    center : array-like or None
        Coordinate pair around which to center the layout.
        Not used unless `fixed is None`.
    dim : int
        Dimension of layout.
    seed : int, RandomState instance or None  optional (default=None)
        Set the random state for deterministic node layouts.
        If int, `seed` is the seed used by the random number generator,
        if numpy.random.RandomState instance, `seed` is the random
        number generator,
        if None, the random number generator is the RandomState instance used
        by numpy.random.
    Returns
    -------
    pos : dict
        A dictionary of positions keyed by node
    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> pos = nx.spring_layout(G)
    # The same using longer but equivalent function name
    >>> pos = nx.fruchterman_reingold_layout(G)
    """
    if center is None:
        center = np.zeros(dim)
    lg = len(G)
    if not lg:
        return {}
    if lg == 1:
        return {nx.utils.arbitrary_element(G.nodes()): center}

    nfixed = dict(zip(G, range(len(G))))
    if fixed is not None:
        fixed = np.asarray([nfixed[v] for v in fixed])

    if pos is not None:
        # Determine size of existing domain to adjust initial positions
        dom_size = max(coord for pos_tup in pos.values() for coord in pos_tup)
        if dom_size == 0:
            dom_size = 1
        pos_arr = seed.rand(len(G), dim) * dom_size + center

        for i, n in enumerate(G):
            if n in pos:
                pos_arr[i] = np.asarray(pos[n])
    else:
        pos_arr = None

    A = nx.to_numpy_array(G, weight=weight)
    if k is None and fixed is not None:
        # We must adjust k by domain size for layouts not near 1x1
        nnodes, _ = A.shape
        k = dom_size / np.sqrt(nnodes)
    # Cycles
    cycles = [[nfixed[x] for x in c] for c in nx.cycle_basis(G)]
    #
    pos = _fruchterman_reingold(
        A, k, pos_arr, fixed, iterations, threshold, dim, seed, min_dist, cycles
    )
    if fixed is None:
        pos = nx.rescale_layout(pos, scale=scale) + center
    pos = dict(zip(G, pos))
    return pos
Exemple #8
0
 def rescale_nx_pos(self):
     """Devuelve una nueva escala para las coordenadas de los nodos en el dibujo del grafo"""
     self.pos = nx.rescale_layout(g, pos = self.pos)
def draw_graph(graph, labels=None, graph_layout='reingold', #please don't change this
               node_size=500, #size of data dots
               node_color='#2c8ca4', #hex code or word like 'yellow'
               node_alpha=0.5, #opacity of dots
               node_text_size=5, #size of text.
               edge_color='#fcd454', edge_alpha=0.2, edge_tickness=1,
               edge_text_pos=0.3,
               text_font='sans-serif'):

    # create networkx graph
    G=nx.Graph()

    # add edges
    for edge in graph:
        G.add_edge(edge[0], edge[1]) #takes edge from edge list G (see below)


    # these are different layouts for the network you may try
    # use reingold!!
    if graph_layout == 'spring':
        graph_pos=nx.spring_layout(G)
    elif graph_layout == 'spectral':
        graph_pos=nx.spectral_layout(G)
    elif graph_layout == 'random':
        graph_pos=nx.random_layout(G)
    elif graph_layout == 'bipartite':
        graph_pos = nx.bipartite_layout(G, nodes=effortlist,
                                        align='vertical')
    elif graph_layout == 'circular':
        graph_pos=nx.circular_layout(G)
    elif graph_layout == 'kawai':
        graph_pos=nx.kamada_kawai_layout(G)
    elif graph_layout == 'rescale':
        graph_pos=nx.rescale_layout(G)
    elif graph_layout == 'reingold': #USE THIS ONE
        graph_pos=nx.fruchterman_reingold_layout(G, pos=GraphPositions, fixed=all_node_list)
    else:
        graph_pos=nx.shell_layout(G)

    # draw graph

    #modified to assigned colors/sizes on nodes of each information category (bias, effort, tech)
    nx.draw_networkx_nodes(G,graph_pos,nodelist=effortlist,node_size=node_size,
                           alpha=node_alpha, node_color='black') #assign color/size/opacity to 'effort' nodes
    nx.draw_networkx_nodes(G, graph_pos, nodelist=techlist, node_size=300,
                           alpha=node_alpha, node_color='#545454') #assign color/size/opacity to 'tech' nodes
    nx.draw_networkx_nodes(G, graph_pos, nodelist=biaslist, node_size=200,
                           alpha=node_alpha, node_color=node_color) #assign color/size/opacity to 'bias' nodes


    nx.draw_networkx_edges(G,graph_pos,width=edge_tickness,
                           alpha=edge_alpha,edge_color=edge_color)
    nx.draw_networkx_labels(G, graph_pos,font_size=node_text_size,
                            font_family=text_font)

#below is for edge labels, which I removed from the edges
    #if labels is None:
    #    labels = range(len(graph))

    #edge_labels = dict(zip(graph, labels))
    #nx.draw_networkx_edge_labels(G, graph_pos, edge_labels=edge_labels,
     #                            label_pos=edge_text_pos)

    # show graph
    plt.show()