Exemple #1
0
def create_k_partite(maxi):
    """
	Función para la creación de una gráfica k-partita.

	:param maxi: La cota superior al número de vértices que tendrá
	la gráfica aleatoria generada.
	:return: Una gráfica k-partita de la biblioteca networkx.
	:rtype: nx.Graph
	"""
    n = 1
    k = 3
    # Quiero repartir uniformemente la misma cantidad de vértices en cada partición.
    while n % k != 0:
        # Generando la n y la k (números para vértices y particiones, resp.) de forma
        # aleatoria en un intervalo permitido.
        n = randint(2, maxi)
        k = randint(5, 10)
    print("Orden de la gráfica (|V|):", n)
    print("Número de particiones (k):", k)
    # Dependiendo de un segundo volado, se genera una gráfica k-partida de uno u otro tipo.
    which_type = randint(1, 2)
    if which_type == 1:
        return nx.complete_multipartite_graph(*_construct_list_kp(n, k)), k
    else:
        return nx.turan_graph(n, k), k
Exemple #2
0
    def get_graph_list(num_factors):
        graph_list = []
        # 2, 3 bipartite graph
        g = nx.turan_graph(n=5, r=2)
        graph_list.append(nx.to_numpy_array(g))

        g = nx.house_x_graph()
        graph_list.append(nx.to_numpy_array(g))

        g = nx.balanced_tree(r=3, h=2)
        graph_list.append(nx.to_numpy_array(g))

        g = nx.grid_2d_graph(m=3, n=3)
        graph_list.append(nx.to_numpy_array(g))

        g = nx.hypercube_graph(n=3)
        graph_list.append(nx.to_numpy_array(g))

        g = nx.octahedral_graph()
        graph_list.append(nx.to_numpy_array(g))
        return graph_list[:num_factors]
 def test_result_turan_graph_50_20(self):
     assert (calc_and_compare(NX.turan_graph(50, 5)))
Exemple #4
0
G3S=0
G1T=0
G2T=0
G3T=0
mu=10
sigma=2.5
#Orden logaritmico
for logarithmOrder in range(3,5):
    print('Orden: ',logarithmOrder)
    log = 2**logarithmOrder
    ban=True
    # 3 Metodos de generación distintos
    G1 = nx.lollipop_graph(log, 2)
    for e in G1.edges():
        G1[e[0]][e[1]]['capacity'] = np.random.normal(mu, sigma)
    G2 = nx.turan_graph(log, 2)
    for e in G2.edges():
        G2[e[0]][e[1]]['capacity'] = np.random.normal(mu, sigma)
    G3 = nx.ladder_graph(log)
    for e in G3.edges():
        G3[e[0]][e[1]]['capacity'] = np.random.normal(mu, sigma)
    for newPair in range(5):
        print('Pareja: ',newPair)
        #10 Grafos
        for graphRepetition in range(10):
            if ban:
                ban=False
                while G1T==G1S:
                    G1S = choice(list(G1.nodes()))
                    G1T = choice(list(G1.nodes()))
                while G2T==G2S:
Exemple #5
0
 def test_turan_graph(self):
     assert nx.number_of_edges(nx.turan_graph(13, 4)) == 63
     assert is_isomorphic(nx.turan_graph(13, 4),
                          nx.complete_multipartite_graph(3, 4, 3, 3))
Exemple #6
0
def get_connectivity_graph(qubits, topology='grid', param=None):
    attempt = 0
    while attempt < 10:
        if topology == 'grid':
            # assume square grid
            side = int(np.sqrt(qubits))
            G = nx.grid_2d_graph(side, side)
        elif topology == 'erdosrenyi':
            if param == None:
                print("Erdos Renyi graph needs parameter p.")
            G = nx.fast_gnp_random_graph(qubits, param)
        elif topology == 'turan':
            if param == None:
                print("Turan graph needs parameter r.")
            G = nx.turan_graph(qubits, param)
        elif topology == 'regular':
            if param == None:
                print("d-regular graph needs parameter d.")
            G = nx.random_regular_graph(param, qubits)
        elif topology == 'cycle':
            G = nx.cycle_graph(qubits)
        elif topology == 'wheel':
            G = nx.wheel_graph(qubits)
        elif topology == 'complete':
            G = nx.complete_graph(qubits)
        elif topology == 'hexagonal':
            # assume square hexagonal grid, node = 2(m+1)**2-2
            side = int(np.sqrt((qubits + 2) / 2)) - 1
            G = nx.hexagonal_lattice_graph(side, side)
        elif topology == 'path':
            G = nx.path_graph(qubits)
        elif topology == 'ibm_falcon':
            # https://www.ibm.com/blogs/research/2020/07/qv32-performance/
            # 27 qubits
            G = nx.empty_graph(27)
            G.name = "ibm_falcon"
            G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 4), (3, 5), (5, 6),
                              (6, 7), (7, 8), (8, 9), (8, 10), (10, 11),
                              (1, 12), (6, 13), (11, 14), (12, 15), (15, 16),
                              (16, 17), (17, 18), (17, 19), (19, 20), (13, 20),
                              (20, 21), (21, 22), (22, 23), (22, 24), (24, 25),
                              (14, 25), (25, 26)])
        elif topology == 'ibm_penguin':
            # 20 qubits
            G = nx.empty_graph(20)
            G.name = "ibm_penguin"
            G.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 4), (0, 5), (5, 6),
                              (6, 7), (7, 8), (8, 9), (4, 9), (5, 10),
                              (10, 11), (11, 12), (7, 12), (12, 13), (13, 14),
                              (9, 14), (10, 15), (15, 16), (16, 17), (17, 18),
                              (18, 19), (14, 19)])
        elif topology == '1express':  # path with express channels
            G = nx.convert_node_labels_to_integers(nx.path_graph(qubits))
            G.add_edges_from([(s, s + param)
                              for s in range(0, qubits - param, param // 2)])
        elif topology == '2express':  # grid with express channels
            side = int(np.sqrt(qubits))
            G = nx.convert_node_labels_to_integers(nx.grid_2d_graph(
                side, side))
            G.add_edges_from([
                (s, s + param) for x in range(side)
                for s in range(x * side, x * side + side - param, param // 2)
            ])  # rows
            G.add_edges_from([
                (s, s + param * side) for y in range(side)
                for s in range(y, y + side * (side - param), param // 2 * side)
            ])  # cols
        else:
            print("Topology %s not recognized; use empty graph instead." %
                  topology)
            G = nx.empty_graph(qubits)
        if nx.is_connected(G) or nx.is_empty(G):
            break
        else:
            attempt += 1

    return nx.convert_node_labels_to_integers(G)
Exemple #7
0
G = nx.random_lobster(6, 0.9, 0.9)
G = nx.barabasi_albert_graph(8, 5)
G = nx.watts_strogatz_graph(8, 3, 0.1)
G = nx.erdos_renyi_graph(10, 0.15)
G = nx.complete_bipartite_graph(3, 5)

G = nx.dorogovtsev_goltsev_mendes_graph(2)
G = nx.petersen_graph()
G = nx.tutte_graph()
G = nx.sedgewick_maze_graph()  # cool
# G = nx.tetrahedral_graph() # not cool

G = nx.ladder_graph(8)
G = nx.barbell_graph(5, 2)
G = nx.turan_graph(10, 3)


def g2d(g):
    return {k: {k1 for k1 in v} for k, v in g.adj.items()}


#pprint(g2d(G))
#nx.draw_shell(G)
#plt.show()

# sorting nodes (with optional tails - additional strings for each node):
#   for each node - create "projection"
#     slice graph into levels by distance
#     append levels with subgraphs not connected to selected node
#       canonicalize each subgraph and sort them
Exemple #8
0
     'gen':
     nx.trivial_graph(),
     'description_fn':
     'trivial_graph()',
     'description':
     'Return the Trivial graph with one node (with label 0) and no edges.',
 },
 'turan_graph': {
     'name': 'Turan Graph',
     'args': ('n', 'r'),
     'argtypes': (
         int,
         int,
     ),
     'argvals': (3, 3),
     'gen': lambda n, r: nx.turan_graph(n, r),
     'description_fn': 'turan_graph(n, r)',
     'description': 'Return the Turan Graph.',
 },
 'wheel_graph': {
     'name': 'Wheel Graph',
     'args': ('n', ),
     'argtypes': (int, ),
     'argvals': (3, ),
     'gen': lambda n: nx.wheel_graph(n),
     'description_fn': 'wheel_graph(n)',
     'description': 'Return the wheel graph.',
 },
 'random_geometric': {
     'name':
     'Random Geometric',
fig = plt.figure()
nx.draw(G, with_labels=True)
fig.text(0.02, 0.95, "path graph", fontweight='bold')
fig.text(0.02, 0.90, "n(node count) = " + str(n))
plt.show()

#star graph
G = nx.star_graph(n)
fig = plt.figure()
nx.draw(G, with_labels=True)
fig.text(0.02, 0.95, "star graph", fontweight='bold')
fig.text(0.02, 0.90, "n(node count) = " + str(n))
plt.show()

#turan graph
G = nx.turan_graph(n, 2)
fig = plt.figure()
nx.draw(G, with_labels=True)
fig.text(0.02, 0.95, "turan graph", fontweight='bold')
fig.text(0.02, 0.90, "n(node count) = " + str(n))
fig.text(0.02, 0.85, "with 2 disjoint subset")
plt.show()

#wheel graph
G = nx.wheel_graph(n)
fig = plt.figure()
nx.draw(G, with_labels=True)
fig.text(0.02, 0.95, "wheel graph", fontweight='bold')
fig.text(0.02, 0.90, "n(node count) = " + str(n))
plt.show()
Exemple #10
0
def create_k_partitte_graph(n: int, k: int) -> nx.classes.graph.Graph:
    return nx.turan_graph(n, k)