Exemple #1
0
    def test_resnet50_architecture(self):
        resnet50 = architectures.resnet50()
        self.assertEqual(resnet50.input_shape, (224, 224, 3))
        self.assertEqual(resnet50.output_shape, (1000,))

        random_input = asfloat(np.random.random((7, 224, 224, 3)))
        prediction = self.eval(resnet50.output(random_input))
        self.assertEqual(prediction.shape, (7, 1000))
Exemple #2
0
    def test_resnet50_architecture(self):
        resnet50 = architectures.resnet50()
        self.assertEqual(resnet50.input_shape, (3, 224, 224))
        self.assertEqual(resnet50.output_shape, (1000, ))

        resnet50_predict = resnet50.compile()

        random_input = asfloat(np.random.random((7, 3, 224, 224)))
        prediction = resnet50_predict(random_input)
        self.assertEqual(prediction.shape, (7, 1000))
Exemple #3
0
    def test_resnet50_spatial(self):
        resnet50 = architectures.resnet50(
            include_global_pool=False,
            in_out_ratio=8,
        )
        self.assertEqual(resnet50.input_shape, (224, 224, 3))
        self.assertEqual(resnet50.output_shape, (28, 28, 2048))

        random_input = asfloat(np.random.random((7, 224, 224, 3)))
        prediction = self.eval(resnet50.output(random_input))
        self.assertEqual(prediction.shape, (7, 28, 28, 2048))
Exemple #4
0
    def test_resnet50_dilation_rates(self):
        resnet50 = architectures.resnet50(
            include_global_pool=False,
            in_out_ratio=8,
        )

        layer = resnet50.layer('res4d_branch2b')
        self.assertEqual(layer.dilation, (2, 2))

        layer = resnet50.layer('res5a_branch2b')
        self.assertEqual(layer.dilation, (2, 2))

        layer = resnet50.layer('res5b_branch2b')
        self.assertEqual(layer.dilation, (4, 4))
Exemple #5
0

def prepare_image(fname):
    with open(IMAGENET_MEAN_FILE, 'rb') as f:
        # Mean values is the average image accros all training dataset.
        # if dataset (1000, 3, 224, 224) then mean image shape
        # is (3, 224, 224) and computes as data.mean(axis=0)
        mean_values = pickle.load(f)

    image = read_image(fname, image_size=(256, 256), crop_size=(224, 224))
    # Convert RGB to BGR
    image[:, (0, 1, 2), :, :] = image[:, (2, 1, 0), :, :]
    return asfloat(image - mean_values)


environment.speedup()
resnet50 = architectures.resnet50()

if not os.path.exists(RESNET50_WEIGHTS_FILE):
    download_file(
        url="http://neupy.s3.amazonaws.com/imagenet-models/resnet50.pickle",
        filepath=RESNET50_WEIGHTS_FILE,
        description='Downloading weights')

storage.load(resnet50, RESNET50_WEIGHTS_FILE)
predict = resnet50.compile()

dog_image = prepare_image(DOG_IMAGE_PATH)
output = predict(dog_image)
print_top_n(output, n=5)
Exemple #6
0
    def test_resnet50_no_global_pooling(self):
        resnet50 = architectures.resnet50(include_global_pool=False)

        self.assertEqual(resnet50.input_shape, (224, 224, 3))
        self.assertEqual(resnet50.output_shape, (7, 7, 2048))
Exemple #7
0
 def test_resnet50_exceptions(self):
     with self.assertRaises(ValueError):
         architectures.resnet50(in_out_ratio=2)
Exemple #8
0
def create_deeplab_model(resnet50_weights=None,
                         deeplab_weights=None,
                         size=None):
    print("Initializing ResNet-50 architecture...")

    SamePadConv = partial(Convolution, bias=None, padding='same')
    resnet50 = architectures.resnet50(
        input_shape=(size, size, 3),
        include_global_pool=False,
        in_out_ratio=16,
    )

    if resnet50_weights is not None:
        # Pre-trained ResNet-50 contains parameters for the final
        # classification layer. We don't use this layer and for this reason
        # we need to set ``ignore_missing=True``
        print("Recovering ResNet-50 parameters...")
        storage.load(resnet50, resnet50_weights, ignore_missing=True)

    in_height, in_width, _ = resnet50.input_shape
    out_height, out_width, _ = resnet50.output_shape

    resnet50_input = resnet50.layers[0]
    deeplab_input = Input(resnet50.output_shape, name='deeplab-input')

    print("Initializing Deeplab architecture...")
    deeplab = join(
        deeplab_input,

        # Atrous Spatial Pyramid Pooling
        parallel(
            SamePadConv((1, 1, 256)) > BatchNorm(),
            SamePadConv((3, 3, 256), dilation=6) > BatchNorm(),
            SamePadConv((3, 3, 256), dilation=12) > BatchNorm(),
            SamePadConv((3, 3, 256), dilation=18) > BatchNorm(), [
                GlobalPooling('avg'),
                Reshape((1, 1, -1)),
                SamePadConv((1, 1, 256)) > BatchNorm(),
                IncludeResidualInputs(deeplab_input),
                ResizeBilinear(),
            ]),
        Concatenate(),
        SamePadConv((1, 1, 256)) > BatchNorm(),

        # Convert to the classification maps
        Convolution((1, 1, 21), padding='same'),
        IncludeResidualInputs(resnet50_input),
        ResizeBilinear((in_height, in_width)),
        Softmax(name='segmentation-proba'),
    )

    if deeplab_weights is not None:
        print("Recovering Deeplab parameters...")
        storage.load(deeplab, deeplab_weights, ignore_missing=True)

    print("Patching layers...")
    patches = {
        BatchNorm: {
            'alpha': 1 - 0.997,
            'epsion': 1e-5,
        }
    }
    patch_layers(deeplab, patches)
    patch_layers(resnet50, patches)

    return resnet50, deeplab