Exemple #1
0
    def train(self, input_train, target_train, copy=True):
        input_train = format_data(input_train, copy=copy)
        target_train = format_data(target_train, copy=copy)

        if target_train.shape[1] != 1:
            raise ValueError("Target value must be one dimentional array")

        LazyLearning.train(self, input_train, target_train)
Exemple #2
0
    def train(self, input_train, target_train, copy=True):
        input_train = format_data(input_train, copy=copy)
        target_train = format_data(target_train, copy=copy)

        if target_train.shape[1] != 1:
            raise ValueError("Target value must be one dimentional array")

        LazyLearning.train(self, input_train, target_train)
Exemple #3
0
    def train(self, input_train, target_train):
        LazyLearning.train(self, input_train, target_train)

        if target_train.ndim != 1:
            raise ValueError("Target value must be in 1 dimention")

        classes = self.classes = unique(target_train)
        number_of_classes = classes.size
        row_comb_matrix = self.row_comb_matrix = zeros(
            (number_of_classes, input_train.shape[0])
        )
        class_ratios = self.class_ratios = zeros(number_of_classes)

        for i, class_name in enumerate(classes):
            class_val_positions = (target_train == i)
            row_comb_matrix[i, class_val_positions] = 1
            class_ratios[i] = np_sum(class_val_positions)
Exemple #4
0
    def train(self, input_train, target_train, copy=True):
        input_train = format_data(input_train, copy=copy)
        target_train = format_data(target_train, copy=copy)

        LazyLearning.train(self, input_train, target_train)

        if target_train.shape[1] != 1:
            raise ValueError("Target value must be in 1 dimention")

        classes = self.classes = unique(target_train)
        number_of_classes = classes.size
        row_comb_matrix = self.row_comb_matrix = zeros(
            (number_of_classes, input_train.shape[0]))
        class_ratios = self.class_ratios = zeros(number_of_classes)

        for i, class_name in enumerate(classes):
            class_val_positions = (target_train == i)
            row_comb_matrix[i, class_val_positions.ravel()] = 1
            class_ratios[i] = np_sum(class_val_positions)
Exemple #5
0
    def train(self, input_train, target_train, copy=True):
        input_train = format_data(input_train, copy=copy)
        target_train = format_data(target_train, copy=copy)

        LazyLearning.train(self, input_train, target_train)

        if target_train.shape[1] != 1:
            raise ValueError("Target value must be in 1 dimension")

        classes = self.classes = unique(target_train)
        number_of_classes = classes.size
        row_comb_matrix = self.row_comb_matrix = zeros(
            (number_of_classes, input_train.shape[0])
        )
        class_ratios = self.class_ratios = zeros(number_of_classes)

        for i, class_name in enumerate(classes):
            class_val_positions = (target_train == i)
            row_comb_matrix[i, class_val_positions.ravel()] = 1
            class_ratios[i] = np_sum(class_val_positions)
Exemple #6
0
 def train(self, input_train, target_train):
     if target_train.ndim != 1:
         raise ValueError("Target value must be in 1 dimention")
     LazyLearning.train(self, input_train, target_train)