import neural_network as network if __name__ == "__main__": batch, train_percent = 32, 80 X, y = network.extract("mnist", "MNIST") Y = [element.item() for element in y] output = len(list(set(Y))) dimension = len(X[0].flatten()) trainer, tester, validater = network.partition(X, y, output, batch, train_percent) episodes = int(1e2) learning_rate = 5e-3 neurons = [dimension, 40, 50, 50, 20, output] activity = ["relu", "relu", "relu", "relu", ""] cost = "crossentropy" optimizer = "adam" model, error, accuracy = network.learn(trainer, neurons, activity, learning_rate, episodes, cost, optimizer) network.plot(error, "forestgreen", "accumulated_error_over_each_epoch_mnist_classification", "Episode", "Error") network.plot(accuracy, "mediumvioletred", "accuracy_over_each_epoch_mnist_classification", "Episode", "Learning accuracy") network.test(model, tester, output)
import neural_network as network if __name__ == "__main__": batch, output = 10, 3 train_percent = 80 episodes = int(1e3) learning_rate = 1e-2 encoding = [("setosa", 0), ("versicolor", 1), ("virginica", 2)] X, y = network.extract("iris.csv", encoding=encoding, output=output, label="species") dimension = len(X[0]) neurons = [dimension, 10, 20, 20, 5, output] trainer, tester, validater = network.partition(X, y, output, batch, train_percent) activity = ["relu", "relu", "relu", "relu", ""] cost = "crossentropy" optimizer = "adam" model, error, accuracy = network.learn(trainer, neurons, activity, learning_rate, episodes, cost, optimizer) network.plot( error, "forestgreen", "accumulated_errors_over_each_epoch_multilabel_classification", "Episode", "Error") network.plot(accuracy, "mediumvioletred", "accuracy_over_each_epoch_multilabel_classification", "Episode", "Learning accuracy") network.test(model, tester, output)
import neural_network as network if __name__ == "__main__": batch, output = 50, 1 train_percent = 80 episodes = int(1e3) learning_rate = 1e-1 encoding = [("b", 0), ("g", 1)] X, y = network.extract("ionosphere.txt", encoding = encoding, output = output) trainer, tester, validater = network.partition(X, y, output, batch, train_percent) dimension = len(X[0]) neurons = [dimension, output] activity = ["sigmoid"] cost = "mse" optimizer = "adam" model, error, accuracy = network.learn(trainer, neurons, activity, learning_rate, episodes, cost, optimizer) network.plot(error, "forestgreen", "accumulated_error_over_each_epoch_binary_classification", "Episode", "Error") network.plot(accuracy, "mediumvioletred", "accuracy_over_each_epoch_binary_classification", "Episode", "Learning accuracy") network.test(model, tester, output)