def compare_inception_v3(src1, src2):
    graph = tf.Graph()
    with graph.as_default():
        with tf.Session() as sess:
            network = inception_v3(sess)
            network.restore_graph(src1)
            weights = network.get_all_weights()
            network.restore_graph(src2)
            total_weight, equal_weight = network.comp_graph(weights)
            print ('Total weight : %d / Equal weight : %d' % \
              (total_weight, equal_weight))
def generate_pretrained_prunable_inception_v3(src, dst):
    graph = tf.Graph()
    with graph.as_default():
        with tf.Session() as sess:
            network = inception_v3(sess)
            network.restore_graph(src)
            weights = network.get_all_weights()

    tf.reset_default_graph()

    graph = tf.Graph()
    with graph.as_default():
        with tf.Session() as sess:
            network = prunable_inception_v3(sess)
            network.replace_graph(weights)
            network.save_graph(dst)
def print_inception_v3(src):
    with tf.Session() as sess:
        network = inception_v3(sess)
        network.restore_graph(src)
        network.print_all_weights()
def generate_pretrained_inception_v3(src, dst):
    with tf.Session() as sess:
        network = inception_v3(sess)
        network.restore_graph(src)
        network.save_graph(dst)
def generate_zero_inception_v3(dst):
    with tf.Session() as sess:
        network = inception_v3(sess)
        network.reset_all_weights()
        network.save_graph(dst)