Exemple #1
0
def cross_validate(args):
	# import some functions
	encode = Data_Loader().encode
	find_error = NFL_Predictor().compareVector
	try:	
		nn = Neural_Network.createFromFile(args.file)
		print "Loaded Neural Network with %i hidden nodes" % len(nn.hidden_nodes)
		totalCorrect = 0.0
		total_tested = 0.0
		for y in range(args.start,args.end+1):
			classRight = [0, 0, 0, 0, 0, 0]
			correct = incorrect = 0
			if(args.db == 'u'):
				dl = Data_Loader()
				teams = dl.getAllTeams(y)
			elif(args.db == 'b'):
				dl = Data_Loader()
				teams = dl.getAllTeams(y)
			elif(args.db == 'p'):
				dl = Data_Loader('playoffTeams.csv')
				teams = dl.getAllTeams(y)
			elif(args.db == 'o'):
				dl = Data_Loader('balancedData.csv')
				teams = dl.getAllTeams(y)
			total_tested += len(teams)
			total_error = 0.0
			for t in teams:
				t.result = nn.feed_forward(t.stats)
				error = (find_error(t.result, encode(t.classification)))
				total_error += error**2
				if error < .08:
					correct += 1
					classRight
				if args.v:
					print "team %s, results %s, class %s, error %s" % (t.name, t.result, encode(t.classification), error)
			if not args.q:
				print "%d \t within threshold: %d/%d \t error: %s" % (y, correct, len(teams), str(total_error))
			totalCorrect += correct
		print "totalCorrect: %i/%i, %.2f%%" % (totalCorrect, total_tested, (totalCorrect/total_tested)*100)
	except Exception as e:
		print "invalid formatting, consult neural_main.py c --help \nError: %s" % e
Exemple #2
0
def train(args):
	try:
		
		inputs = []
		targets = []
		y = range(args.start,args.end+1)
		if(args.db == 'u'):
			dl = Data_Loader()
			i,t = dl.getTargets(y)
		elif(args.db == 'b'):
			dl = Data_Loader()
			i,t = dl.getBalancedTargets(y)
		elif(args.db == 'p'):
			dl = Data_Loader('playoffTeams.csv')
			i,t = dl.getTargets(y)
		elif(args.db == 'o'):
			dl = Data_Loader('balancedData.csv')
			i,t = dl.getTargets(y)
		elif(args.db == 's'):
			dl = Data_Loader()
			i,t = dl.getBLSmoteTargets(y,.25)
			#i,t = dl.getSmoteTargets(y)
		inputs += i
		targets += t
		#create NN
		# if file already exists, build on that training
		if (os.path.exists(args.file)):
			print "file exists"
			nn = Neural_Network.createFromFile(args.file)
			pass
		else:
			print "file does not exist"
			nn = Neural_Network.createWithRandomWeights(len(inputs[0]),args.nodes,len(targets[0]))
		
		#train NN with the given data
		print 'Beginning Training...'
		nn = nn.train(args.epochs,inputs,targets,args.learn_rate)
		nn.saveToFile(args.file)
		print "Neural Network saved to %s" % (args.file)
	except Exception as e:
		print "invalid formatting, consult neural_main.py t --help \n Error: %s" % e
Exemple #3
0
def predict(args):
	try:
		nn = Neural_Network.createFromFile(args.file)
		dl = Data_Loader()

		#team = dl.getTeam(args.team, args.year)
		team = dl.getTeam(args.team, args.year)
		result = nn.feed_forward(team.stats)
		print "\n\nPredicting the %i %s..." % (args.year, team_dict.teams[args.team])
		print "RESULTS: %.3f\n" % result[0]
		if args.show_expected:
			print "EXPECTED: %s" % (dl.encode(team.classification))[0]
		results_graph = "\t|" + "".join(repeat("-",int(result[0]/.8*50))) + "|" + "".join(repeat("-",(int((1-result[0]/.8)*50)))) + "|"
		print "  Not in playoffs" + "".join(repeat(" ",35)) + "Super Bowl Champs"
		print results_graph
		post_processor = NFL_Predictor(nn)
		similar_teams = post_processor.compareWithPastTeams(dl.getEveryTeam(), team, 16)
		print"\nThe 15 most similar teams throughout history:"
		del similar_teams[0]
		for t in similar_teams:
			print "%s \tScore: %f" % t
	except Exception as e:
		print "invalid formatting, consult neural_main.py t --help \n Error: %s" % e
Exemple #4
0
 DL = Data_Loader()
 '''
 nn = Neural_Network.createWithRandomWeights(66,40,6)    
     
 # train! with learning rate proportional to # of teams in the situations
 inputs = []
 targets = []
 for y in range(2005,2007):
     i,t = DL.getTargets(y)
     inputs += i
     targets += t 
     #print targets
 nn = nn.train(10000,inputs,targets,1.5)
 nn.saveToFile("predictortest.txt")
 '''
 nn = Neural_Network.createFromFile("predictortest.txt")
 teams_2011 = DL.getAllTeams(2011)
 pats_2011 = filter(lambda t: t.name == "nwe", teams_2011)[0]
 all_other_teams = filter(lambda t: t.name != "nwe", teams_2011)
 predictor = NFL_Predictor(nn)
 similar = predictor.compareWithPastTeams(all_other_teams, pats_2011, 3)
 for t,d in similar:
     print t.name + " " + str(d) + "\n"