Exemple #1
0
    def deserialize_json(self, json_str):
        j = json.loads(json_str)
        j_neurons = j["neurons"]
        j_synapses = j["synapses"]

        self._effective_deepness = j["effective_deepness"]
        self._response_time = j["response_time"]
        self._resolving_ability = j["resolving_ability"]
        self._quality = j["quality"]
        self._adaptability = j["adaptability"]
        self._extra_data = j["extra_data"]

        n_id_to_ind = {}
        self._neurons = []
        for jn in j_neurons:
            ind = len(self._neurons)
            n_id_to_ind[jn["id"]] = ind
            self._neurons.append(
                nn.Neuron([0] * jn["axon_len"], jn["bias"],
                          jn["transfer_function_type"],
                          jn["transfer_function_params"]))

        self._synapses = [
            nn.Synapse(n_id_to_ind[js["src"]], n_id_to_ind[js["own"]],
                       js["weight"]) for js in j_synapses
        ]

        self._input_neurons_inds = [
            n_id_to_ind[id] for id in j["input_neurons"]
        ]
        self._output_neurons_inds = [
            n_id_to_ind[id] for id in j["output_neurons"]
        ]

        nn.Estimator.fill_all(self)
Exemple #2
0
 def _load_neuron_bodies(self, nnid):
     neurons_data = Engine.db().load_neurons_data(nnid)
     neurons = [(id,
                 nn.Neuron([0] * axon_len, bias, tf_type,
                           json.loads(tf_params)))
                for id, tf_type, tf_params, bias, axon_len in neurons_data]
     self.__data._neurons = [n[1] for n in neurons]
     self._map_neuron_id2ind = {n[0]: ind for ind, n in enumerate(neurons)}
    def __add_receptor(self, input_data_name):
        new_neuron_ind = len(self.data.neurons)
        new_neuron_tf = Type.relu
        new_neuron_tf_params = ()
        new_neuron = nn.Neuron([0], 0, new_neuron_tf, new_neuron_tf_params)

        self._temp_data._map_input_sid2ind[input_data_name] = new_neuron_ind
        self.data.neurons.append(new_neuron)
    def __add_indicator(self, output_data_name):
        new_neuron_ind = len(self.data.neurons)
        new_neuron_tf = Type.linear
        new_neuron_tf_params = ()
        new_neuron = nn.Neuron([0, 0], 0, new_neuron_tf, new_neuron_tf_params)
        # В настоящее время при создании нейрона-индикатора он присоединяется напрямую к рецептору
        # (у которого глубина по-определению равна нулю),
        # поэтому в данном случае глубина индикатора будет 1
        new_neuron.deepness = 1

        self._temp_data._map_output_sid2ind[output_data_name] = new_neuron_ind
        self.data.neurons.append(new_neuron)
Exemple #5
0
    def _do_mutate(cls, data : nn.Data):
        d = data
        r = random.Random()
        c = Engine.config()

        receptors_list = [ d.neurons[i] for i in d.input_neurons_inds ]
        indicators_list = [ d.neurons[i] for i in d.output_neurons_inds ]

        neurons = set(d.neurons)
        receptors = set(receptors_list)
        indicators = set(indicators_list)
        workers = { n for n in d.neurons if n not in receptors | indicators }
        synapses = { nn.Synapse(d.neurons[s.src], d.neurons[s.own], s.weight) for s in d.synapses }

        connections = { (s.src, s.own) for s in synapses }

        neuron_to_synapses = collections.defaultdict(set)
        for s in synapses:
            neuron_to_synapses[s.src].add(s)
            neuron_to_synapses[s.own].add(s)

        # удаление нейронов и синапсов

        neurons_to_del = { n for n in workers if r.uniform(0, 1) < c.mutator_neuron_deleting_probability_factor }
        synapses_to_del = { s for s in synapses if r.uniform(0, 1) < c.mutator_synapse_deleting_probability_factor }
        for n in neurons_to_del:
            synapses_to_del |= neuron_to_synapses[n]

        neurons -= neurons_to_del
        synapses -= synapses_to_del

        del workers, neurons_to_del, synapses_to_del
        del neuron_to_synapses

        # добавление нейронов и синапсов

        neurons_to_add = set()
        synapses_to_add = set()
        for n1, n3 in itertools.product(list(neurons), list(neurons - receptors)):
            if r.uniform(0, 1) < c.mutator_synapse_adding_probability_factor:
                if (n1, n3) not in connections:
                    synapses_to_add.add(nn.Synapse(n1, n3, 1))
                    connections.add((n1, n3))
            if r.uniform(0, 1) < c.mutator_neuron_adding_probability_factor:
                n2 = nn.Neuron([0, 0], 0, nn.Type.relu, ())
                neurons_to_add.add(n2)
                synapses_to_add.add(nn.Synapse(n1, n2, 1))
                synapses_to_add.add(nn.Synapse(n2, n3, 1))

        neurons |= neurons_to_add
        synapses |= synapses_to_add

        del neurons_to_add, synapses_to_add
        del n1, n3

        neurons_list = list(neurons)
        synapses_list = list(synapses)

        neuron_to_ind = { n: i for i, n in enumerate(neurons_list) }

        for s in synapses_list:
            s.src = neuron_to_ind[s.src]
            s.own = neuron_to_ind[s.own]

        d._input_neurons_inds = [ neuron_to_ind[n] for n in receptors_list ]
        d._output_neurons_inds = [ neuron_to_ind[n] for n in indicators_list ]
        d._neurons = neurons_list
        d._synapses = synapses_list

        nn.Estimator.fill_all(d)