Exemple #1
0
def main():

    # Load configuration
    args, _, dir_name = parse_args_eval(sys.argv[1:])

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'decode.log')):
        os.remove(os.path.join(args.recog_dir, 'decode.log'))
    set_logger(os.path.join(args.recog_dir, 'decode.log'),
               stdout=args.recog_stdout)

    ppl_avg = 0
    for i, s in enumerate(args.recog_sets):
        # Load dataset
        dataset = Dataset(corpus=args.corpus,
                          tsv_path=s,
                          dict_path=os.path.join(dir_name, 'dict.txt'),
                          wp_model=os.path.join(dir_name, 'wp.model'),
                          unit=args.unit,
                          batch_size=args.recog_batch_size,
                          bptt=args.bptt,
                          backward=args.backward,
                          serialize=args.serialize,
                          is_test=True)

        if i == 0:
            # Load the LM
            model = build_lm(args)
            load_checkpoint(args.recog_model[0], model)
            epoch = int(args.recog_model[0].split('-')[-1])
            # NOTE: model averaging is not helpful for LM

            logger.info('epoch: %d' % epoch)
            logger.info('batch size: %d' % args.recog_batch_size)
            logger.info('BPTT: %d' % (args.bptt))
            logger.info('cache size: %d' % (args.recog_n_caches))
            logger.info('cache theta: %.3f' % (args.recog_cache_theta))
            logger.info('cache lambda: %.3f' % (args.recog_cache_lambda))
            logger.info('model average (Transformer): %d' %
                        (args.recog_n_average))
            model.cache_theta = args.recog_cache_theta
            model.cache_lambda = args.recog_cache_lambda

            # GPU setting
            if args.recog_n_gpus > 0:
                model.cuda()

        start_time = time.time()

        ppl, _ = eval_ppl([model],
                          dataset,
                          batch_size=1,
                          bptt=args.bptt,
                          n_caches=args.recog_n_caches,
                          progressbar=True)
        ppl_avg += ppl
        print('PPL (%s): %.2f' % (dataset.set, ppl))
        logger.info('Elasped time: %.2f [sec]:' % (time.time() - start_time))

    logger.info('PPL (avg.): %.2f\n' % (ppl_avg / len(args.recog_sets)))
Exemple #2
0
def load_lm(lm_path, mem_len=0):
    conf_lm = load_config(os.path.join(os.path.dirname(lm_path), 'conf.yml'))
    args_lm = argparse.Namespace()
    for k, v in conf_lm.items():
        setattr(args_lm, k, v)
    args_lm.recog_mem_len = mem_len
    lm = build_lm(args_lm)
    load_checkpoint(lm_path, lm)
    lm.backward = args_lm.backward
    return lm
Exemple #3
0
def main():

    args = parse()

    # Load a conf file
    dir_name = os.path.dirname(args.recog_model[0])
    conf = load_config(os.path.join(dir_name, 'conf.yml'))

    # Overwrite conf
    for k, v in conf.items():
        if 'recog' not in k:
            setattr(args, k, v)

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'decode.log')):
        os.remove(os.path.join(args.recog_dir, 'decode.log'))
    logger = set_logger(os.path.join(args.recog_dir, 'decode.log'),
                        key='decoding')

    ppl_avg = 0
    for i, s in enumerate(args.recog_sets):
        # Load dataset
        dataset = Dataset(corpus=args.corpus,
                          tsv_path=s,
                          dict_path=os.path.join(dir_name, 'dict.txt'),
                          wp_model=os.path.join(dir_name, 'wp.model'),
                          unit=args.unit,
                          batch_size=args.recog_batch_size,
                          bptt=args.bptt,
                          backward=args.backward,
                          serialize=args.serialize,
                          is_test=True)

        if i == 0:
            # Load the LM
            model = select_lm(args)
            model, checkpoint = load_checkpoint(model, args.recog_model[0])
            epoch = checkpoint['epoch']
            model.save_path = dir_name

            logger.info('epoch: %d' % (epoch - 1))
            logger.info('batch size: %d' % args.recog_batch_size)
            # logger.info('recog unit: %s' % args.recog_unit)
            # logger.info('ensemble: %d' % (len(ensemble_models)))
            logger.info('BPTT: %d' % (args.bptt))
            logger.info('cache size: %d' % (args.recog_n_caches))
            logger.info('cache theta: %.3f' % (args.recog_cache_theta))
            logger.info('cache lambda: %.3f' % (args.recog_cache_lambda))
            model.cache_theta = args.recog_cache_theta
            model.cache_lambda = args.recog_cache_lambda

            # GPU setting
            model.cuda()

        start_time = time.time()

        # TODO(hirofumi): ensemble
        ppl, _ = eval_ppl([model],
                          dataset,
                          batch_size=1,
                          bptt=args.bptt,
                          n_caches=args.recog_n_caches,
                          progressbar=True)
        ppl_avg += ppl
        print('PPL (%s): %.2f' % (dataset.set, ppl))
        logger.info('Elasped time: %.2f [sec]:' % (time.time() - start_time))

    logger.info('PPL (avg.): %.2f\n' % (ppl_avg / len(args.recog_sets)))
Exemple #4
0
def main():

    args = parse()

    # Load a conf file
    dir_name = os.path.dirname(args.recog_model[0])
    conf = load_config(os.path.join(dir_name, 'conf.yml'))

    # Overwrite conf
    for k, v in conf.items():
        if 'recog' not in k:
            setattr(args, k, v)
    recog_params = vars(args)

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'plot.log')):
        os.remove(os.path.join(args.recog_dir, 'plot.log'))
    set_logger(os.path.join(args.recog_dir, 'plot.log'), stdout=args.recog_stdout)

    for i, s in enumerate(args.recog_sets):
        # Load dataset
        dataset = Dataset(corpus=args.corpus,
                          tsv_path=s,
                          dict_path=os.path.join(dir_name, 'dict.txt'),
                          dict_path_sub1=os.path.join(dir_name, 'dict_sub1.txt') if os.path.isfile(
                              os.path.join(dir_name, 'dict_sub1.txt')) else False,
                          nlsyms=args.nlsyms,
                          wp_model=os.path.join(dir_name, 'wp.model'),
                          unit=args.unit,
                          unit_sub1=args.unit_sub1,
                          batch_size=args.recog_batch_size,
                          is_test=True)

        if i == 0:
            # Load the ASR model
            model = Speech2Text(args, dir_name)
            topk_list = load_checkpoint(model, args.recog_model[0])
            epoch = int(args.recog_model[0].split('-')[-1])

            # Model averaging for Transformer
            if 'transformer' in conf['enc_type'] and conf['dec_type'] == 'transformer':
                model = average_checkpoints(model, args.recog_model[0],
                                            n_average=args.recog_n_average,
                                            topk_list=topk_list)

            # ensemble (different models)
            ensemble_models = [model]
            if len(args.recog_model) > 1:
                for recog_model_e in args.recog_model[1:]:
                    conf_e = load_config(os.path.join(os.path.dirname(recog_model_e), 'conf.yml'))
                    args_e = copy.deepcopy(args)
                    for k, v in conf_e.items():
                        if 'recog' not in k:
                            setattr(args_e, k, v)
                    model_e = Speech2Text(args_e)
                    load_checkpoint(model_e, recog_model_e)
                    if args.recog_n_gpus > 0:
                        model_e.cuda()
                    ensemble_models += [model_e]

            # Load the LM for shallow fusion
            if not args.lm_fusion:
                # first path
                if args.recog_lm is not None and args.recog_lm_weight > 0:
                    conf_lm = load_config(os.path.join(os.path.dirname(args.recog_lm), 'conf.yml'))
                    args_lm = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm, k, v)
                    lm = build_lm(args_lm)
                    load_checkpoint(lm, args.recog_lm)
                    if args_lm.backward:
                        model.lm_bwd = lm
                    else:
                        model.lm_fwd = lm
                # NOTE: only support for first path

            if not args.recog_unit:
                args.recog_unit = args.unit

            logger.info('recog unit: %s' % args.recog_unit)
            logger.info('recog oracle: %s' % args.recog_oracle)
            logger.info('epoch: %d' % epoch)
            logger.info('batch size: %d' % args.recog_batch_size)
            logger.info('beam width: %d' % args.recog_beam_width)
            logger.info('min length ratio: %.3f' % args.recog_min_len_ratio)
            logger.info('max length ratio: %.3f' % args.recog_max_len_ratio)
            logger.info('length penalty: %.3f' % args.recog_length_penalty)
            logger.info('length norm: %s' % args.recog_length_norm)
            logger.info('coverage penalty: %.3f' % args.recog_coverage_penalty)
            logger.info('coverage threshold: %.3f' % args.recog_coverage_threshold)
            logger.info('CTC weight: %.3f' % args.recog_ctc_weight)
            logger.info('fist LM path: %s' % args.recog_lm)
            logger.info('LM weight: %.3f' % args.recog_lm_weight)
            logger.info('GNMT: %s' % args.recog_gnmt_decoding)
            logger.info('forward-backward attention: %s' % args.recog_fwd_bwd_attention)
            logger.info('resolving UNK: %s' % args.recog_resolving_unk)
            logger.info('ensemble: %d' % (len(ensemble_models)))
            logger.info('ASR decoder state carry over: %s' % (args.recog_asr_state_carry_over))
            logger.info('LM state carry over: %s' % (args.recog_lm_state_carry_over))
            logger.info('model average (Transformer): %d' % (args.recog_n_average))

            # GPU setting
            if args.recog_n_gpus > 0:
                model.cuda()

        save_path = mkdir_join(args.recog_dir, 'att_weights')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)

        while True:
            batch, is_new_epoch = dataset.next(recog_params['recog_batch_size'])
            best_hyps_id, aws = model.decode(
                batch['xs'], recog_params, dataset.idx2token[0],
                exclude_eos=False,
                refs_id=batch['ys'],
                ensemble_models=ensemble_models[1:] if len(ensemble_models) > 1 else [],
                speakers=batch['sessions'] if dataset.corpus == 'swbd' else batch['speakers'])

            # Get CTC probs
            ctc_probs, topk_ids = None, None
            if args.ctc_weight > 0:
                ctc_probs, topk_ids, xlens = model.get_ctc_probs(
                    batch['xs'], temperature=1, topk=min(100, model.vocab))
                # NOTE: ctc_probs: '[B, T, topk]'

            if model.bwd_weight > 0.5:
                # Reverse the order
                best_hyps_id = [hyp[::-1] for hyp in best_hyps_id]
                aws = [aw[:, ::-1] for aw in aws]

            for b in range(len(batch['xs'])):
                tokens = dataset.idx2token[0](best_hyps_id[b], return_list=True)
                spk = batch['speakers'][b]

                plot_attention_weights(
                    aws[b][:, :len(tokens)], tokens,
                    spectrogram=batch['xs'][b][:, :dataset.input_dim] if args.input_type == 'speech' else None,
                    ref=batch['text'][b].lower(),
                    save_path=mkdir_join(save_path, spk, batch['utt_ids'][b] + '.png'),
                    figsize=(20, 8),
                    ctc_probs=ctc_probs[b, :xlens[b]] if ctc_probs is not None else None,
                    ctc_topk_ids=topk_ids[b] if topk_ids is not None else None)

                if model.bwd_weight > 0.5:
                    hyp = ' '.join(tokens[::-1])
                else:
                    hyp = ' '.join(tokens)
                logger.info('utt-id: %s' % batch['utt_ids'][b])
                logger.info('Ref: %s' % batch['text'][b].lower())
                logger.info('Hyp: %s' % hyp)
                logger.info('-' * 50)

            if is_new_epoch:
                break
Exemple #5
0
def main():

    args = parse_args_train(sys.argv[1:])
    args_init = copy.deepcopy(args)
    args_teacher = copy.deepcopy(args)

    # Load a conf file
    if args.resume:
        conf = load_config(os.path.join(os.path.dirname(args.resume), 'conf.yml'))
        for k, v in conf.items():
            if k != 'resume':
                setattr(args, k, v)
    recog_params = vars(args)

    args = compute_susampling_factor(args)

    # Load dataset
    batch_size = args.batch_size * args.n_gpus if args.n_gpus >= 1 else args.batch_size
    train_set = Dataset(corpus=args.corpus,
                        tsv_path=args.train_set,
                        tsv_path_sub1=args.train_set_sub1,
                        tsv_path_sub2=args.train_set_sub2,
                        dict_path=args.dict,
                        dict_path_sub1=args.dict_sub1,
                        dict_path_sub2=args.dict_sub2,
                        nlsyms=args.nlsyms,
                        unit=args.unit,
                        unit_sub1=args.unit_sub1,
                        unit_sub2=args.unit_sub2,
                        wp_model=args.wp_model,
                        wp_model_sub1=args.wp_model_sub1,
                        wp_model_sub2=args.wp_model_sub2,
                        batch_size=batch_size,
                        n_epochs=args.n_epochs,
                        min_n_frames=args.min_n_frames,
                        max_n_frames=args.max_n_frames,
                        shuffle_bucket=args.shuffle_bucket,
                        sort_by='input',
                        short2long=args.sort_short2long,
                        sort_stop_epoch=args.sort_stop_epoch,
                        dynamic_batching=args.dynamic_batching,
                        ctc=args.ctc_weight > 0,
                        ctc_sub1=args.ctc_weight_sub1 > 0,
                        ctc_sub2=args.ctc_weight_sub2 > 0,
                        subsample_factor=args.subsample_factor,
                        subsample_factor_sub1=args.subsample_factor_sub1,
                        subsample_factor_sub2=args.subsample_factor_sub2,
                        discourse_aware=args.discourse_aware)
    dev_set = Dataset(corpus=args.corpus,
                      tsv_path=args.dev_set,
                      tsv_path_sub1=args.dev_set_sub1,
                      tsv_path_sub2=args.dev_set_sub2,
                      dict_path=args.dict,
                      dict_path_sub1=args.dict_sub1,
                      dict_path_sub2=args.dict_sub2,
                      nlsyms=args.nlsyms,
                      unit=args.unit,
                      unit_sub1=args.unit_sub1,
                      unit_sub2=args.unit_sub2,
                      wp_model=args.wp_model,
                      wp_model_sub1=args.wp_model_sub1,
                      wp_model_sub2=args.wp_model_sub2,
                      batch_size=batch_size,
                      min_n_frames=args.min_n_frames,
                      max_n_frames=args.max_n_frames,
                      ctc=args.ctc_weight > 0,
                      ctc_sub1=args.ctc_weight_sub1 > 0,
                      ctc_sub2=args.ctc_weight_sub2 > 0,
                      subsample_factor=args.subsample_factor,
                      subsample_factor_sub1=args.subsample_factor_sub1,
                      subsample_factor_sub2=args.subsample_factor_sub2)
    eval_sets = [Dataset(corpus=args.corpus,
                         tsv_path=s,
                         dict_path=args.dict,
                         nlsyms=args.nlsyms,
                         unit=args.unit,
                         wp_model=args.wp_model,
                         batch_size=1,
                         is_test=True) for s in args.eval_sets]

    args.vocab = train_set.vocab
    args.vocab_sub1 = train_set.vocab_sub1
    args.vocab_sub2 = train_set.vocab_sub2
    args.input_dim = train_set.input_dim

    # Set save path
    if args.resume:
        save_path = os.path.dirname(args.resume)
        dir_name = os.path.basename(save_path)
    else:
        dir_name = set_asr_model_name(args)
        if args.mbr_training:
            assert args.asr_init
            save_path = mkdir_join(os.path.dirname(args.asr_init), dir_name)
        else:
            save_path = mkdir_join(args.model_save_dir, '_'.join(
                os.path.basename(args.train_set).split('.')[:-1]), dir_name)
        save_path = set_save_path(save_path)  # avoid overwriting

    # Set logger
    set_logger(os.path.join(save_path, 'train.log'), stdout=args.stdout)

    # Load a LM conf file for LM fusion & LM initialization
    if not args.resume and args.external_lm:
        lm_conf = load_config(os.path.join(os.path.dirname(args.external_lm), 'conf.yml'))
        args.lm_conf = argparse.Namespace()
        for k, v in lm_conf.items():
            setattr(args.lm_conf, k, v)
        assert args.unit == args.lm_conf.unit
        assert args.vocab == args.lm_conf.vocab

    # Model setting
    model = Speech2Text(args, save_path, train_set.idx2token[0])

    if not args.resume:
        # Save the conf file as a yaml file
        save_config(vars(args), os.path.join(save_path, 'conf.yml'))
        if args.external_lm:
            save_config(args.lm_conf, os.path.join(save_path, 'conf_lm.yml'))

        # Save the nlsyms, dictionary, and wp_model
        if args.nlsyms:
            shutil.copy(args.nlsyms, os.path.join(save_path, 'nlsyms.txt'))
        for sub in ['', '_sub1', '_sub2']:
            if getattr(args, 'dict' + sub):
                shutil.copy(getattr(args, 'dict' + sub), os.path.join(save_path, 'dict' + sub + '.txt'))
            if getattr(args, 'unit' + sub) == 'wp':
                shutil.copy(getattr(args, 'wp_model' + sub), os.path.join(save_path, 'wp' + sub + '.model'))

        for k, v in sorted(vars(args).items(), key=lambda x: x[0]):
            logger.info('%s: %s' % (k, str(v)))

        # Count total parameters
        for n in sorted(list(model.num_params_dict.keys())):
            n_params = model.num_params_dict[n]
            logger.info("%s %d" % (n, n_params))
        logger.info("Total %.2f M parameters" % (model.total_parameters / 1000000))
        logger.info(model)

        # Initialize with pre-trained model's parameters
        if args.asr_init:
            # Load the ASR model (full model)
            conf_init = load_config(os.path.join(os.path.dirname(args.asr_init), 'conf.yml'))
            for k, v in conf_init.items():
                setattr(args_init, k, v)
            model_init = Speech2Text(args_init)
            load_checkpoint(args.asr_init, model_init)

            # Overwrite parameters
            param_dict = dict(model_init.named_parameters())
            for n, p in model.named_parameters():
                if n in param_dict.keys() and p.size() == param_dict[n].size():
                    if args.asr_init_enc_only and 'enc' not in n:
                        continue
                    p.data = param_dict[n].data
                    logger.info('Overwrite %s' % n)

    # Set optimizer
    resume_epoch = 0
    if args.resume:
        resume_epoch = int(args.resume.split('-')[-1])
        optimizer = set_optimizer(model, 'sgd' if resume_epoch > args.convert_to_sgd_epoch else args.optimizer,
                                  args.lr, args.weight_decay)
    else:
        optimizer = set_optimizer(model, args.optimizer, args.lr, args.weight_decay)

    # Wrap optimizer by learning rate scheduler
    is_transformer = 'former' in args.enc_type or 'former' in args.dec_type
    optimizer = LRScheduler(optimizer, args.lr,
                            decay_type=args.lr_decay_type,
                            decay_start_epoch=args.lr_decay_start_epoch,
                            decay_rate=args.lr_decay_rate,
                            decay_patient_n_epochs=args.lr_decay_patient_n_epochs,
                            early_stop_patient_n_epochs=args.early_stop_patient_n_epochs,
                            lower_better=args.metric not in ['accuracy', 'bleu'],
                            warmup_start_lr=args.warmup_start_lr,
                            warmup_n_steps=args.warmup_n_steps,
                            model_size=getattr(args, 'transformer_d_model', 0),
                            factor=args.lr_factor,
                            noam=args.optimizer == 'noam',
                            save_checkpoints_topk=10 if is_transformer else 1)

    if args.resume:
        # Restore the last saved model
        load_checkpoint(args.resume, model, optimizer)

        # Resume between convert_to_sgd_epoch -1 and convert_to_sgd_epoch
        if resume_epoch == args.convert_to_sgd_epoch:
            optimizer.convert_to_sgd(model, args.lr, args.weight_decay,
                                     decay_type='always', decay_rate=0.5)

    # Load the teacher ASR model
    teacher = None
    if args.teacher:
        assert os.path.isfile(args.teacher), 'There is no checkpoint.'
        conf_teacher = load_config(os.path.join(os.path.dirname(args.teacher), 'conf.yml'))
        for k, v in conf_teacher.items():
            setattr(args_teacher, k, v)
        # Setting for knowledge distillation
        args_teacher.ss_prob = 0
        args.lsm_prob = 0
        teacher = Speech2Text(args_teacher)
        load_checkpoint(args.teacher, teacher)

    # Load the teacher LM
    teacher_lm = None
    if args.teacher_lm:
        assert os.path.isfile(args.teacher_lm), 'There is no checkpoint.'
        conf_lm = load_config(os.path.join(os.path.dirname(args.teacher_lm), 'conf.yml'))
        args_lm = argparse.Namespace()
        for k, v in conf_lm.items():
            setattr(args_lm, k, v)
        teacher_lm = build_lm(args_lm)
        load_checkpoint(args.teacher_lm, teacher_lm)

    # GPU setting
    use_apex = args.train_dtype in ["O0", "O1", "O2", "O3"]
    amp = None
    if args.n_gpus >= 1:
        model.cudnn_setting(deterministic=not (is_transformer or args.cudnn_benchmark),
                            benchmark=not is_transformer and args.cudnn_benchmark)
        model.cuda()

        # Mix precision training setting
        if use_apex:
            from apex import amp
            model, optimizer.optimizer = amp.initialize(model, optimizer.optimizer,
                                                        opt_level=args.train_dtype)
            from neural_sp.models.seq2seq.decoders.ctc import CTC
            amp.register_float_function(CTC, "loss_fn")
            # NOTE: see https://github.com/espnet/espnet/pull/1779
            amp.init()
            if args.resume:
                load_checkpoint(args.resume, amp=amp)
        model = CustomDataParallel(model, device_ids=list(range(0, args.n_gpus)))

        if teacher is not None:
            teacher.cuda()
        if teacher_lm is not None:
            teacher_lm.cuda()
    else:
        model = CPUWrapperASR(model)

    # Set process name
    logger.info('PID: %s' % os.getpid())
    logger.info('USERNAME: %s' % os.uname()[1])
    logger.info('#GPU: %d' % torch.cuda.device_count())
    setproctitle(args.job_name if args.job_name else dir_name)

    # Set reporter
    reporter = Reporter(save_path)

    if args.mtl_per_batch:
        # NOTE: from easier to harder tasks
        tasks = []
        if 1 - args.bwd_weight - args.ctc_weight - args.sub1_weight - args.sub2_weight > 0:
            tasks += ['ys']
        if args.bwd_weight > 0:
            tasks = ['ys.bwd'] + tasks
        if args.ctc_weight > 0:
            tasks = ['ys.ctc'] + tasks
        if args.mbr_ce_weight > 0:
            tasks = ['ys.mbr'] + tasks
        for sub in ['sub1', 'sub2']:
            if getattr(args, 'train_set_' + sub):
                if getattr(args, sub + '_weight') - getattr(args, 'ctc_weight_' + sub) > 0:
                    tasks = ['ys_' + sub] + tasks
                if getattr(args, 'ctc_weight_' + sub) > 0:
                    tasks = ['ys_' + sub + '.ctc'] + tasks
    else:
        tasks = ['all']

    start_time_train = time.time()
    start_time_epoch = time.time()
    start_time_step = time.time()
    accum_n_steps = 0
    n_steps = optimizer.n_steps * args.accum_grad_n_steps
    epoch_detail_prev = 0
    for ep in range(resume_epoch, args.n_epochs):
        pbar_epoch = tqdm(total=len(train_set))
        session_prev = None

        for batch_train, is_new_epoch in train_set:
            # Compute loss in the training set
            if args.discourse_aware and batch_train['sessions'][0] != session_prev:
                model.module.reset_session()
            session_prev = batch_train['sessions'][0]
            accum_n_steps += 1

            # Change mini-batch depending on task
            if accum_n_steps == 1:
                loss_train = 0  # moving average over gradient accumulation
            for task in tasks:
                loss, observation = model(batch_train, task,
                                          teacher=teacher, teacher_lm=teacher_lm)
                reporter.add(observation)
                if use_apex:
                    with amp.scale_loss(loss, optimizer.optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()
                loss.detach()  # Trancate the graph
                loss_train = (loss_train * (accum_n_steps - 1) + loss.item()) / accum_n_steps
                if accum_n_steps >= args.accum_grad_n_steps or is_new_epoch:
                    if args.clip_grad_norm > 0:
                        total_norm = torch.nn.utils.clip_grad_norm_(
                            model.module.parameters(), args.clip_grad_norm)
                        reporter.add_tensorboard_scalar('total_norm', total_norm)
                    optimizer.step()
                    optimizer.zero_grad()
                    accum_n_steps = 0
                    # NOTE: parameters are forcibly updated at the end of every epoch
                del loss

            pbar_epoch.update(len(batch_train['utt_ids']))
            reporter.add_tensorboard_scalar('learning_rate', optimizer.lr)
            # NOTE: loss/acc/ppl are already added in the model
            reporter.step()
            n_steps += 1
            # NOTE: n_steps is different from the step counter in Noam Optimizer

            if n_steps % args.print_step == 0:
                # Compute loss in the dev set
                batch_dev = iter(dev_set).next(batch_size=1 if 'transducer' in args.dec_type else None)[0]
                # Change mini-batch depending on task
                for task in tasks:
                    loss, observation = model(batch_dev, task, is_eval=True)
                    reporter.add(observation, is_eval=True)
                    loss_dev = loss.item()
                    del loss
                reporter.step(is_eval=True)

                duration_step = time.time() - start_time_step
                if args.input_type == 'speech':
                    xlen = max(len(x) for x in batch_train['xs'])
                    ylen = max(len(y) for y in batch_train['ys'])
                elif args.input_type == 'text':
                    xlen = max(len(x) for x in batch_train['ys'])
                    ylen = max(len(y) for y in batch_train['ys_sub1'])
                logger.info("step:%d(ep:%.2f) loss:%.3f(%.3f)/lr:%.7f/bs:%d/xlen:%d/ylen:%d (%.2f min)" %
                            (n_steps, optimizer.n_epochs + train_set.epoch_detail,
                             loss_train, loss_dev,
                             optimizer.lr, len(batch_train['utt_ids']),
                             xlen, ylen, duration_step / 60))
                start_time_step = time.time()

            # Save fugures of loss and accuracy
            if n_steps % (args.print_step * 10) == 0:
                reporter.snapshot()
                model.module.plot_attention()
                model.module.plot_ctc()

            # Ealuate model every 0.1 epoch during MBR training
            if args.mbr_training:
                if int(train_set.epoch_detail * 10) != int(epoch_detail_prev * 10):
                    # dev
                    evaluate([model.module], dev_set, recog_params, args,
                             int(train_set.epoch_detail * 10) / 10, logger)
                    # Save the model
                    optimizer.save_checkpoint(
                        model, save_path, remove_old=False, amp=amp,
                        epoch_detail=train_set.epoch_detail)
                epoch_detail_prev = train_set.epoch_detail

            if is_new_epoch:
                break

        # Save checkpoint and evaluate model per epoch
        duration_epoch = time.time() - start_time_epoch
        logger.info('========== EPOCH:%d (%.2f min) ==========' %
                    (optimizer.n_epochs + 1, duration_epoch / 60))

        if optimizer.n_epochs + 1 < args.eval_start_epoch:
            optimizer.epoch()  # lr decay
            reporter.epoch()  # plot

            # Save the model
            optimizer.save_checkpoint(
                model, save_path, remove_old=not is_transformer and args.remove_old_checkpoints, amp=amp)
        else:
            start_time_eval = time.time()
            # dev
            metric_dev = evaluate([model.module], dev_set, recog_params, args,
                                  optimizer.n_epochs + 1, logger)
            optimizer.epoch(metric_dev)  # lr decay
            reporter.epoch(metric_dev, name=args.metric)  # plot

            if optimizer.is_topk or is_transformer:
                # Save the model
                optimizer.save_checkpoint(
                    model, save_path, remove_old=not is_transformer and args.remove_old_checkpoints, amp=amp)

                # test
                if optimizer.is_topk:
                    for eval_set in eval_sets:
                        evaluate([model.module], eval_set, recog_params, args,
                                 optimizer.n_epochs, logger)

            duration_eval = time.time() - start_time_eval
            logger.info('Evaluation time: %.2f min' % (duration_eval / 60))

            # Early stopping
            if optimizer.is_early_stop:
                break

            # Convert to fine-tuning stage
            if optimizer.n_epochs == args.convert_to_sgd_epoch:
                optimizer.convert_to_sgd(model, args.lr, args.weight_decay,
                                         decay_type='always', decay_rate=0.5)

            if optimizer.n_epochs >= args.n_epochs:
                break
            # if args.ss_prob > 0:
            #     model.module.scheduled_sampling_trigger()

            start_time_step = time.time()
            start_time_epoch = time.time()

    duration_train = time.time() - start_time_train
    logger.info('Total time: %.2f hour' % (duration_train / 3600))

    reporter.tf_writer.close()
    pbar_epoch.close()

    return save_path
Exemple #6
0
    def __init__(self, args, save_path=None, idx2token=None):

        super(ModelBase, self).__init__()

        self.save_path = save_path

        # for encoder, decoder
        self.input_type = args.input_type
        self.input_dim = args.input_dim
        self.enc_type = args.enc_type
        self.enc_n_units = args.enc_n_units
        if args.enc_type in ['blstm', 'bgru', 'conv_blstm', 'conv_bgru']:
            self.enc_n_units *= 2
        self.dec_type = args.dec_type

        # for OOV resolution
        self.enc_n_layers = args.enc_n_layers
        self.enc_n_layers_sub1 = args.enc_n_layers_sub1
        self.subsample = [int(s) for s in args.subsample.split('_')]

        # for decoder
        self.vocab = args.vocab
        self.vocab_sub1 = args.vocab_sub1
        self.vocab_sub2 = args.vocab_sub2
        self.blank = 0
        self.unk = 1
        self.eos = 2
        self.pad = 3
        # NOTE: reserved in advance

        # for the sub tasks
        self.main_weight = 1 - args.sub1_weight - args.sub2_weight
        self.sub1_weight = args.sub1_weight
        self.sub2_weight = args.sub2_weight
        self.mtl_per_batch = args.mtl_per_batch
        self.task_specific_layer = args.task_specific_layer

        # for CTC
        self.ctc_weight = min(args.ctc_weight, self.main_weight)
        self.ctc_weight_sub1 = min(args.ctc_weight_sub1, self.sub1_weight)
        self.ctc_weight_sub2 = min(args.ctc_weight_sub2, self.sub2_weight)

        # for backward decoder
        self.bwd_weight = min(args.bwd_weight, self.main_weight)
        self.fwd_weight = self.main_weight - self.bwd_weight - self.ctc_weight
        self.fwd_weight_sub1 = self.sub1_weight - self.ctc_weight_sub1
        self.fwd_weight_sub2 = self.sub2_weight - self.ctc_weight_sub2

        # for MBR
        self.mbr_training = args.mbr_training
        self.recog_params = vars(args)
        self.idx2token = idx2token

        # Feature extraction
        self.gaussian_noise = args.gaussian_noise
        self.n_stacks = args.n_stacks
        self.n_skips = args.n_skips
        self.n_splices = args.n_splices
        self.use_specaug = args.n_freq_masks > 0 or args.n_time_masks > 0
        self.specaug = None
        self.flip_time_prob = args.flip_time_prob
        self.flip_freq_prob = args.flip_freq_prob
        self.weight_noise = args.weight_noise
        if self.use_specaug:
            assert args.n_stacks == 1 and args.n_skips == 1
            assert args.n_splices == 1
            self.specaug = SpecAugment(F=args.freq_width,
                                       T=args.time_width,
                                       n_freq_masks=args.n_freq_masks,
                                       n_time_masks=args.n_time_masks,
                                       p=args.time_width_upper)

        # Frontend
        self.ssn = None
        if args.sequence_summary_network:
            assert args.input_type == 'speech'
            self.ssn = SequenceSummaryNetwork(args.input_dim,
                                              n_units=512,
                                              n_layers=3,
                                              bottleneck_dim=100,
                                              dropout=0,
                                              param_init=args.param_init)

        # Encoder
        self.enc = build_encoder(args)
        if args.freeze_encoder:
            for p in self.enc.parameters():
                p.requires_grad = False

        # main task
        external_lm = None
        directions = []
        if self.fwd_weight > 0 or (self.bwd_weight == 0
                                   and self.ctc_weight > 0):
            directions.append('fwd')
        if self.bwd_weight > 0:
            directions.append('bwd')
        for dir in directions:
            # Load the LM for LM fusion and decoder initialization
            if args.external_lm and dir == 'fwd':
                external_lm = RNNLM(args.lm_conf)
                load_checkpoint(external_lm, args.external_lm)
                # freeze LM parameters
                for n, p in external_lm.named_parameters():
                    p.requires_grad = False

            # Decoder
            special_symbols = {
                'blank': self.blank,
                'unk': self.unk,
                'eos': self.eos,
                'pad': self.pad,
            }
            dec = build_decoder(
                args, special_symbols, self.enc.output_dim, args.vocab,
                self.ctc_weight, args.ctc_fc_list, self.main_weight -
                self.bwd_weight if dir == 'fwd' else self.bwd_weight,
                external_lm)
            setattr(self, 'dec_' + dir, dec)

        # sub task
        for sub in ['sub1', 'sub2']:
            if getattr(self, sub + '_weight') > 0:
                dec_sub = build_decoder(args, special_symbols,
                                        self.enc.output_dim,
                                        getattr(self, 'vocab_' + sub),
                                        getattr(self, 'ctc_weight_' + sub),
                                        getattr(args, 'ctc_fc_list_' + sub),
                                        getattr(self,
                                                sub + '_weight'), external_lm)
                setattr(self, 'dec_fwd_' + sub, dec_sub)

        if args.input_type == 'text':
            if args.vocab == args.vocab_sub1:
                # Share the embedding layer between input and output
                self.embed = dec.embed
            else:
                self.embed = nn.Embedding(args.vocab_sub1,
                                          args.emb_dim,
                                          padding_idx=self.pad)
                self.dropout_emb = nn.Dropout(p=args.dropout_emb)

        # Recurrent weights are orthogonalized
        if args.rec_weight_orthogonal:
            self.reset_parameters(args.param_init,
                                  dist='orthogonal',
                                  keys=['rnn', 'weight'])

        # Initialize bias in forget gate with 1
        # self.init_forget_gate_bias_with_one()

        # Fix all parameters except for the gating parts in deep fusion
        if args.lm_fusion == 'deep' and external_lm is not None:
            for n, p in self.named_parameters():
                if 'output' in n or 'output_bn' in n or 'linear' in n:
                    p.requires_grad = True
                else:
                    p.requires_grad = False
Exemple #7
0
def main():

    args = parse()

    # Load a conf file
    dir_name = os.path.dirname(args.recog_model[0])
    conf = load_config(os.path.join(dir_name, 'conf.yml'))

    # Overwrite conf
    for k, v in conf.items():
        if 'recog' not in k:
            setattr(args, k, v)

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'plot.log')):
        os.remove(os.path.join(args.recog_dir, 'plot.log'))
    logger = set_logger(os.path.join(args.recog_dir, 'plot.log'),
                        key='decoding')

    for i, s in enumerate(args.recog_sets):
        # Load dataset
        dataset = Dataset(corpus=args.corpus,
                          tsv_path=s,
                          dict_path=os.path.join(dir_name, 'dict.txt'),
                          wp_model=os.path.join(dir_name, 'wp.model'),
                          unit=args.unit,
                          batch_size=args.recog_batch_size,
                          bptt=args.bptt,
                          serialize=args.serialize,
                          is_test=True)

        if i == 0:
            # Load the LM
            if args.lm_type == 'gated_cnn':
                model = GatedConvLM(args)
            else:
                model = RNNLM(args)
            model, checkpoint = load_checkpoint(model, args.recog_model[0])
            epoch = checkpoint['epoch']
            model.save_path = dir_name

            logger.info('epoch: %d' % (epoch - 1))
            logger.info('batch size: %d' % args.recog_batch_size)
            # logger.info('recog unit: %s' % args.recog_unit)
            # logger.info('ensemble: %d' % (len(ensemble_models)))
            logger.info('BPTT: %d' % (args.bptt))
            logger.info('cache size: %d' % (args.recog_n_caches))
            logger.info('cache theta: %.3f' % (args.recog_cache_theta))
            logger.info('cache lambda: %.3f' % (args.recog_cache_lambda))
            model.cache_theta = args.recog_cache_theta
            model.cache_lambda = args.recog_cache_lambda

            # GPU setting
            model.cuda()

        assert args.recog_n_caches > 0
        save_path = mkdir_join(args.recog_dir, 'cache')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)

        if args.unit == 'word':
            idx2token = dataset.idx2word
        elif args.unit == 'wp':
            idx2token = dataset.idx2wp
        elif args.unit == 'char':
            idx2token = dataset.idx2char
        elif args.unit == 'phone':
            idx2token = dataset.idx2phone
        else:
            raise NotImplementedError(args.unit)

        hidden = None
        fig_count = 0
        toknen_count = 0
        n_tokens = args.recog_n_caches
        while True:
            ys, is_new_epoch = dataset.next()

            for t in range(ys.shape[1] - 1):
                loss, hidden = model(ys[:, t:t + 2],
                                     hidden,
                                     is_eval=True,
                                     n_caches=args.recog_n_caches)[:2]

                if len(model.cache_attn) > 0:
                    if toknen_count == n_tokens:
                        tokens_keys = idx2token(
                            model.cache_ids[:args.recog_n_caches],
                            return_list=True)
                        tokens_query = idx2token(model.cache_ids[-n_tokens:],
                                                 return_list=True)

                        # Slide attention matrix
                        n_keys = len(tokens_keys)
                        n_queries = len(tokens_query)
                        cache_probs = np.zeros(
                            (n_keys, n_queries))  # `[n_keys, n_queries]`
                        mask = np.zeros((n_keys, n_queries))
                        for i, aw in enumerate(model.cache_attn[-n_tokens:]):
                            cache_probs[:(n_keys - n_queries + i + 1),
                                        i] = aw[0,
                                                -(n_keys - n_queries + i + 1):]
                            mask[(n_keys - n_queries + i + 1):, i] = 1

                        plot_cache_weights(cache_probs,
                                           keys=tokens_keys,
                                           queries=tokens_query,
                                           save_path=mkdir_join(
                                               save_path,
                                               str(fig_count) + '.png'),
                                           figsize=(40, 16),
                                           mask=mask)
                        toknen_count = 0
                        fig_count += 1
                    else:
                        toknen_count += 1

            if is_new_epoch:
                break
def main():

    # Load configuration
    args, dir_name = parse_args_eval(sys.argv[1:])

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'align.log')):
        os.remove(os.path.join(args.recog_dir, 'align.log'))
    set_logger(os.path.join(args.recog_dir, 'align.log'),
               stdout=args.recog_stdout)

    for i, s in enumerate(args.recog_sets):
        # Align all utterances
        args.min_n_frames = 0
        args.max_n_frames = 1e5

        # Load dataloader
        dataloader = build_dataloader(args=args,
                                      tsv_path=s,
                                      batch_size=args.recog_batch_size)

        if i == 0:
            # Load ASR model
            model = Speech2Text(args, dir_name)
            epoch = int(args.recog_model[0].split('-')[-1])
            if args.recog_n_average > 1:
                # Model averaging for Transformer
                model = average_checkpoints(model,
                                            args.recog_model[0],
                                            n_average=args.recog_n_average)
            else:
                load_checkpoint(args.recog_model[0], model)

            if not args.recog_unit:
                args.recog_unit = args.unit

            logger.info('recog unit: %s' % args.recog_unit)
            logger.info('epoch: %d' % epoch)
            logger.info('batch size: %d' % args.recog_batch_size)

            # GPU setting
            if args.recog_n_gpus >= 1:
                model.cudnn_setting(deterministic=True, benchmark=False)
                model.cuda()

        save_path = mkdir_join(args.recog_dir, 'ctc_forced_alignments')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)

        pbar = tqdm(total=len(dataloader))
        while True:
            batch, is_new_epoch = dataloader.next()
            trigger_points = model.ctc_forced_align(batch['xs'],
                                                    batch['ys'])  # `[B, L]`

            for b in range(len(batch['xs'])):
                save_path_spk = mkdir_join(save_path, batch['speakers'][b])
                save_path_utt = mkdir_join(save_path_spk,
                                           batch['utt_ids'][b] + '.txt')

                tokens = dataloader.idx2token[0](batch['ys'][b],
                                                 return_list=True)
                with codecs.open(save_path_utt, 'w', encoding="utf-8") as f:
                    for i, tok in enumerate(tokens):
                        f.write('%s %d\n' % (tok, trigger_points[b, i]))
                    f.write('%s %d\n' %
                            ('<eos>', trigger_points[b, len(tokens)]))

            pbar.update(len(batch['xs']))

            if is_new_epoch:
                break

        pbar.close()
Exemple #9
0
def main():

    # Load configuration
    args, dir_name = parse_args_eval(sys.argv[1:])

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'decode.log')):
        os.remove(os.path.join(args.recog_dir, 'decode.log'))
    set_logger(os.path.join(args.recog_dir, 'decode.log'),
               stdout=args.recog_stdout)

    wer_avg, cer_avg, per_avg = 0, 0, 0
    ppl_avg, loss_avg = 0, 0
    acc_avg = 0
    bleu_avg = 0
    for i, s in enumerate(args.recog_sets):
        # Load dataloader
        dataloader = build_dataloader(
            args=args,
            tsv_path=s,
            batch_size=1,
            is_test=True,
            first_n_utterances=args.recog_first_n_utt,
            longform_max_n_frames=args.recog_longform_max_n_frames)

        if i == 0:
            # Load ASR model
            model = Speech2Text(args, dir_name)
            epoch = int(float(args.recog_model[0].split('-')[-1]) * 10) / 10
            if args.recog_n_average > 1:
                # Model averaging for Transformer
                # topk_list = load_checkpoint(args.recog_model[0], model)
                model = average_checkpoints(
                    model,
                    args.recog_model[0],
                    # topk_list=topk_list,
                    n_average=args.recog_n_average)
            else:
                load_checkpoint(args.recog_model[0], model)

            # Ensemble (different models)
            ensemble_models = [model]
            if len(args.recog_model) > 1:
                for recog_model_e in args.recog_model[1:]:
                    conf_e = load_config(
                        os.path.join(os.path.dirname(recog_model_e),
                                     'conf.yml'))
                    args_e = copy.deepcopy(args)
                    for k, v in conf_e.items():
                        if 'recog' not in k:
                            setattr(args_e, k, v)
                    model_e = Speech2Text(args_e)
                    load_checkpoint(recog_model_e, model_e)
                    if args.recog_n_gpus >= 1:
                        model_e.cuda()
                    ensemble_models += [model_e]

            # Load LM for shallow fusion
            if not args.lm_fusion:
                # first path
                if args.recog_lm is not None and args.recog_lm_weight > 0:
                    conf_lm = load_config(
                        os.path.join(os.path.dirname(args.recog_lm),
                                     'conf.yml'))
                    args_lm = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm, k, v)
                    args_lm.recog_mem_len = args.recog_mem_len
                    lm = build_lm(args_lm,
                                  wordlm=args.recog_wordlm,
                                  lm_dict_path=os.path.join(
                                      os.path.dirname(args.recog_lm),
                                      'dict.txt'),
                                  asr_dict_path=os.path.join(
                                      dir_name, 'dict.txt'))
                    load_checkpoint(args.recog_lm, lm)
                    if args_lm.backward:
                        model.lm_bwd = lm
                    else:
                        model.lm_fwd = lm

                # second path (forward)
                if args.recog_lm_second is not None and args.recog_lm_second_weight > 0:
                    conf_lm_second = load_config(
                        os.path.join(os.path.dirname(args.recog_lm_second),
                                     'conf.yml'))
                    args_lm_second = argparse.Namespace()
                    for k, v in conf_lm_second.items():
                        setattr(args_lm_second, k, v)
                    args_lm_second.recog_mem_len = args.recog_mem_len
                    lm_second = build_lm(args_lm_second)
                    load_checkpoint(args.recog_lm_second, lm_second)
                    model.lm_second = lm_second

                # second path (backward)
                if args.recog_lm_bwd is not None and args.recog_lm_bwd_weight > 0:
                    conf_lm = load_config(
                        os.path.join(os.path.dirname(args.recog_lm_bwd),
                                     'conf.yml'))
                    args_lm_bwd = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm_bwd, k, v)
                    args_lm_bwd.recog_mem_len = args.recog_mem_len
                    lm_bwd = build_lm(args_lm_bwd)
                    load_checkpoint(args.recog_lm_bwd, lm_bwd)
                    model.lm_bwd = lm_bwd

            if not args.recog_unit:
                args.recog_unit = args.unit

            logger.info('recog unit: %s' % args.recog_unit)
            logger.info('recog metric: %s' % args.recog_metric)
            logger.info('recog oracle: %s' % args.recog_oracle)
            logger.info('epoch: %d' % epoch)
            logger.info('batch size: %d' % args.recog_batch_size)
            logger.info('beam width: %d' % args.recog_beam_width)
            logger.info('min length ratio: %.3f' % args.recog_min_len_ratio)
            logger.info('max length ratio: %.3f' % args.recog_max_len_ratio)
            logger.info('length penalty: %.3f' % args.recog_length_penalty)
            logger.info('length norm: %s' % args.recog_length_norm)
            logger.info('coverage penalty: %.3f' % args.recog_coverage_penalty)
            logger.info('coverage threshold: %.3f' %
                        args.recog_coverage_threshold)
            logger.info('CTC weight: %.3f' % args.recog_ctc_weight)
            logger.info('fist LM path: %s' % args.recog_lm)
            logger.info('second LM path: %s' % args.recog_lm_second)
            logger.info('backward LM path: %s' % args.recog_lm_bwd)
            logger.info('LM weight (first-pass): %.3f' % args.recog_lm_weight)
            logger.info('LM weight (second-pass): %.3f' %
                        args.recog_lm_second_weight)
            logger.info('LM weight (backward): %.3f' %
                        args.recog_lm_bwd_weight)
            logger.info('GNMT: %s' % args.recog_gnmt_decoding)
            logger.info('forward-backward attention: %s' %
                        args.recog_fwd_bwd_attention)
            logger.info('resolving UNK: %s' % args.recog_resolving_unk)
            logger.info('ensemble: %d' % (len(ensemble_models)))
            logger.info('ASR decoder state carry over: %s' %
                        (args.recog_asr_state_carry_over))
            logger.info('LM state carry over: %s' %
                        (args.recog_lm_state_carry_over))
            logger.info('model average (Transformer): %d' %
                        (args.recog_n_average))

            # GPU setting
            if args.recog_n_gpus >= 1:
                model.cudnn_setting(deterministic=True, benchmark=False)
                model.cuda()

        start_time = time.time()

        if args.recog_metric == 'edit_distance':
            if args.recog_unit in ['word', 'word_char']:
                wer, cer, _ = eval_word(ensemble_models,
                                        dataloader,
                                        args,
                                        epoch=epoch - 1,
                                        recog_dir=args.recog_dir,
                                        progressbar=True,
                                        fine_grained=True,
                                        oracle=True)
                wer_avg += wer
                cer_avg += cer
            elif args.recog_unit == 'wp':
                wer, cer = eval_wordpiece(ensemble_models,
                                          dataloader,
                                          args,
                                          epoch=epoch - 1,
                                          recog_dir=args.recog_dir,
                                          streaming=args.recog_streaming,
                                          progressbar=True,
                                          fine_grained=True,
                                          oracle=True)
                wer_avg += wer
                cer_avg += cer
            elif 'char' in args.recog_unit:
                wer, cer = eval_char(ensemble_models,
                                     dataloader,
                                     args,
                                     epoch=epoch - 1,
                                     recog_dir=args.recog_dir,
                                     progressbar=True,
                                     task_idx=0,
                                     fine_grained=True,
                                     oracle=True)
                #  task_idx=1 if args.recog_unit and 'char' in args.recog_unit else 0)
                wer_avg += wer
                cer_avg += cer
            elif 'phone' in args.recog_unit:
                per = eval_phone(ensemble_models,
                                 dataloader,
                                 args,
                                 epoch=epoch - 1,
                                 recog_dir=args.recog_dir,
                                 progressbar=True,
                                 fine_grained=True,
                                 oracle=True)
                per_avg += per
            else:
                raise ValueError(args.recog_unit)
        elif args.recog_metric in ['ppl', 'loss']:
            ppl, loss = eval_ppl(ensemble_models, dataloader, progressbar=True)
            ppl_avg += ppl
            loss_avg += loss
        elif args.recog_metric == 'accuracy':
            acc_avg += eval_accuracy(ensemble_models,
                                     dataloader,
                                     progressbar=True)
        elif args.recog_metric == 'bleu':
            bleu = eval_wordpiece_bleu(ensemble_models,
                                       dataloader,
                                       args,
                                       epoch=epoch - 1,
                                       recog_dir=args.recog_dir,
                                       streaming=args.recog_streaming,
                                       progressbar=True,
                                       fine_grained=True,
                                       oracle=True)
            bleu_avg += bleu
        else:
            raise NotImplementedError(args.recog_metric)
        elapsed_time = time.time() - start_time
        logger.info('Elapsed time: %.3f [sec]' % elapsed_time)
        logger.info('RTF: %.3f' % (elapsed_time /
                                   (dataloader.n_frames * 0.01)))

    if args.recog_metric == 'edit_distance':
        if 'phone' in args.recog_unit:
            logger.info('PER (avg.): %.2f %%\n' %
                        (per_avg / len(args.recog_sets)))
        else:
            logger.info('WER / CER (avg.): %.2f / %.2f %%\n' %
                        (wer_avg / len(args.recog_sets),
                         cer_avg / len(args.recog_sets)))
    elif args.recog_metric in ['ppl', 'loss']:
        logger.info('PPL (avg.): %.2f\n' % (ppl_avg / len(args.recog_sets)))
        print('PPL (avg.): %.3f' % (ppl_avg / len(args.recog_sets)))
        logger.info('Loss (avg.): %.2f\n' % (loss_avg / len(args.recog_sets)))
        print('Loss (avg.): %.3f' % (loss_avg / len(args.recog_sets)))
    elif args.recog_metric == 'accuracy':
        logger.info('Accuracy (avg.): %.2f\n' %
                    (acc_avg / len(args.recog_sets)))
        print('Accuracy (avg.): %.3f' % (acc_avg / len(args.recog_sets)))
    elif args.recog_metric == 'bleu':
        logger.info('BLEU (avg.): %.2f\n' % (bleu / len(args.recog_sets)))
        print('BLEU (avg.): %.3f' % (bleu / len(args.recog_sets)))
Exemple #10
0
def main():

    args = parse()
    hvd.init()
    torch.cuda.set_device(hvd.local_rank())
    hvd_rank = hvd.rank()
    # Load a conf file
    if args.resume:
        conf = load_config(
            os.path.join(os.path.dirname(args.resume), 'conf.yml'))
        for k, v in conf.items():
            if k != 'resume':
                setattr(args, k, v)
    recog_params = vars(args)

    # Compute subsampling factor
    subsample_factor = 1

    subsample = [int(s) for s in args.subsample.split('_')]
    if args.conv_poolings and 'conv' in args.enc_type:
        for p in args.conv_poolings.split('_'):
            subsample_factor *= int(p.split(',')[0].replace('(', ''))
    else:
        subsample_factor = np.prod(subsample)

    skip_thought = 'skip' in args.enc_type
    batch_per_allreduce = args.batch_size
    # Load dataset
    train_set = Dataset(corpus=args.corpus,
                        tsv_path=args.train_set,
                        tsv_path_sub1=args.train_set_sub1,
                        tsv_path_sub2=args.train_set_sub2,
                        dict_path=args.dict,
                        dict_path_sub1=args.dict_sub1,
                        dict_path_sub2=args.dict_sub2,
                        nlsyms=args.nlsyms,
                        unit=args.unit,
                        unit_sub1=args.unit_sub1,
                        unit_sub2=args.unit_sub2,
                        wp_model=args.wp_model,
                        wp_model_sub1=args.wp_model_sub1,
                        wp_model_sub2=args.wp_model_sub2,
                        batch_size=args.batch_size,
                        n_epochs=args.n_epochs,
                        min_n_frames=args.min_n_frames,
                        max_n_frames=args.max_n_frames,
                        sort_by='no_sort',
                        short2long=True,
                        sort_stop_epoch=args.sort_stop_epoch,
                        dynamic_batching=args.dynamic_batching,
                        ctc=args.ctc_weight > 0,
                        ctc_sub1=args.ctc_weight_sub1 > 0,
                        ctc_sub2=args.ctc_weight_sub2 > 0,
                        subsample_factor=subsample_factor,
                        discourse_aware=args.discourse_aware,
                        skip_thought=skip_thought)

    dev_set = Dataset(corpus=args.corpus,
                      tsv_path=args.dev_set,
                      tsv_path_sub1=args.dev_set_sub1,
                      tsv_path_sub2=args.dev_set_sub2,
                      dict_path=args.dict,
                      dict_path_sub1=args.dict_sub1,
                      dict_path_sub2=args.dict_sub2,
                      nlsyms=args.nlsyms,
                      unit=args.unit,
                      unit_sub1=args.unit_sub1,
                      unit_sub2=args.unit_sub2,
                      wp_model=args.wp_model,
                      wp_model_sub1=args.wp_model_sub1,
                      wp_model_sub2=args.wp_model_sub2,
                      batch_size=args.batch_size,
                      min_n_frames=args.min_n_frames,
                      max_n_frames=args.max_n_frames,
                      ctc=args.ctc_weight > 0,
                      ctc_sub1=args.ctc_weight_sub1 > 0,
                      ctc_sub2=args.ctc_weight_sub2 > 0,
                      subsample_factor=subsample_factor,
                      discourse_aware=args.discourse_aware,
                      skip_thought=skip_thought)
    eval_sets = []
    for s in args.eval_sets:
        eval_sets += [
            Dataset(corpus=args.corpus,
                    tsv_path=s,
                    dict_path=args.dict,
                    nlsyms=args.nlsyms,
                    unit=args.unit,
                    wp_model=args.wp_model,
                    batch_size=1,
                    discourse_aware=args.discourse_aware,
                    skip_thought=skip_thought,
                    is_test=True)
        ]

    args.vocab = train_set.vocab
    args.vocab_sub1 = train_set.vocab_sub1
    args.vocab_sub2 = train_set.vocab_sub2
    args.input_dim = train_set.input_dim
    # Horovod: use DistributedSampler to partition data among workers. Manually specify
    # `num_replicas=hvd.size()` and `rank=hvd.rank()`.
    train_loader = SeqDataloader(train_set,
                                 batch_size=args.batch_size,
                                 num_workers=1,
                                 distributed=True,
                                 num_stacks=args.n_stacks,
                                 num_splices=args.n_splices,
                                 num_skips=args.n_skips,
                                 pin_memory=False,
                                 shuffle=False)
    val_loader = SeqDataloader(dev_set,
                               batch_size=args.batch_size,
                               num_workers=1,
                               distributed=True,
                               num_stacks=args.n_stacks,
                               num_splices=args.n_splices,
                               num_skips=args.n_skips,
                               pin_memory=False,
                               shuffle=False)

    # Load a LM conf file for LM fusion & LM initialization
    if not args.resume and (args.lm_fusion or args.lm_init):
        if args.lm_fusion:
            lm_conf = load_config(
                os.path.join(os.path.dirname(args.lm_fusion), 'conf.yml'))
        elif args.lm_init:
            lm_conf = load_config(
                os.path.join(os.path.dirname(args.lm_init), 'conf.yml'))
        args.lm_conf = argparse.Namespace()
        for k, v in lm_conf.items():
            setattr(args.lm_conf, k, v)
        assert args.unit == args.lm_conf.unit
        assert args.vocab == args.lm_conf.vocab

    # Set save path
    if args.resume:
        save_path = os.path.dirname(args.resume)
        dir_name = os.path.basename(save_path)
    else:
        dir_name = set_asr_model_name(args, subsample_factor)
        save_path = mkdir_join(
            args.model_save_dir,
            '_'.join(os.path.basename(args.train_set).split('.')[:-1]),
            dir_name)
        if hvd_rank == 0:
            save_path = set_save_path(save_path)  # avoid overwriting
    # Set logger
    if hvd_rank == 0:
        logger = set_logger(os.path.join(save_path, 'train.log'),
                            key='training',
                            stdout=args.stdout)
        # Set process name
        logger.info('PID: %s' % os.getpid())
        logger.info('USERNAME: %s' % os.uname()[1])
        logger.info('NUMBER_DEVICES: %s' % hvd.size())

    setproctitle(args.job_name if args.job_name else dir_name)
    # Model setting
    model = Speech2Text(args, save_path)
    # GPU setting
    if args.n_gpus >= 1:
        torch.backends.cudnn.benchmark = True
        model.cuda()

    if args.resume:
        # Set optimizer
        epochs = int(args.resume.split('-')[-1])
        #optimizer = set_optimizer(model, 'sgd' if epochs >= conf['convert_to_sgd_epoch'] else conf['optimizer'],

        model, _ = load_checkpoint(model, args.resume, resume=True)
        optimizer = set_optimizer(model, 'sgd', conf['lr'],
                                  conf['weight_decay'])
        #broadcast
        optimizer = hvd.DistributedOptimizer(
            optimizer, named_parameters=model.named_parameters())

        hvd.broadcast_parameters(model.state_dict(), root_rank=0)
        hvd.broadcast_optimizer_state(optimizer, root_rank=0)
        # Wrap optimizer by learning rate scheduler
        noam = 'transformer' in args.enc_type or args.dec_type == 'transformer'
        optimizer = LRScheduler(
            optimizer,
            args.lr,
            decay_type=args.lr_decay_type,
            decay_start_epoch=args.lr_decay_start_epoch,
            decay_rate=args.lr_decay_rate,
            decay_patient_n_epochs=args.lr_decay_patient_n_epochs,
            early_stop_patient_n_epochs=args.early_stop_patient_n_epochs,
            warmup_start_lr=args.warmup_start_lr,
            warmup_n_steps=args.warmup_n_steps,
            model_size=args.d_model,
            factor=args.lr_factor,
            noam=noam)

    else:
        # Save the conf file as a yaml file
        if hvd_rank == 0:
            save_config(vars(args), os.path.join(save_path, 'conf.yml'))
        if args.lm_fusion:
            save_config(args.lm_conf, os.path.join(save_path, 'conf_lm.yml'))

        if hvd_rank == 0:
            for k, v in sorted(vars(args).items(), key=lambda x: x[0]):
                logger.info('%s: %s' % (k, str(v)))

            # Count total parameters
            for n in sorted(list(model.num_params_dict.keys())):
                n_params = model.num_params_dict[n]
                logger.info("%s %d" % (n, n_params))
            logger.info("Total %.2f M parameters" %
                        (model.total_parameters / 1000000))
            logger.info(model)

        # Set optimizer
        optimizer = set_optimizer(model, args.optimizer, args.lr,
                                  args.weight_decay)

        optimizer = hvd.DistributedOptimizer(
            optimizer,
            named_parameters=model.named_parameters(),
            compression=hvd.Compression.none,
            backward_passes_per_step=batch_per_allreduce)

        hvd.broadcast_parameters(model.state_dict(), root_rank=0)
        hvd.broadcast_optimizer_state(optimizer, root_rank=0)
        # Wrap optimizer by learning rate scheduler
        noam = 'transformer' in args.enc_type or args.dec_type == 'transformer'
        optimizer = LRScheduler(
            optimizer,
            args.lr,
            decay_type=args.lr_decay_type,
            decay_start_epoch=args.lr_decay_start_epoch,
            decay_rate=args.lr_decay_rate,
            decay_patient_n_epochs=args.lr_decay_patient_n_epochs,
            early_stop_patient_n_epochs=args.early_stop_patient_n_epochs,
            warmup_start_lr=args.warmup_start_lr,
            warmup_n_steps=args.warmup_n_steps,
            model_size=args.d_model,
            factor=args.lr_factor,
            noam=noam)
    # Set reporter
    reporter = Reporter(save_path)
    if args.mtl_per_batch:
        # NOTE: from easier to harder tasks
        tasks = []
        if 1 - args.bwd_weight - args.ctc_weight - args.sub1_weight - args.sub2_weight > 0:
            tasks += ['ys']
        if args.bwd_weight > 0:
            tasks = ['ys.bwd'] + tasks
        if args.ctc_weight > 0:
            tasks = ['ys.ctc'] + tasks
    else:
        tasks = ['all']

    start_time_train = time.time()
    start_time_epoch = time.time()
    start_time_step = time.time()
    accum_n_tokens = 0

    verbose = 1 if hvd_rank == 0 else 0
    data_size = len(train_set)
    while True:
        model.train()
        with tqdm(total=data_size // hvd.size(),
                  desc='Train Epoch     #{}'.format(optimizer.n_epochs + 1),
                  disable=not verbose) as pbar_epoch:
            # Compute loss in the training set
            for _, batch_train in enumerate(train_loader):
                accum_n_tokens += sum([len(y) for y in batch_train['ys']])
                # Change mini-batch depending on task
                for task in tasks:
                    if skip_thought:
                        loss, reporter = model(batch_train['ys'],
                                               ys_prev=batch_train['ys_prev'],
                                               ys_next=batch_train['ys_next'],
                                               reporter=reporter)
                    else:
                        loss, reporter = model(batch_train, reporter, task)
                    loss.backward()
                    loss.detach()  # Trancate the graph
                    if args.accum_grad_n_tokens == 0 or accum_n_tokens >= args.accum_grad_n_tokens:
                        if args.clip_grad_norm > 0:
                            total_norm = torch.nn.utils.clip_grad_norm_(
                                model.parameters(), args.clip_grad_norm)
                        optimizer.step()
                        optimizer.zero_grad()

                        accum_n_tokens = 0
                    loss_train = loss.item()
                    del loss

                if optimizer.n_steps % args.print_step == 0:
                    # Compute loss in the dev set
                    model.eval()
                    batch_dev = dev_set.next()[0]
                    # Change mini-batch depending on task
                    for task in tasks:
                        if skip_thought:
                            loss, reporter = model(
                                batch_dev['ys'],
                                ys_prev=batch_dev['ys_prev'],
                                ys_next=batch_dev['ys_next'],
                                reporter=reporter,
                                is_eval=True)
                        else:
                            loss, reporter = model(batch_dev,
                                                   reporter,
                                                   task,
                                                   is_eval=True)
                        loss_dev = loss.item()
                        del loss

                    duration_step = time.time() - start_time_step
                    if args.input_type == 'speech':
                        xlen = max(len(x) for x in batch_train['xs'])
                        ylen = max(len(y) for y in batch_train['ys'])
                    elif args.input_type == 'text':
                        xlen = max(len(x) for x in batch_train['ys'])
                        ylen = max(len(y) for y in batch_train['ys_sub1'])

                    if hvd_rank == 0:
                        logger.info(
                            "step:%d(ep:%.2f) loss:%.3f(%.3f)/lr:%.5f/bs:%d/xlen:%d/ylen:%d (%.2f min)"
                            % (optimizer.n_steps,
                               optimizer.n_steps * args.batch_size /
                               (data_size / hvd.size()), loss_train, loss_dev,
                               optimizer.lr, len(batch_train['utt_ids']), xlen,
                               ylen, duration_step / 60))
                    start_time_step = time.time()
                pbar_epoch.update(len(batch_train['utt_ids']))

                # Save fugures of loss and accuracy
                if optimizer.n_steps % (args.print_step *
                                        10) == 0 and hvd.rank() == 0:
                    model.plot_attention()
                start_time_step = time.time()
            # reset dev set
            dev_set.reset()
            # Save checkpoint and evaluate model per epoch
            duration_epoch = time.time() - start_time_epoch
            if hvd_rank == 0:
                logger.info('========== EPOCH:%d (%.2f min) ==========' %
                            (optimizer.n_epochs + 1, duration_epoch / 60))

            if optimizer.n_epochs + 1 < args.eval_start_epoch:
                optimizer.epoch()
                if hvd_rank == 0:
                    save_checkpoint(model,
                                    save_path,
                                    optimizer,
                                    optimizer.n_epochs,
                                    remove_old_checkpoints=not noam)
            else:
                start_time_eval = time.time()
                # dev
                metric_dev = eval_epoch([model], val_loader, recog_params,
                                        args, optimizer.n_epochs + 1)
                metric_dev = hvd.allreduce(
                    np2tensor(np.array([metric_dev], dtype=float),
                              hvd.local_rank()))

                loss_dev = metric_dev.item()
                if hvd_rank == 0:
                    logger.info('Loss : %.2f %%' % (loss_dev))
                optimizer.epoch(loss_dev)
                if hvd.rank() == 0:
                    save_checkpoint(model,
                                    save_path,
                                    optimizer,
                                    optimizer.n_epochs,
                                    remove_old_checkpoints=False)
                if not optimizer.is_best:
                    model, _ = load_checkpoint(
                        model, save_path + '/model.epoch-' +
                        str(optimizer.best_epochs))

                duration_eval = time.time() - start_time_eval
                if hvd_rank == 0:
                    logger.info('Evaluation time: %.2f min' %
                                (duration_eval / 60))

                # Early stopping
                if optimizer.is_early_stop:
                    break
            # Convert to fine-tuning stage
            if optimizer.n_epochs == args.convert_to_sgd_epoch:
                n_epochs = optimizer.n_epochs
                n_steps = optimizer.n_steps
                optimizer = set_optimizer(model, 'sgd', args.lr,
                                          args.weight_decay)
                optimizer = hvd.DistributedOptimizer(
                    optimizer,
                    named_parameters=model.named_parameters(),
                    compression=hvd.Compression.none,
                    backward_passes_per_step=batch_per_allreduce)

                hvd.broadcast_parameters(model.state_dict(), root_rank=0)
                hvd.broadcast_optimizer_state(optimizer, root_rank=0)
                optimizer = LRScheduler(
                    optimizer,
                    args.lr,
                    decay_type=args.lr_decay_type,
                    decay_start_epoch=args.lr_decay_start_epoch,
                    decay_rate=args.lr_decay_rate,
                    decay_patient_n_epochs=args.lr_decay_patient_n_epochs,
                    early_stop_patient_n_epochs=args.
                    early_stop_patient_n_epochs,
                    warmup_start_lr=args.warmup_start_lr,
                    warmup_n_steps=args.warmup_n_steps,
                    model_size=args.d_model,
                    factor=args.lr_factor,
                    noam=noam)

                optimizer._epoch = n_epochs
                optimizer._step = n_steps
                if hvd_rank == 0:
                    logger.info('========== Convert to SGD ==========')

            if optimizer.n_epochs == args.n_epochs:
                break
            start_time_step = time.time()
            start_time_epoch = time.time()

    duration_train = time.time() - start_time_train
    if hvd_rank == 0:
        logger.info('Total time: %.2f hour' % (duration_train / 3600))

    return save_path
Exemple #11
0
def main():

    args = parse_args_train(sys.argv[1:])

    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Load a conf file
    if args.resume:
        conf = load_config(
            os.path.join(os.path.dirname(args.resume), 'conf.yml'))
        for k, v in conf.items():
            if k != 'resume':
                setattr(args, k, v)

    # for multi-GPUs
    if args.n_gpus > 1:
        batch_size = args.batch_size * args.n_gpus
        accum_grad_n_steps = max(1, args.accum_grad_n_steps // args.n_gpus)
    else:
        batch_size = args.batch_size
        accum_grad_n_steps = args.accum_grad_n_steps

    # Load dataset
    train_set = Dataset(corpus=args.corpus,
                        tsv_path=args.train_set,
                        dict_path=args.dict,
                        nlsyms=args.nlsyms,
                        unit=args.unit,
                        wp_model=args.wp_model,
                        batch_size=batch_size,
                        n_epochs=args.n_epochs,
                        min_n_tokens=args.min_n_tokens,
                        bptt=args.bptt,
                        shuffle=args.shuffle,
                        backward=args.backward,
                        serialize=args.serialize)
    dev_set = Dataset(corpus=args.corpus,
                      tsv_path=args.dev_set,
                      dict_path=args.dict,
                      nlsyms=args.nlsyms,
                      unit=args.unit,
                      wp_model=args.wp_model,
                      batch_size=batch_size,
                      bptt=args.bptt,
                      backward=args.backward,
                      serialize=args.serialize)
    eval_sets = [
        Dataset(corpus=args.corpus,
                tsv_path=s,
                dict_path=args.dict,
                nlsyms=args.nlsyms,
                unit=args.unit,
                wp_model=args.wp_model,
                batch_size=1,
                bptt=args.bptt,
                backward=args.backward,
                serialize=args.serialize) for s in args.eval_sets
    ]

    args.vocab = train_set.vocab

    # Set save path
    if args.resume:
        args.save_path = os.path.dirname(args.resume)
        dir_name = os.path.basename(args.save_path)
    else:
        dir_name = set_lm_name(args)
        args.save_path = mkdir_join(
            args.model_save_dir,
            '_'.join(os.path.basename(args.train_set).split('.')[:-1]),
            dir_name)
        args.save_path = set_save_path(args.save_path)  # avoid overwriting

    # Set logger
    set_logger(os.path.join(args.save_path, 'train.log'), stdout=args.stdout)

    # Model setting
    model = build_lm(args, args.save_path)

    if not args.resume:
        # Save nlsyms, dictionary, and wp_model
        if args.nlsyms:
            shutil.copy(args.nlsyms, os.path.join(args.save_path,
                                                  'nlsyms.txt'))
        shutil.copy(args.dict, os.path.join(args.save_path, 'dict.txt'))
        if args.unit == 'wp':
            shutil.copy(args.wp_model, os.path.join(args.save_path,
                                                    'wp.model'))

        for k, v in sorted(args.items(), key=lambda x: x[0]):
            logger.info('%s: %s' % (k, str(v)))

        # Count total parameters
        for n in sorted(list(model.num_params_dict.keys())):
            n_params = model.num_params_dict[n]
            logger.info("%s %d" % (n, n_params))
        logger.info("Total %.2f M parameters" %
                    (model.total_parameters / 1000000))
        logger.info('torch version: %s' % str(torch.__version__))
        logger.info(model)

    # Set optimizer
    resume_epoch = int(args.resume.split('-')[-1]) if args.resume else 0
    optimizer = set_optimizer(
        model,
        'sgd' if resume_epoch > args.convert_to_sgd_epoch else args.optimizer,
        args.lr, args.weight_decay)

    # Wrap optimizer by learning rate scheduler
    is_transformer = args.lm_type in ['transformer', 'transformer_xl']
    scheduler = LRScheduler(
        optimizer,
        args.lr,
        decay_type=args.lr_decay_type,
        decay_start_epoch=args.lr_decay_start_epoch,
        decay_rate=args.lr_decay_rate,
        decay_patient_n_epochs=args.lr_decay_patient_n_epochs,
        early_stop_patient_n_epochs=args.early_stop_patient_n_epochs,
        warmup_start_lr=args.warmup_start_lr,
        warmup_n_steps=args.warmup_n_steps,
        model_size=args.get('transformer_d_model', 0),
        factor=args.lr_factor,
        noam=args.optimizer == 'noam',
        save_checkpoints_topk=10 if is_transformer else 1)

    if args.resume:
        # Restore the last saved model
        load_checkpoint(args.resume, model, scheduler)

        # Resume between convert_to_sgd_epoch -1 and convert_to_sgd_epoch
        if resume_epoch == args.convert_to_sgd_epoch:
            scheduler.convert_to_sgd(model,
                                     args.lr,
                                     args.weight_decay,
                                     decay_type='always',
                                     decay_rate=0.5)

    # GPU setting
    args.use_apex = args.train_dtype in ["O0", "O1", "O2", "O3"]
    amp, scaler = None, None
    if args.n_gpus >= 1:
        model.cudnn_setting(
            deterministic=not (is_transformer or args.cudnn_benchmark),
            benchmark=not is_transformer and args.cudnn_benchmark)

        # Mixed precision training setting
        if args.use_apex:
            if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
                scaler = torch.cuda.amp.GradScaler()
            else:
                from apex import amp
                model, scheduler.optimizer = amp.initialize(
                    model, scheduler.optimizer, opt_level=args.train_dtype)
                amp.init()
                if args.resume:
                    load_checkpoint(args.resume, amp=amp)
        model.cuda()
        model = CustomDataParallel(model,
                                   device_ids=list(range(0, args.n_gpus)))
    else:
        model = CPUWrapperLM(model)

    # Set process name
    logger.info('PID: %s' % os.getpid())
    logger.info('USERNAME: %s' % os.uname()[1])
    logger.info('#GPU: %d' % torch.cuda.device_count())
    setproctitle(args.job_name if args.job_name else dir_name)

    # Set reporter
    reporter = Reporter(args, model)
    if args.resume:
        n_steps = scheduler.n_steps * accum_grad_n_steps
        reporter.resume(n_steps, resume_epoch)

    # Save conf file as a yaml file
    if not args.resume:
        save_config(args, os.path.join(args.save_path, 'conf.yml'))
        # NOTE: save after reporter for wandb ID

    hidden = None
    start_time_train = time.time()
    for ep in range(resume_epoch, args.n_epochs):
        for ys_train, is_new_epoch in train_set:
            hidden = train(model, train_set, dev_set, scheduler, reporter,
                           logger, args, accum_grad_n_steps, amp, scaler,
                           hidden)

        # Save checkpoint and validate model per epoch
        if reporter.n_epochs + 1 < args.eval_start_epoch:
            scheduler.epoch()  # lr decay
            reporter.epoch()  # plot

            # Save model
            scheduler.save_checkpoint(model,
                                      args.save_path,
                                      remove_old=not is_transformer
                                      and args.remove_old_checkpoints,
                                      amp=amp)
        else:
            start_time_eval = time.time()
            # dev
            model.module.reset_length(args.bptt)
            ppl_dev, _ = eval_ppl([model.module],
                                  dev_set,
                                  batch_size=1,
                                  bptt=args.bptt)
            model.module.reset_length(args.bptt)
            scheduler.epoch(ppl_dev)  # lr decay
            reporter.epoch(ppl_dev, name='perplexity')  # plot
            reporter.add_scalar('dev/perplexity', ppl_dev)
            logger.info('PPL (%s, ep:%d): %.2f' %
                        (dev_set.set, reporter.n_epochs, ppl_dev))

            if scheduler.is_topk or is_transformer:
                # Save model
                scheduler.save_checkpoint(model,
                                          args.save_path,
                                          remove_old=not is_transformer
                                          and args.remove_old_checkpoints,
                                          amp=amp)

                # test
                ppl_test_avg = 0.
                for eval_set in eval_sets:
                    model.module.reset_length(args.bptt)
                    ppl_test, _ = eval_ppl([model.module],
                                           eval_set,
                                           batch_size=1,
                                           bptt=args.bptt)
                    model.module.reset_length(args.bptt)
                    logger.info('PPL (%s, ep:%d): %.2f' %
                                (eval_set.set, reporter.n_epochs, ppl_test))
                    ppl_test_avg += ppl_test
                if len(eval_sets) > 0:
                    logger.info(
                        'PPL (avg., ep:%d): %.2f' %
                        (reporter.n_epochs, ppl_test_avg / len(eval_sets)))

            logger.info('Evaluation time: %.2f min' %
                        ((time.time() - start_time_eval) / 60))

            # Early stopping
            if scheduler.is_early_stop:
                break

            # Convert to fine-tuning stage
            if reporter.n_epochs == args.convert_to_sgd_epoch:
                scheduler.convert_to_sgd(model,
                                         args.lr,
                                         args.weight_decay,
                                         decay_type='always',
                                         decay_rate=0.5)

        if reporter.n_epochs >= args.n_epochs:
            break

    logger.info('Total time: %.2f hour' %
                ((time.time() - start_time_train) / 3600))
    reporter.close()

    return args.save_path
Exemple #12
0
    def __init__(self, args, save_path=None, idx2token=None):

        super(ModelBase, self).__init__()

        self.save_path = save_path

        # for encoder, decoder
        self.input_type = args.input_type
        self.input_dim = args.input_dim
        self.enc_type = args.enc_type
        self.dec_type = args.dec_type

        # for OOV resolution
        self.enc_n_layers = args.enc_n_layers
        self.enc_n_layers_sub1 = args.enc_n_layers_sub1
        self.subsample = [int(s) for s in args.subsample.split('_')]

        # for decoder
        self.vocab = args.vocab
        self.vocab_sub1 = args.vocab_sub1
        self.vocab_sub2 = args.vocab_sub2
        self.blank = 0
        self.unk = 1
        self.eos = 2
        self.pad = 3
        # NOTE: reserved in advance

        # for the sub tasks
        self.main_weight = args.total_weight - args.sub1_weight - args.sub2_weight
        self.sub1_weight = args.sub1_weight
        self.sub2_weight = args.sub2_weight
        self.mtl_per_batch = args.mtl_per_batch
        self.task_specific_layer = args.task_specific_layer

        # for CTC
        self.ctc_weight = min(args.ctc_weight, self.main_weight)
        self.ctc_weight_sub1 = min(args.ctc_weight_sub1, self.sub1_weight)
        self.ctc_weight_sub2 = min(args.ctc_weight_sub2, self.sub2_weight)

        # for backward decoder
        self.bwd_weight = min(args.bwd_weight, self.main_weight)
        self.fwd_weight = self.main_weight - self.bwd_weight - self.ctc_weight
        self.fwd_weight_sub1 = self.sub1_weight - self.ctc_weight_sub1
        self.fwd_weight_sub2 = self.sub2_weight - self.ctc_weight_sub2

        # for MBR
        self.mbr_training = args.mbr_training
        self.recog_params = vars(args)
        self.idx2token = idx2token

        # for discourse-aware model
        self.utt_id_prev = None

        # Feature extraction
        self.input_noise_std = args.input_noise_std
        self.n_stacks = args.n_stacks
        self.n_skips = args.n_skips
        self.n_splices = args.n_splices
        self.weight_noise_std = args.weight_noise_std
        self.specaug = None
        if args.n_freq_masks > 0 or args.n_time_masks > 0:
            assert args.n_stacks == 1 and args.n_skips == 1
            assert args.n_splices == 1
            self.specaug = SpecAugment(
                F=args.freq_width,
                T=args.time_width,
                n_freq_masks=args.n_freq_masks,
                n_time_masks=args.n_time_masks,
                p=args.time_width_upper,
                adaptive_number_ratio=args.adaptive_number_ratio,
                adaptive_size_ratio=args.adaptive_size_ratio,
                max_n_time_masks=args.max_n_time_masks)

        # Frontend
        self.ssn = None
        if args.sequence_summary_network:
            assert args.input_type == 'speech'
            self.ssn = SequenceSummaryNetwork(args.input_dim,
                                              n_units=512,
                                              n_layers=3,
                                              bottleneck_dim=100,
                                              dropout=0,
                                              param_init=args.param_init)

        # Encoder
        self.enc = build_encoder(args)
        if args.freeze_encoder:
            for n, p in self.enc.named_parameters():
                if 'bridge' in n or 'sub1' in n:
                    continue
                p.requires_grad = False
                logger.info('freeze %s' % n)

        special_symbols = {
            'blank': self.blank,
            'unk': self.unk,
            'eos': self.eos,
            'pad': self.pad,
        }

        # main task
        external_lm = None
        directions = []
        if self.fwd_weight > 0 or (self.bwd_weight == 0
                                   and self.ctc_weight > 0):
            directions.append('fwd')
        if self.bwd_weight > 0:
            directions.append('bwd')

        for dir in directions:
            # Load the LM for LM fusion and decoder initialization
            if args.external_lm and dir == 'fwd':
                external_lm = RNNLM(args.lm_conf)
                load_checkpoint(args.external_lm, external_lm)
                # freeze LM parameters
                for n, p in external_lm.named_parameters():
                    p.requires_grad = False

            # Decoder
            dec = build_decoder(
                args, special_symbols, self.enc.output_dim, args.vocab,
                self.ctc_weight, self.main_weight -
                self.bwd_weight if dir == 'fwd' else self.bwd_weight,
                external_lm)
            setattr(self, 'dec_' + dir, dec)

        # sub task
        for sub in ['sub1', 'sub2']:
            if getattr(self, sub + '_weight') > 0:
                args_sub = copy.deepcopy(args)
                if hasattr(args, 'dec_config_' + sub):
                    for k, v in getattr(args, 'dec_config_' + sub).items():
                        setattr(args_sub, k, v)
                # NOTE: Other parameters are the same as the main decoder
                dec_sub = build_decoder(args_sub, special_symbols,
                                        getattr(self.enc, 'output_dim_' + sub),
                                        getattr(self, 'vocab_' + sub),
                                        getattr(self, 'ctc_weight_' + sub),
                                        getattr(self, sub + '_weight'),
                                        external_lm)
                setattr(self, 'dec_fwd_' + sub, dec_sub)

        if args.input_type == 'text':
            if args.vocab == args.vocab_sub1:
                # Share the embedding layer between input and output
                self.embed = dec.embed
            else:
                self.embed = nn.Embedding(args.vocab_sub1,
                                          args.emb_dim,
                                          padding_idx=self.pad)
                self.dropout_emb = nn.Dropout(p=args.dropout_emb)

        # Initialize bias in forget gate with 1
        # self.init_forget_gate_bias_with_one()

        # Fix all parameters except for the gating parts in deep fusion
        if args.lm_fusion == 'deep' and external_lm is not None:
            for n, p in self.named_parameters():
                if 'output' in n or 'output_bn' in n or 'linear' in n:
                    p.requires_grad = True
                else:
                    p.requires_grad = False
Exemple #13
0
def main():

    args = parse()

    hvd.init()
    torch.cuda.set_device(hvd.local_rank())
    hvd_rank = hvd.rank()
    # Load a conf file
    if args.resume:
        conf = load_config(os.path.join(os.path.dirname(args.resume), 'conf.yml'))
        for k, v in conf.items():
            if k != 'resume':
                setattr(args, k, v)

    # Load dataset
    train_set = Dataset(corpus=args.corpus,
                        tsv_path=args.train_set,
                        dict_path=args.dict,
                        nlsyms=args.nlsyms,
                        unit=args.unit,
                        wp_model=args.wp_model,
                        batch_size=args.batch_size,
                        n_epochs=args.n_epochs,
                        min_n_tokens=args.min_n_tokens,
                        bptt=args.bptt,
                        n_customers=hvd.size(),
                        backward=args.backward,
                        serialize=args.serialize)
    dev_set = Dataset(corpus=args.corpus,
                      tsv_path=args.dev_set,
                      dict_path=args.dict,
                      nlsyms=args.nlsyms,
                      unit=args.unit,
                      wp_model=args.wp_model,
                      batch_size=args.batch_size,
                      bptt=args.bptt,
                      n_customers=hvd.size(),
                      backward=args.backward,
                      serialize=args.serialize)

    eval_set = Dataset(corpus=args.corpus,
                              tsv_path=args.eval_set,
                              dict_path=args.dict,
                              nlsyms=args.nlsyms,
                              unit=args.unit,
                              wp_model=args.wp_model,
                              batch_size=args.batch_size,
                              bptt=args.bptt,
                              n_customers=hvd.size(),
                              backward=args.backward,
                              serialize=args.serialize)

    args.vocab = train_set.vocab

    train_loader = ChunkDataloader(train_set,
                                   batch_size=1,
                                   num_workers = 1,
                                   distributed=True,
                                   shuffle=False)

    eval_loader = ChunkDataloader(eval_set,
                                 batch_size=1,
                                 num_workers=1,
                                 distributed=True)




    # Set save path
    if args.resume:
        save_path = os.path.dirname(args.resume)
        dir_name = os.path.basename(save_path)
    else:
        dir_name = set_lm_name(args)
        save_path = mkdir_join(args.model_save_dir, '_'.join(
            os.path.basename(args.train_set).split('.')[:-1]), dir_name)
        if hvd.rank() == 0:
            save_path = set_save_path(save_path)  # avoid overwriting

    # Set logger
    if hvd_rank == 0:
    	logger = set_logger(os.path.join(save_path, 'train.log'),
                            key='training', stdout=args.stdout)
        # Set process name
    	logger.info('PID: %s' % os.getpid())
    	logger.info('USERNAME: %s' % os.uname()[1])
    	logger.info('NUMBER_DEVICES: %s' % hvd.size())
    setproctitle(args.job_name if args.job_name else dir_name)
    # Model setting
    model = build_lm(args, save_path)
    # GPU setting
    if args.n_gpus >= 1:
        torch.backends.cudnn.benchmark = True
        model.cuda()

    if args.resume:
        # Set optimizer
        epoch = int(args.resume.split('-')[-1])
        optimizer = set_optimizer(model, 'sgd' if epoch > conf['convert_to_sgd_epoch'] else conf['optimizer'],
                                  conf['lr'], conf['weight_decay'])

        # Restore the last saved model
        if hvd_rank == 0:
            model, optimizer = load_checkpoint(model, args.resume, optimizer, resume=True)
        #broadcast
        optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())

        hvd.broadcast_parameters(model.state_dict(), root_rank=0)
        hvd.broadcast_optimizer_state(optimizer, root_rank=0)
        # Wrap optimizer by learning rate scheduler
        optimizer = LRScheduler(optimizer, conf['lr'],
                                decay_type=conf['lr_decay_type'],
                                decay_start_epoch=conf['lr_decay_start_epoch'],
                                decay_rate=conf['lr_decay_rate'],
                                decay_patient_n_epochs=conf['lr_decay_patient_n_epochs'],
                                early_stop_patient_n_epochs=conf['early_stop_patient_n_epochs'],
                                warmup_start_lr=conf['warmup_start_lr'],
                                warmup_n_steps=conf['warmup_n_steps'],
                                model_size=conf['d_model'],
                                factor=conf['lr_factor'],
                                noam=conf['lm_type'] == 'transformer')

        # Resume between convert_to_sgd_epoch -1 and convert_to_sgd_epoch
        if epoch == conf['convert_to_sgd_epoch']:
            n_epochs = optimizer.n_epochs
            n_steps = optimizer.n_steps
            optimizer = set_optimizer(model, 'sgd', args.lr, conf['weight_decay'])
            optimizer = LRScheduler(optimizer, args.lr,
                                    decay_type='always',
                                    decay_start_epoch=0,
                                    decay_rate=0.5)
            optimizer._epoch = n_epochs
            optimizer._step = n_steps
            if hvd_rank == 0:
                logger.info('========== Convert to SGD ==========')
            #broadcast
            optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())
            hvd.broadcast_parameters(model.state_dict(), root_rank=0)
            hvd.broadcast_optimizer_state(optimizer, root_rank=0)
    else:
        # Save the conf file as a yaml file
        if hvd_rank == 0:
            save_config(vars(args), os.path.join(save_path, 'conf.yml'))
            # Save the nlsyms, dictionar, and wp_model
            if args.nlsyms:
                shutil.copy(args.nlsyms, os.path.join(save_path, 'nlsyms.txt'))
            shutil.copy(args.dict, os.path.join(save_path, 'dict.txt'))
            if args.unit == 'wp':
                shutil.copy(args.wp_model, os.path.join(save_path, 'wp.model'))
            for k, v in sorted(vars(args).items(), key=lambda x: x[0]):
                logger.info('%s: %s' % (k, str(v)))

        # Count total parameters
        for n in sorted(list(model.num_params_dict.keys())):
            n_params = model.num_params_dict[n]
            if hvd.rank() == 0:
                logger.info("%s %d" % (n, n_params))
        if hvd_rank == 0:
            logger.info("Total %.2f M parameters" % (model.total_parameters / 1000000))
            logger.info(model)

        # Set optimizer
        hvd.broadcast_parameters(model.state_dict(), root_rank=0)
        optimizer = set_optimizer(model, args.optimizer, args.lr, args.weight_decay)
        optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())
        hvd.broadcast_optimizer_state(optimizer, root_rank=0)
        # Wrap optimizer by learning rate scheduler
        optimizer = LRScheduler(optimizer, args.lr,
                                decay_type=args.lr_decay_type,
                                decay_start_epoch=args.lr_decay_start_epoch,
                                decay_rate=args.lr_decay_rate,
                                decay_patient_n_epochs=args.lr_decay_patient_n_epochs,
                                early_stop_patient_n_epochs=args.early_stop_patient_n_epochs,
                                warmup_start_lr=args.warmup_start_lr,
                                warmup_n_steps=args.warmup_n_steps,
                                model_size=args.d_model,
                                factor=args.lr_factor,
                                noam=args.lm_type == 'transformer')

    

    # Set reporter
    reporter = Reporter(save_path)

    hidden = None
    start_time_train = time.time()
    start_time_epoch = time.time()
    start_time_step = time.time()
    data_size = len(train_set)
    accum_n_tokens = 0
    verbose = 1 if hvd_rank == 0 else 0
    while True:
        model.train()
        with tqdm(total=data_size/hvd.size(),
                desc='Train Epoch     #{}'.format(optimizer.n_epochs + 1),
                disable=not verbose) as pbar_epoch:
            # Compute loss in the training set
            for _, ys_train in enumerate(train_loader):
                accum_n_tokens += sum([len(y) for y in ys_train])
                optimizer.zero_grad()
                loss, hidden, reporter = model(ys_train, hidden, reporter)
                loss.backward()
                loss.detach()  # Trancate the graph
                if args.accum_grad_n_tokens == 0 or accum_n_tokens >= args.accum_grad_n_tokens:
                    if args.clip_grad_norm > 0:
                        total_norm = torch.nn.utils.clip_grad_norm_(
                            model.parameters(), args.clip_grad_norm)
                        #reporter.add_tensorboard_scalar('total_norm', total_norm)
                    optimizer.step()
                    optimizer.zero_grad()
                    accum_n_tokens = 0
                loss_train = loss.item()
                del loss
                hidden = model.repackage_state(hidden)
                
                if optimizer.n_steps % args.print_step == 0:
                    model.eval()
                    # Compute loss in the dev set
                    ys_dev = dev_set.next()[0]
                    loss, _, reporter = model(ys_dev, None, reporter, is_eval=True)
                    loss_dev = loss.item()
                    del loss
                    
                    duration_step = time.time() - start_time_step
                    if hvd_rank == 0:
                    	logger.info("step:%d(ep:%.2f) loss:%.3f(%.3f)/ppl:%.3f(%.3f)/lr:%.5f/bs:%d (%.2f min)" %
                                    (optimizer.n_steps, optimizer.n_steps/data_size*hvd.size(),
                                    loss_train, loss_dev,
                                    np.exp(loss_train), np.exp(loss_dev),
                                    optimizer.lr, ys_train.shape[0], duration_step / 60))
                    start_time_step = time.time()
                
                pbar_epoch.update(1)
                

            # Save checkpoint and evaluate model per epoch
            duration_epoch = time.time() - start_time_epoch
            if hvd_rank == 0:
                logger.info('========== EPOCH:%d (%.2f min) ==========' %(optimizer.n_epochs + 1, duration_epoch / 60))

            if optimizer.n_epochs + 1 < args.eval_start_epoch:

                # Save the model
                if hvd_rank == 0:
                    optimizer.epoch()
                    save_checkpoint(model, save_path, optimizer, optimizer.n_epochs,
                                        remove_old_checkpoints=args.lm_type != 'transformer')
            else:
                start_time_eval = time.time()
                # dev
                model.eval()
                ppl_dev, _ = eval_ppl_parallel([model], eval_loader, optimizer.n_epochs, batch_size=args.batch_size)
                ppl_dev = hvd.allreduce(np2tensor(np.array([ppl_dev], dtype=float), hvd.local_rank()))
                
                if hvd_rank == 0:
                    logger.info('PPL : %.2f' %  ppl_dev)
                optimizer.epoch(ppl_dev)

                if optimizer.is_best and hvd.rank() == 0:
                    # Save the model
                    save_checkpoint(model, save_path, optimizer, optimizer.n_epochs,
                                    remove_old_checkpoints=args.lm_type != 'transformer')

                duration_eval = time.time() - start_time_eval

                if hvd_rank == 0:
                    logger.info('Evaluation time: %.2f min' % (duration_eval / 60))

                # Early stopping
                if optimizer.is_early_stop:
                    break

                # Convert to fine-tuning stage
                if optimizer.n_epochs == args.convert_to_sgd_epoch:

                    n_epochs = optimizer.n_epochs
                    n_steps = optimizer.n_steps
                    optimizer = set_optimizer(model, 'sgd', args.lr, args.weight_decay)

                    optimizer = hvd.DistributedOptimizer(
                                    optimizer, named_parameters=model.named_parameters())
                    hvd.broadcast_parameters(model.state_dict(), root_rank=0)
                    hvd.broadcast_optimizer_state(optimizer, root_rank=0)
                    optimizer = LRScheduler(optimizer, args.lr,
                                                decay_type='always',
                                                decay_start_epoch=0,
                                                decay_rate=0.5)
                    optimizer._epoch = n_epochs
                    optimizer._step = n_steps
                    if hvd_rank == 0:
                        logger.info('========== Convert to SGD ==========')
                if optimizer.n_epochs == args.n_epochs:
                    break

                start_time_step = time.time()
                start_time_epoch = time.time()

    duration_train = time.time() - start_time_train
    if hvd_rank == 0:
        logger.info('Total time: %.2f hour' % (duration_train / 3600))

    reporter.tf_writer.close()

    return save_path
Exemple #14
0
    def __init__(self, args):

        super(ModelBase, self).__init__()

        # for encoder
        self.input_type = args.input_type
        self.input_dim = args.input_dim
        self.n_stacks = args.n_stacks
        self.n_skips = args.n_skips
        self.n_splices = args.n_splices
        self.enc_type = args.enc_type
        self.enc_n_units = args.enc_n_units
        if args.enc_type in ['blstm', 'bgru']:
            self.enc_n_units *= 2
        self.bridge_layer = args.bridge_layer

        # for OOV resolution
        self.enc_n_layers = args.enc_n_layers
        self.enc_n_layers_sub1 = args.enc_n_layers_sub1
        self.subsample = [int(s) for s in args.subsample.split('_')]

        # for attention layer
        self.attn_n_heads = args.attn_n_heads

        # for decoder
        self.vocab = args.vocab
        self.vocab_sub1 = args.vocab_sub1
        self.vocab_sub2 = args.vocab_sub2
        self.blank = 0
        self.unk = 1
        self.eos = 2
        self.pad = 3
        # NOTE: reserved in advance

        # for the sub tasks
        self.main_weight = 1 - args.sub1_weight - args.sub2_weight
        self.sub1_weight = args.sub1_weight
        self.sub2_weight = args.sub2_weight
        self.mtl_per_batch = args.mtl_per_batch
        self.task_specific_layer = args.task_specific_layer

        # for CTC
        self.ctc_weight = min(args.ctc_weight, self.main_weight)
        self.ctc_weight_sub1 = min(args.ctc_weight_sub1, self.sub1_weight)
        self.ctc_weight_sub2 = min(args.ctc_weight_sub2, self.sub2_weight)

        # for backward decoder
        self.bwd_weight = min(args.bwd_weight, self.main_weight)
        self.fwd_weight = self.main_weight - self.bwd_weight - self.ctc_weight
        self.fwd_weight_sub1 = self.sub1_weight - self.ctc_weight_sub1
        self.fwd_weight_sub2 = self.sub2_weight - self.ctc_weight_sub2

        # Feature extraction
        self.ssn = None
        if args.sequence_summary_network:
            assert args.input_type == 'speech'
            self.ssn = SequenceSummaryNetwork(args.input_dim,
                                              n_units=512,
                                              n_layers=3,
                                              bottleneck_dim=100,
                                              dropout=0)

        # Encoder
        if args.enc_type == 'transformer':
            self.enc = TransformerEncoder(
                input_dim=args.input_dim
                if args.input_type == 'speech' else args.emb_dim,
                attn_type=args.transformer_attn_type,
                attn_n_heads=args.transformer_attn_n_heads,
                n_layers=args.transformer_enc_n_layers,
                d_model=args.d_model,
                d_ff=args.d_ff,
                # pe_type=args.pe_type,
                pe_type=False,
                dropout_in=args.dropout_in,
                dropout=args.dropout_enc,
                dropout_att=args.dropout_att,
                layer_norm_eps=args.layer_norm_eps,
                n_stacks=args.n_stacks,
                n_splices=args.n_splices,
                conv_in_channel=args.conv_in_channel,
                conv_channels=args.conv_channels,
                conv_kernel_sizes=args.conv_kernel_sizes,
                conv_strides=args.conv_strides,
                conv_poolings=args.conv_poolings,
                conv_batch_norm=args.conv_batch_norm,
                conv_residual=args.conv_residual,
                conv_bottleneck_dim=args.conv_bottleneck_dim)
        else:
            self.enc = RNNEncoder(
                input_dim=args.input_dim
                if args.input_type == 'speech' else args.emb_dim,
                rnn_type=args.enc_type,
                n_units=args.enc_n_units,
                n_projs=args.enc_n_projs,
                n_layers=args.enc_n_layers,
                n_layers_sub1=args.enc_n_layers_sub1,
                n_layers_sub2=args.enc_n_layers_sub2,
                dropout_in=args.dropout_in,
                dropout=args.dropout_enc,
                subsample=list(map(int, args.subsample.split('_'))) + [1] *
                (args.enc_n_layers - len(args.subsample.split('_'))),
                subsample_type=args.subsample_type,
                n_stacks=args.n_stacks,
                n_splices=args.n_splices,
                conv_in_channel=args.conv_in_channel,
                conv_channels=args.conv_channels,
                conv_kernel_sizes=args.conv_kernel_sizes,
                conv_strides=args.conv_strides,
                conv_poolings=args.conv_poolings,
                conv_batch_norm=args.conv_batch_norm,
                conv_residual=args.conv_residual,
                conv_bottleneck_dim=args.conv_bottleneck_dim,
                residual=args.enc_residual,
                nin=args.enc_nin,
                task_specific_layer=args.task_specific_layer)
            # NOTE: pure CNN/TDS encoders are also included

        if args.freeze_encoder:
            for p in self.enc.parameters():
                p.requires_grad = False

        # Bridge layer between the encoder and decoder
        self.is_bridge = False
        if (args.enc_type in ['conv', 'tds', 'gated_conv', 'transformer']
                and args.ctc_weight < 1
            ) or args.dec_type == 'transformer' or args.bridge_layer:
            self.bridge = LinearND(self.enc.output_dim,
                                   args.d_model if args.dec_type
                                   == 'transformer' else args.dec_n_units,
                                   dropout=args.dropout_enc)
            self.is_bridge = True
            if self.sub1_weight > 0:
                self.bridge_sub1 = LinearND(self.enc.output_dim,
                                            args.dec_n_units,
                                            dropout=args.dropout_enc)
            if self.sub2_weight > 0:
                self.bridge_sub2 = LinearND(self.enc.output_dim,
                                            args.dec_n_units,
                                            dropout=args.dropout_enc)
            self.enc_n_units = args.dec_n_units

        # main task
        directions = []
        if self.fwd_weight > 0 or self.ctc_weight > 0:
            directions.append('fwd')
        if self.bwd_weight > 0:
            directions.append('bwd')
        for dir in directions:
            # Cold fusion
            if args.lm_fusion and dir == 'fwd':
                lm = RNNLM(args.lm_conf)
                lm, _ = load_checkpoint(lm, args.lm_fusion)
            else:
                args.lm_conf = False
                lm = None
            # TODO(hirofumi): cold fusion for backward RNNLM

            # Decoder
            if args.dec_type == 'transformer':
                dec = TransformerDecoder(
                    eos=self.eos,
                    unk=self.unk,
                    pad=self.pad,
                    blank=self.blank,
                    enc_n_units=self.enc.output_dim,
                    attn_type=args.transformer_attn_type,
                    attn_n_heads=args.transformer_attn_n_heads,
                    n_layers=args.transformer_dec_n_layers,
                    d_model=args.d_model,
                    d_ff=args.d_ff,
                    pe_type=args.pe_type,
                    tie_embedding=args.tie_embedding,
                    vocab=self.vocab,
                    dropout=args.dropout_dec,
                    dropout_emb=args.dropout_emb,
                    dropout_att=args.dropout_att,
                    lsm_prob=args.lsm_prob,
                    layer_norm_eps=args.layer_norm_eps,
                    ctc_weight=self.ctc_weight if dir == 'fwd' else 0,
                    ctc_fc_list=[
                        int(fc) for fc in args.ctc_fc_list.split('_')
                    ] if args.ctc_fc_list is not None
                    and len(args.ctc_fc_list) > 0 else [],
                    backward=(dir == 'bwd'),
                    global_weight=self.main_weight -
                    self.bwd_weight if dir == 'fwd' else self.bwd_weight,
                    mtl_per_batch=args.mtl_per_batch)
            else:
                dec = RNNDecoder(
                    eos=self.eos,
                    unk=self.unk,
                    pad=self.pad,
                    blank=self.blank,
                    enc_n_units=self.enc.output_dim,
                    attn_type=args.attn_type,
                    attn_dim=args.attn_dim,
                    attn_sharpening_factor=args.attn_sharpening,
                    attn_sigmoid_smoothing=args.attn_sigmoid,
                    attn_conv_out_channels=args.attn_conv_n_channels,
                    attn_conv_kernel_size=args.attn_conv_width,
                    attn_n_heads=args.attn_n_heads,
                    rnn_type=args.dec_type,
                    n_units=args.dec_n_units,
                    n_projs=args.dec_n_projs,
                    n_layers=args.dec_n_layers,
                    loop_type=args.dec_loop_type,
                    residual=args.dec_residual,
                    bottleneck_dim=args.dec_bottleneck_dim,
                    emb_dim=args.emb_dim,
                    tie_embedding=args.tie_embedding,
                    vocab=self.vocab,
                    dropout=args.dropout_dec,
                    dropout_emb=args.dropout_emb,
                    dropout_att=args.dropout_att,
                    ss_prob=args.ss_prob,
                    ss_type=args.ss_type,
                    lsm_prob=args.lsm_prob,
                    fl_weight=args.focal_loss_weight,
                    fl_gamma=args.focal_loss_gamma,
                    ctc_weight=self.ctc_weight if dir == 'fwd' else 0,
                    ctc_fc_list=[
                        int(fc) for fc in args.ctc_fc_list.split('_')
                    ] if args.ctc_fc_list is not None
                    and len(args.ctc_fc_list) > 0 else [],
                    input_feeding=args.input_feeding,
                    backward=(dir == 'bwd'),
                    # lm=args.lm_conf,
                    lm=lm,  # TODO(hirofumi): load RNNLM in the model init.
                    lm_fusion_type=args.lm_fusion_type,
                    contextualize=args.contextualize,
                    lm_init=args.lm_init,
                    lmobj_weight=args.lmobj_weight,
                    share_lm_softmax=args.share_lm_softmax,
                    global_weight=self.main_weight -
                    self.bwd_weight if dir == 'fwd' else self.bwd_weight,
                    mtl_per_batch=args.mtl_per_batch,
                    adaptive_softmax=args.adaptive_softmax)
            setattr(self, 'dec_' + dir, dec)

        # sub task
        for sub in ['sub1', 'sub2']:
            if getattr(self, sub + '_weight') > 0:
                if args.dec_type == 'transformer':
                    raise NotImplementedError
                else:
                    dec_sub = RNNDecoder(
                        eos=self.eos,
                        unk=self.unk,
                        pad=self.pad,
                        blank=self.blank,
                        enc_n_units=self.enc_n_units,
                        attn_type=args.attn_type,
                        attn_dim=args.attn_dim,
                        attn_sharpening_factor=args.attn_sharpening,
                        attn_sigmoid_smoothing=args.attn_sigmoid,
                        attn_conv_out_channels=args.attn_conv_n_channels,
                        attn_conv_kernel_size=args.attn_conv_width,
                        attn_n_heads=1,
                        rnn_type=args.dec_type,
                        n_units=args.dec_n_units,
                        n_projs=args.dec_n_projs,
                        n_layers=args.dec_n_layers,
                        loop_type=args.dec_loop_type,
                        residual=args.dec_residual,
                        bottleneck_dim=args.dec_bottleneck_dim,
                        emb_dim=args.emb_dim,
                        tie_embedding=args.tie_embedding,
                        vocab=getattr(self, 'vocab_' + sub),
                        dropout=args.dropout_dec,
                        dropout_emb=args.dropout_emb,
                        dropout_att=args.dropout_att,
                        ss_prob=args.ss_prob,
                        ss_type=args.ss_type,
                        lsm_prob=args.lsm_prob,
                        fl_weight=args.focal_loss_weight,
                        fl_gamma=args.focal_loss_gamma,
                        ctc_weight=getattr(self, 'ctc_weight_' + sub),
                        ctc_fc_list=[
                            int(fc) for fc in getattr(args, 'ctc_fc_list_' +
                                                      sub).split('_')
                        ] if getattr(args, 'ctc_fc_list_' + sub) is not None
                        and len(getattr(args, 'ctc_fc_list_' + sub)) > 0 else
                        [],
                        input_feeding=args.input_feeding,
                        global_weight=getattr(self, sub + '_weight'),
                        mtl_per_batch=args.mtl_per_batch)
                setattr(self, 'dec_fwd_' + sub, dec_sub)

        if args.input_type == 'text':
            if args.vocab == args.vocab_sub1:
                # Share the embedding layer between input and output
                self.embed_in = dec.embed
            else:
                self.embed_in = Embedding(vocab=args.vocab_sub1,
                                          emb_dim=args.emb_dim,
                                          dropout=args.dropout_emb,
                                          ignore_index=self.pad)

        # Initialize parameters in CNN layers
        self.reset_parameters(
            args.param_init,
            #   dist='xavier_uniform',
            #   dist='kaiming_uniform',
            dist='lecun',
            keys=['conv'],
            ignore_keys=['score'])

        # Initialize parameters in the encoder
        if args.enc_type == 'transformer':
            self.reset_parameters(args.param_init,
                                  dist='xavier_uniform',
                                  keys=['enc'],
                                  ignore_keys=['embed_in'])
            self.reset_parameters(args.d_model**-0.5,
                                  dist='normal',
                                  keys=['embed_in'])
        else:
            self.reset_parameters(args.param_init,
                                  dist=args.param_init_dist,
                                  keys=['enc'],
                                  ignore_keys=['conv'])

        # Initialize parameters in the decoder
        if args.dec_type == 'transformer':
            self.reset_parameters(args.param_init,
                                  dist='xavier_uniform',
                                  keys=['dec'],
                                  ignore_keys=['embed'])
            self.reset_parameters(args.d_model**-0.5,
                                  dist='normal',
                                  keys=['embed'])
        else:
            self.reset_parameters(args.param_init,
                                  dist=args.param_init_dist,
                                  keys=['dec'])

        # Initialize bias vectors with zero
        self.reset_parameters(0, dist='constant', keys=['bias'])

        # Recurrent weights are orthogonalized
        if args.rec_weight_orthogonal:
            self.reset_parameters(args.param_init,
                                  dist='orthogonal',
                                  keys=['rnn', 'weight'])

        # Initialize bias in forget gate with 1
        # self.init_forget_gate_bias_with_one()

        # Initialize bias in gating with -1 for cold fusion
        if args.lm_fusion:
            self.reset_parameters(-1,
                                  dist='constant',
                                  keys=['linear_lm_gate.fc.bias'])

        if args.lm_fusion_type == 'deep' and args.lm_fusion:
            for n, p in self.named_parameters():
                if 'output' in n or 'output_bn' in n or 'linear' in n:
                    p.requires_grad = True
                else:
                    p.requires_grad = False
Exemple #15
0
def main():

    args = parse()

    # Load a conf file
    dir_name = os.path.dirname(args.recog_model[0])
    conf = load_config(os.path.join(dir_name, 'conf.yml'))

    # Overwrite conf
    for k, v in conf.items():
        if 'recog' not in k:
            setattr(args, k, v)
    recog_params = vars(args)

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'plot.log')):
        os.remove(os.path.join(args.recog_dir, 'plot.log'))
    logger = set_logger(os.path.join(args.recog_dir, 'plot.log'),
                        key='decoding')

    for i, s in enumerate(args.recog_sets):
        # Load dataset
        dataset = Dataset(
            corpus=args.corpus,
            tsv_path=s,
            dict_path=os.path.join(dir_name, 'dict.txt'),
            dict_path_sub1=os.path.join(dir_name, 'dict_sub1.txt') if
            os.path.isfile(os.path.join(dir_name, 'dict_sub1.txt')) else False,
            nlsyms=args.nlsyms,
            wp_model=os.path.join(dir_name, 'wp.model'),
            unit=args.unit,
            unit_sub1=args.unit_sub1,
            batch_size=args.recog_batch_size,
            is_test=True)

        if i == 0:
            # Load the ASR model
            model = Speech2Text(args, dir_name)
            model, checkpoint = load_checkpoint(model, args.recog_model[0])
            epoch = checkpoint['epoch']

            # ensemble (different models)
            ensemble_models = [model]
            if len(args.recog_model) > 1:
                for recog_model_e in args.recog_model[1:]:
                    # Load the ASR model
                    conf_e = load_config(
                        os.path.join(os.path.dirname(recog_model_e),
                                     'conf.yml'))
                    args_e = copy.deepcopy(args)
                    for k, v in conf_e.items():
                        if 'recog' not in k:
                            setattr(args_e, k, v)
                    model_e = Speech2Text(args_e)
                    model_e, _ = load_checkpoint(model_e, recog_model_e)
                    model_e.cuda()
                    ensemble_models += [model_e]

            # Load the LM for shallow fusion
            if not args.lm_fusion:
                if args.recog_lm is not None and args.recog_lm_weight > 0:
                    conf_lm = load_config(
                        os.path.join(os.path.dirname(args.recog_lm),
                                     'conf.yml'))
                    args_lm = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm, k, v)
                    lm = select_lm(args_lm)
                    lm, _ = load_checkpoint(lm, args.recog_lm)
                    if args_lm.backward:
                        model.lm_bwd = lm
                    else:
                        model.lm_fwd = lm

                if args.recog_lm_bwd is not None and args.recog_lm_weight > 0 and \
                        (args.recog_fwd_bwd_attention or args.recog_reverse_lm_rescoring):
                    conf_lm = load_config(
                        os.path.join(args.recog_lm_bwd, 'conf.yml'))
                    args_lm_bwd = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm_bwd, k, v)
                    lm_bwd = select_lm(args_lm_bwd)
                    lm_bwd, _ = load_checkpoint(lm_bwd, args.recog_lm_bwd)
                    model.lm_bwd = lm_bwd

            if not args.recog_unit:
                args.recog_unit = args.unit

            logger.info('recog unit: %s' % args.recog_unit)
            logger.info('recog metric: %s' % args.recog_metric)
            logger.info('recog oracle: %s' % args.recog_oracle)
            logger.info('epoch: %d' % (epoch - 1))
            logger.info('batch size: %d' % args.recog_batch_size)
            logger.info('beam width: %d' % args.recog_beam_width)
            logger.info('min length ratio: %.3f' % args.recog_min_len_ratio)
            logger.info('max length ratio: %.3f' % args.recog_max_len_ratio)
            logger.info('length penalty: %.3f' % args.recog_length_penalty)
            logger.info('coverage penalty: %.3f' % args.recog_coverage_penalty)
            logger.info('coverage threshold: %.3f' %
                        args.recog_coverage_threshold)
            logger.info('CTC weight: %.3f' % args.recog_ctc_weight)
            logger.info('LM path: %s' % args.recog_lm)
            logger.info('LM path (bwd): %s' % args.recog_lm_bwd)
            logger.info('LM weight: %.3f' % args.recog_lm_weight)
            logger.info('GNMT: %s' % args.recog_gnmt_decoding)
            logger.info('forward-backward attention: %s' %
                        args.recog_fwd_bwd_attention)
            logger.info('reverse LM rescoring: %s' %
                        args.recog_reverse_lm_rescoring)
            logger.info('resolving UNK: %s' % args.recog_resolving_unk)
            logger.info('ensemble: %d' % (len(ensemble_models)))
            logger.info('ASR decoder state carry over: %s' %
                        (args.recog_asr_state_carry_over))
            logger.info('LM state carry over: %s' %
                        (args.recog_lm_state_carry_over))
            logger.info('cache size: %d' % (args.recog_n_caches))
            logger.info('cache type: %s' % (args.recog_cache_type))
            logger.info('cache word frequency threshold: %s' %
                        (args.recog_cache_word_freq))
            logger.info('cache theta (speech): %.3f' %
                        (args.recog_cache_theta_speech))
            logger.info('cache lambda (speech): %.3f' %
                        (args.recog_cache_lambda_speech))
            logger.info('cache theta (lm): %.3f' % (args.recog_cache_theta_lm))
            logger.info('cache lambda (lm): %.3f' %
                        (args.recog_cache_lambda_lm))

            # GPU setting
            model.cuda()
            # TODO(hirofumi): move this

        save_path = mkdir_join(args.recog_dir, 'att_weights')
        if args.recog_n_caches > 0:
            save_path_cache = mkdir_join(args.recog_dir, 'cache')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)
            if args.recog_n_caches > 0:
                shutil.rmtree(save_path_cache)
                os.mkdir(save_path_cache)

        while True:
            batch, is_new_epoch = dataset.next(
                recog_params['recog_batch_size'])
            best_hyps_id, aws, (cache_attn_hist, cache_id_hist) = model.decode(
                batch['xs'],
                recog_params,
                dataset.idx2token[0],
                exclude_eos=False,
                refs_id=batch['ys'],
                ensemble_models=ensemble_models[1:]
                if len(ensemble_models) > 1 else [],
                speakers=batch['sessions']
                if dataset.corpus == 'swbd' else batch['speakers'])

            if model.bwd_weight > 0.5:
                # Reverse the order
                best_hyps_id = [hyp[::-1] for hyp in best_hyps_id]
                aws = [aw[::-1] for aw in aws]

            for b in range(len(batch['xs'])):
                tokens = dataset.idx2token[0](best_hyps_id[b],
                                              return_list=True)
                spk = batch['speakers'][b]

                plot_attention_weights(
                    aws[b][:len(tokens)],
                    tokens,
                    spectrogram=batch['xs'][b][:, :dataset.input_dim]
                    if args.input_type == 'speech' else None,
                    save_path=mkdir_join(save_path, spk,
                                         batch['utt_ids'][b] + '.png'),
                    figsize=(20, 8))

                if args.recog_n_caches > 0 and cache_id_hist is not None and cache_attn_hist is not None:
                    n_keys, n_queries = cache_attn_hist[0].shape
                    # mask = np.ones((n_keys, n_queries))
                    # for i in range(n_queries):
                    #     mask[:n_keys - i, -(i + 1)] = 0
                    mask = np.zeros((n_keys, n_queries))

                    plot_cache_weights(
                        cache_attn_hist[0],
                        keys=dataset.idx2token[0](cache_id_hist[-1],
                                                  return_list=True),  # fifo
                        # keys=dataset.idx2token[0](cache_id_hist, return_list=True),  # dict
                        queries=tokens,
                        save_path=mkdir_join(save_path_cache, spk,
                                             batch['utt_ids'][b] + '.png'),
                        figsize=(40, 16),
                        mask=mask)

                if model.bwd_weight > 0.5:
                    hyp = ' '.join(tokens[::-1])
                else:
                    hyp = ' '.join(tokens)
                logger.info('utt-id: %s' % batch['utt_ids'][b])
                logger.info('Ref: %s' % batch['text'][b].lower())
                logger.info('Hyp: %s' % hyp)
                logger.info('-' * 50)

            if is_new_epoch:
                break
Exemple #16
0
def main():

    args = parse()
    args_pt = copy.deepcopy(args)
    args_teacher = copy.deepcopy(args)

    # Load a conf file
    if args.resume:
        conf = load_config(
            os.path.join(os.path.dirname(args.resume), 'conf.yml'))
        for k, v in conf.items():
            if k != 'resume':
                setattr(args, k, v)
    recog_params = vars(args)

    # Automatically reduce batch size in multi-GPU setting
    if args.n_gpus > 1:
        args.batch_size -= 10
        args.print_step //= args.n_gpus

    # Compute subsampling factor
    subsample_factor = 1
    subsample_factor_sub1 = 1
    subsample_factor_sub2 = 1
    subsample = [int(s) for s in args.subsample.split('_')]
    if args.conv_poolings and 'conv' in args.enc_type:
        for p in args.conv_poolings.split('_'):
            subsample_factor *= int(p.split(',')[0].replace('(', ''))
    else:
        subsample_factor = np.prod(subsample)
    if args.train_set_sub1:
        if args.conv_poolings and 'conv' in args.enc_type:
            subsample_factor_sub1 = subsample_factor * np.prod(
                subsample[:args.enc_n_layers_sub1 - 1])
        else:
            subsample_factor_sub1 = subsample_factor
    if args.train_set_sub2:
        if args.conv_poolings and 'conv' in args.enc_type:
            subsample_factor_sub2 = subsample_factor * np.prod(
                subsample[:args.enc_n_layers_sub2 - 1])
        else:
            subsample_factor_sub2 = subsample_factor

    skip_thought = 'skip' in args.enc_type
    transformer = 'transformer' in args.enc_type or args.dec_type == 'transformer'

    # Load dataset
    train_set = Dataset(corpus=args.corpus,
                        tsv_path=args.train_set,
                        tsv_path_sub1=args.train_set_sub1,
                        tsv_path_sub2=args.train_set_sub2,
                        dict_path=args.dict,
                        dict_path_sub1=args.dict_sub1,
                        dict_path_sub2=args.dict_sub2,
                        nlsyms=args.nlsyms,
                        unit=args.unit,
                        unit_sub1=args.unit_sub1,
                        unit_sub2=args.unit_sub2,
                        wp_model=args.wp_model,
                        wp_model_sub1=args.wp_model_sub1,
                        wp_model_sub2=args.wp_model_sub2,
                        batch_size=args.batch_size * args.n_gpus,
                        n_epochs=args.n_epochs,
                        min_n_frames=args.min_n_frames,
                        max_n_frames=args.max_n_frames,
                        sort_by_input_length=True,
                        short2long=True,
                        sort_stop_epoch=args.sort_stop_epoch,
                        dynamic_batching=args.dynamic_batching,
                        ctc=args.ctc_weight > 0,
                        ctc_sub1=args.ctc_weight_sub1 > 0,
                        ctc_sub2=args.ctc_weight_sub2 > 0,
                        subsample_factor=subsample_factor,
                        subsample_factor_sub1=subsample_factor_sub1,
                        subsample_factor_sub2=subsample_factor_sub2,
                        discourse_aware=args.discourse_aware,
                        skip_thought=skip_thought)
    dev_set = Dataset(corpus=args.corpus,
                      tsv_path=args.dev_set,
                      tsv_path_sub1=args.dev_set_sub1,
                      tsv_path_sub2=args.dev_set_sub2,
                      dict_path=args.dict,
                      dict_path_sub1=args.dict_sub1,
                      dict_path_sub2=args.dict_sub2,
                      nlsyms=args.nlsyms,
                      unit=args.unit,
                      unit_sub1=args.unit_sub1,
                      unit_sub2=args.unit_sub2,
                      wp_model=args.wp_model,
                      wp_model_sub1=args.wp_model_sub1,
                      wp_model_sub2=args.wp_model_sub2,
                      batch_size=args.batch_size * args.n_gpus,
                      min_n_frames=args.min_n_frames,
                      max_n_frames=args.max_n_frames,
                      shuffle=True if args.discourse_aware else False,
                      ctc=args.ctc_weight > 0,
                      ctc_sub1=args.ctc_weight_sub1 > 0,
                      ctc_sub2=args.ctc_weight_sub2 > 0,
                      subsample_factor=subsample_factor,
                      subsample_factor_sub1=subsample_factor_sub1,
                      subsample_factor_sub2=subsample_factor_sub2,
                      discourse_aware=args.discourse_aware,
                      skip_thought=skip_thought)
    eval_sets = []
    for s in args.eval_sets:
        eval_sets += [
            Dataset(corpus=args.corpus,
                    tsv_path=s,
                    dict_path=args.dict,
                    nlsyms=args.nlsyms,
                    unit=args.unit,
                    wp_model=args.wp_model,
                    batch_size=1,
                    discourse_aware=args.discourse_aware,
                    skip_thought=skip_thought,
                    is_test=True)
        ]

    args.vocab = train_set.vocab
    args.vocab_sub1 = train_set.vocab_sub1
    args.vocab_sub2 = train_set.vocab_sub2
    args.input_dim = train_set.input_dim

    # Load a LM conf file for LM fusion & LM initialization
    if not args.resume and (args.lm_fusion or args.lm_init):
        if args.lm_fusion:
            lm_conf = load_config(
                os.path.join(os.path.dirname(args.lm_fusion), 'conf.yml'))
        elif args.lm_init:
            lm_conf = load_config(
                os.path.join(os.path.dirname(args.lm_init), 'conf.yml'))
        args.lm_conf = argparse.Namespace()
        for k, v in lm_conf.items():
            setattr(args.lm_conf, k, v)
        assert args.unit == args.lm_conf.unit
        assert args.vocab == args.lm_conf.vocab

    # Set save path
    if args.resume:
        save_path = os.path.dirname(args.resume)
        dir_name = os.path.basename(save_path)
    else:
        dir_name = make_model_name(args, subsample_factor)
        save_path = mkdir_join(
            args.model_save_dir,
            '_'.join(os.path.basename(args.train_set).split('.')[:-1]),
            dir_name)
        save_path = set_save_path(save_path)  # avoid overwriting

    # Set logger
    logger = set_logger(os.path.join(save_path, 'train.log'), key='training')

    # Model setting
    model = SkipThought(args, save_path) if skip_thought else Speech2Text(
        args, save_path)

    if args.resume:
        # Set optimizer
        epoch = int(args.resume.split('-')[-1])
        model.set_optimizer(
            optimizer='sgd'
            if epoch > conf['convert_to_sgd_epoch'] + 1 else conf['optimizer'],
            lr=float(conf['learning_rate']),  # on-the-fly
            weight_decay=float(conf['weight_decay']))

        # Restore the last saved model
        model, checkpoint = load_checkpoint(model, args.resume, resume=True)
        lr_controller = checkpoint['lr_controller']
        epoch = checkpoint['epoch']
        step = checkpoint['step']
        metric_dev_best = checkpoint['metric_dev_best']

        # Resume between convert_to_sgd_epoch and convert_to_sgd_epoch + 1
        if epoch == conf['convert_to_sgd_epoch'] + 1:
            model.set_optimizer(optimizer='sgd',
                                lr=args.learning_rate,
                                weight_decay=float(conf['weight_decay']))
            logger.info('========== Convert to SGD ==========')
    else:
        # Save the conf file as a yaml file
        save_config(vars(args), os.path.join(model.save_path, 'conf.yml'))
        if args.lm_fusion:
            save_config(args.lm_conf,
                        os.path.join(model.save_path, 'conf_lm.yml'))

        # Save the nlsyms, dictionar, and wp_model
        if args.nlsyms:
            shutil.copy(args.nlsyms, os.path.join(model.save_path,
                                                  'nlsyms.txt'))
        for sub in ['', '_sub1', '_sub2']:
            if getattr(args, 'dict' + sub):
                shutil.copy(
                    getattr(args, 'dict' + sub),
                    os.path.join(model.save_path, 'dict' + sub + '.txt'))
            if getattr(args, 'unit' + sub) == 'wp':
                shutil.copy(
                    getattr(args, 'wp_model' + sub),
                    os.path.join(model.save_path, 'wp' + sub + '.model'))

        for k, v in sorted(vars(args).items(), key=lambda x: x[0]):
            logger.info('%s: %s' % (k, str(v)))

        # Count total parameters
        for n in sorted(list(model.num_params_dict.keys())):
            nparams = model.num_params_dict[n]
            logger.info("%s %d" % (n, nparams))
        logger.info("Total %.2f M parameters" %
                    (model.total_parameters / 1000000))
        logger.info(model)

        # Initialize with pre-trained model's parameters
        if args.pretrained_model and os.path.isfile(args.pretrained_model):
            # Load the ASR model
            conf_pt = load_config(
                os.path.join(os.path.dirname(args.pretrained_model),
                             'conf.yml'))
            for k, v in conf_pt.items():
                setattr(args_pt, k, v)
            model_pt = Speech2Text(args_pt)
            model_pt, _ = load_checkpoint(model_pt, args.pretrained_model)

            # Overwrite parameters
            only_enc = (args.enc_n_layers != args_pt.enc_n_layers) or (
                args.unit != args_pt.unit) or args_pt.ctc_weight == 1
            param_dict = dict(model_pt.named_parameters())
            for n, p in model.named_parameters():
                if n in param_dict.keys() and p.size() == param_dict[n].size():
                    if only_enc and 'enc' not in n:
                        continue
                    if args.lm_fusion_type == 'cache' and 'output' in n:
                        continue
                    p.data = param_dict[n].data
                    logger.info('Overwrite %s' % n)

        # Set optimizer
        model.set_optimizer(optimizer=args.optimizer,
                            lr=float(args.learning_rate),
                            weight_decay=float(args.weight_decay),
                            transformer=transformer)

        epoch, step = 1, 1
        metric_dev_best = 10000

        # Set learning rate controller
        lr_controller = Controller(
            lr=float(args.learning_rate),
            decay_type=args.decay_type,
            decay_start_epoch=args.decay_start_epoch,
            decay_rate=args.decay_rate,
            decay_patient_n_epochs=args.decay_patient_n_epochs,
            lower_better=True,
            best_value=metric_dev_best,
            model_size=args.d_model,
            warmup_start_lr=args.warmup_start_learning_rate,
            warmup_n_steps=args.warmup_n_steps,
            lr_factor=args.learning_rate_factor,
            transformer=transformer)

    train_set.epoch = epoch - 1  # start from index:0

    # Load the teacher ASR model
    teacher = None
    teacher_lm = None
    if args.teacher and os.path.isfile(args.teacher):
        conf_teacher = load_config(
            os.path.join(os.path.dirname(args.teacher), 'conf.yml'))
        for k, v in conf_teacher.items():
            setattr(args_teacher, k, v)
        # Setting for knowledge distillation
        args_teacher.ss_prob = 0
        args.lsm_prob = 0
        teacher = Speech2Text(args_teacher)
        teacher, _ = load_checkpoint(teacher, args.teacher)

        # Load the teacher LM
        if args.teacher_lm and os.path.isfile(args.teacher_lm):
            conf_lm = load_config(
                os.path.join(os.path.dirname(args.teacher_lm), 'conf.yml'))
            args_lm = argparse.Namespace()
            for k, v in conf_lm.items():
                setattr(args_lm, k, v)
            teacher_lm = select_lm(args_lm)
            teacher_lm, _ = load_checkpoint(teacher_lm, args.teacher_lm)

    # GPU setting
    if args.n_gpus >= 1:
        model = CustomDataParallel(model,
                                   device_ids=list(range(0, args.n_gpus, 1)),
                                   deterministic=False,
                                   benchmark=True)
        model.cuda()
        if teacher is not None:
            teacher.cuda()
        if teacher_lm is not None:
            teacher_lm.cuda()

    logger.info('PID: %s' % os.getpid())
    logger.info('USERNAME: %s' % os.uname()[1])

    # Set process name
    if args.job_name:
        setproctitle(args.job_name)
    else:
        setproctitle(dir_name)

    # Set reporter
    reporter = Reporter(model.module.save_path, tensorboard=True)

    if args.mtl_per_batch:
        # NOTE: from easier to harder tasks
        tasks = []
        if 1 - args.bwd_weight - args.ctc_weight - args.sub1_weight - args.sub2_weight > 0:
            tasks += ['ys']
        if args.bwd_weight > 0:
            tasks = ['ys.bwd'] + tasks
        if args.ctc_weight > 0:
            tasks = ['ys.ctc'] + tasks
        if args.lmobj_weight > 0:
            tasks = ['ys.lmobj'] + tasks
        for sub in ['sub1', 'sub2']:
            if getattr(args, 'train_set_' + sub):
                if getattr(args, sub + '_weight') - getattr(
                        args, 'ctc_weight_' + sub) > 0:
                    tasks = ['ys_' + sub] + tasks
                if getattr(args, 'ctc_weight_' + sub) > 0:
                    tasks = ['ys_' + sub + '.ctc'] + tasks
    else:
        tasks = ['all']

    start_time_train = time.time()
    start_time_epoch = time.time()
    start_time_step = time.time()
    not_improved_n_epochs = 0
    pbar_epoch = tqdm(total=len(train_set))
    accum_n_tokens = 0
    while True:
        # Compute loss in the training set
        batch_train, is_new_epoch = train_set.next()
        accum_n_tokens += sum([len(y) for y in batch_train['ys']])

        # Change tasks depending on task
        for task in tasks:
            if skip_thought:
                loss, reporter = model(batch_train['ys'],
                                       ys_prev=batch_train['ys_prev'],
                                       ys_next=batch_train['ys_next'],
                                       reporter=reporter)
            else:
                loss, reporter = model(batch_train,
                                       reporter=reporter,
                                       task=task,
                                       teacher=teacher,
                                       teacher_lm=teacher_lm)
            # loss /= args.accum_grad_n_steps
            if len(model.device_ids) > 1:
                loss.backward(torch.ones(len(model.device_ids)))
            else:
                loss.backward()
            loss.detach()  # Trancate the graph
            if args.accum_grad_n_tokens == 0 or accum_n_tokens >= args.accum_grad_n_tokens:
                if args.clip_grad_norm > 0:
                    torch.nn.utils.clip_grad_norm_(model.module.parameters(),
                                                   args.clip_grad_norm)
                model.module.optimizer.step()
                model.module.optimizer.zero_grad()
                accum_n_tokens = 0
            loss_train = loss.item()
            del loss

        reporter.step(is_eval=False)

        # Update learning rate
        if step < args.warmup_n_steps or transformer:
            model.module.optimizer = lr_controller.warmup(
                model.module.optimizer, step=step)

        if step % args.print_step == 0:
            # Compute loss in the dev set
            batch_dev = dev_set.next()[0]
            # Change tasks depending on task
            for task in tasks:
                if skip_thought:
                    loss, reporter = model(batch_dev['ys'],
                                           ys_prev=batch_dev['ys_prev'],
                                           ys_next=batch_dev['ys_next'],
                                           reporter=reporter,
                                           is_eval=True)
                else:
                    loss, reporter = model(batch_dev,
                                           reporter=reporter,
                                           task=task,
                                           is_eval=True)
                loss_dev = loss.item()
                del loss
            reporter.step(is_eval=True)

            duration_step = time.time() - start_time_step
            if args.input_type == 'speech':
                xlen = max(len(x) for x in batch_train['xs'])
                ylen = max(len(y) for y in batch_train['ys'])
            elif args.input_type == 'text':
                xlen = max(len(x) for x in batch_train['ys'])
                ylen = max(len(y) for y in batch_train['ys_sub1'])
            logger.info(
                "step:%d(ep:%.2f) loss:%.3f(%.3f)/lr:%.5f/bs:%d/xlen:%d/ylen:%d (%.2f min)"
                % (step, train_set.epoch_detail, loss_train, loss_dev,
                   lr_controller.lr, len(batch_train['utt_ids']), xlen, ylen,
                   duration_step / 60))
            start_time_step = time.time()
        step += args.n_gpus
        pbar_epoch.update(len(batch_train['utt_ids']))

        # Save fugures of loss and accuracy
        if step % (args.print_step * 10) == 0:
            reporter.snapshot()
            model.module.plot_attention()

        # Save checkpoint and evaluate model per epoch
        if is_new_epoch:
            duration_epoch = time.time() - start_time_epoch
            logger.info('========== EPOCH:%d (%.2f min) ==========' %
                        (epoch, duration_epoch / 60))

            if epoch < args.eval_start_epoch:
                # Save the model
                save_checkpoint(model.module,
                                model.module.save_path,
                                lr_controller,
                                epoch,
                                step - 1,
                                metric_dev_best,
                                remove_old_checkpoints=True)
                reporter._epoch += 1
                # TODO(hirofumi): fix later
            else:
                start_time_eval = time.time()
                # dev
                if args.metric == 'edit_distance':
                    if args.unit in ['word', 'word_char']:
                        metric_dev = eval_word([model.module],
                                               dev_set,
                                               recog_params,
                                               epoch=epoch)[0]
                        logger.info('WER (%s): %.2f %%' %
                                    (dev_set.set, metric_dev))
                    elif args.unit == 'wp':
                        metric_dev, cer_dev = eval_wordpiece([model.module],
                                                             dev_set,
                                                             recog_params,
                                                             epoch=epoch)
                        logger.info('WER (%s): %.2f %%' %
                                    (dev_set.set, metric_dev))
                        logger.info('CER (%s): %.2f %%' %
                                    (dev_set.set, cer_dev))
                    elif 'char' in args.unit:
                        metric_dev, cer_dev = eval_char([model.module],
                                                        dev_set,
                                                        recog_params,
                                                        epoch=epoch)
                        logger.info('WER (%s): %.2f %%' %
                                    (dev_set.set, metric_dev))
                        logger.info('CER (%s): %.2f %%' %
                                    (dev_set.set, cer_dev))
                    elif 'phone' in args.unit:
                        metric_dev = eval_phone([model.module],
                                                dev_set,
                                                recog_params,
                                                epoch=epoch)
                        logger.info('PER (%s): %.2f %%' %
                                    (dev_set.set, metric_dev))
                elif args.metric == 'ppl':
                    metric_dev = eval_ppl([model.module],
                                          dev_set,
                                          batch_size=args.batch_size)[0]
                    logger.info('PPL (%s): %.2f' % (dev_set.set, metric_dev))
                elif args.metric == 'loss':
                    metric_dev = eval_ppl([model.module],
                                          dev_set,
                                          batch_size=args.batch_size)[1]
                    logger.info('Loss (%s): %.2f' % (dev_set.set, metric_dev))
                else:
                    raise NotImplementedError(args.metric)
                reporter.epoch(metric_dev)

                # Update learning rate
                model.module.optimizer = lr_controller.decay(
                    model.module.optimizer, epoch=epoch, value=metric_dev)

                if metric_dev < metric_dev_best:
                    metric_dev_best = metric_dev
                    not_improved_n_epochs = 0
                    logger.info('||||| Best Score |||||')

                    # Save the model
                    save_checkpoint(model.module,
                                    model.module.save_path,
                                    lr_controller,
                                    epoch,
                                    step - 1,
                                    metric_dev_best,
                                    remove_old_checkpoints=True)

                    # test
                    for s in eval_sets:
                        if args.metric == 'edit_distance':
                            if args.unit in ['word', 'word_char']:
                                wer_test = eval_word([model.module],
                                                     s,
                                                     recog_params,
                                                     epoch=epoch)[0]
                                logger.info('WER (%s): %.2f %%' %
                                            (s.set, wer_test))
                            elif args.unit == 'wp':
                                wer_test, cer_test = eval_wordpiece(
                                    [model.module],
                                    s,
                                    recog_params,
                                    epoch=epoch)
                                logger.info('WER (%s): %.2f %%' %
                                            (s.set, wer_test))
                                logger.info('CER (%s): %.2f %%' %
                                            (s.set, cer_test))
                            elif 'char' in args.unit:
                                wer_test, cer_test = eval_char([model.module],
                                                               s,
                                                               recog_params,
                                                               epoch=epoch)
                                logger.info('WER (%s): %.2f %%' %
                                            (s.set, wer_test))
                                logger.info('CER (%s): %.2f %%' %
                                            (s.set, cer_test))
                            elif 'phone' in args.unit:
                                per_test = eval_phone([model.module],
                                                      s,
                                                      recog_params,
                                                      epoch=epoch)
                                logger.info('PER (%s): %.2f %%' %
                                            (s.set, per_test))
                        elif args.metric == 'ppl':
                            ppl_test = eval_ppl([model.module],
                                                s,
                                                batch_size=args.batch_size)[0]
                            logger.info('PPL (%s): %.2f' % (s.set, ppl_test))
                        elif args.metric == 'loss':
                            loss_test = eval_ppl([model.module],
                                                 s,
                                                 batch_size=args.batch_size)[1]
                            logger.info('Loss (%s): %.2f' % (s.set, loss_test))
                        else:
                            raise NotImplementedError(args.metric)
                else:
                    not_improved_n_epochs += 1

                    # start scheduled sampling
                    if args.ss_prob > 0:
                        model.module.scheduled_sampling_trigger()

                duration_eval = time.time() - start_time_eval
                logger.info('Evaluation time: %.2f min' % (duration_eval / 60))

                # Early stopping
                if not_improved_n_epochs == args.not_improved_patient_n_epochs:
                    break

                # Convert to fine-tuning stage
                if epoch == args.convert_to_sgd_epoch:
                    model.module.set_optimizer('sgd',
                                               lr=args.learning_rate,
                                               weight_decay=float(
                                                   args.weight_decay))
                    lr_controller = Controller(lr=args.learning_rate,
                                               decay_type='epoch',
                                               decay_start_epoch=epoch,
                                               decay_rate=0.5,
                                               lower_better=True)
                    logger.info('========== Convert to SGD ==========')

            pbar_epoch = tqdm(total=len(train_set))

            if epoch == args.n_epochs:
                break

            start_time_step = time.time()
            start_time_epoch = time.time()
            epoch += 1

    duration_train = time.time() - start_time_train
    logger.info('Total time: %.2f hour' % (duration_train / 3600))

    if reporter.tensorboard:
        reporter.tf_writer.close()
    pbar_epoch.close()

    return model.module.save_path
Exemple #17
0
    def __init__(self, args, save_path=None):

        super(ModelBase, self).__init__()

        self.save_path = save_path

        # for encoder, decoder
        self.input_type = args.input_type
        self.input_dim = args.input_dim
        self.enc_type = args.enc_type
        self.enc_n_units = args.enc_n_units
        if args.enc_type in ['blstm', 'bgru', 'conv_blstm', 'conv_bgru']:
            self.enc_n_units *= 2
        self.dec_type = args.dec_type

        # for OOV resolution
        self.enc_n_layers = args.enc_n_layers
        self.enc_n_layers_sub1 = args.enc_n_layers_sub1
        self.subsample = [int(s) for s in args.subsample.split('_')]

        # for decoder
        self.vocab = args.vocab
        self.vocab_sub1 = args.vocab_sub1
        self.vocab_sub2 = args.vocab_sub2
        self.blank = 0
        self.unk = 1
        self.eos = 2
        self.pad = 3
        # NOTE: reserved in advance

        # for the sub tasks
        self.main_weight = 1 - args.sub1_weight - args.sub2_weight
        self.sub1_weight = args.sub1_weight
        self.sub2_weight = args.sub2_weight
        self.mtl_per_batch = args.mtl_per_batch
        self.task_specific_layer = args.task_specific_layer

        # for CTC
        self.ctc_weight = min(args.ctc_weight, self.main_weight)
        self.ctc_weight_sub1 = min(args.ctc_weight_sub1, self.sub1_weight)
        self.ctc_weight_sub2 = min(args.ctc_weight_sub2, self.sub2_weight)

        # for backward decoder
        self.bwd_weight = min(args.bwd_weight, self.main_weight)
        self.fwd_weight = self.main_weight - self.bwd_weight - self.ctc_weight
        self.fwd_weight_sub1 = self.sub1_weight - self.ctc_weight_sub1
        self.fwd_weight_sub2 = self.sub2_weight - self.ctc_weight_sub2

        # Feature extraction
        self.gaussian_noise = args.gaussian_noise
        self.n_stacks = args.n_stacks
        self.n_skips = args.n_skips
        self.n_splices = args.n_splices
        self.is_specaug = args.n_freq_masks > 0 or args.n_time_masks > 0
        self.specaug = None
        if self.is_specaug:
            assert args.n_stacks == 1 and args.n_skips == 1
            assert args.n_splices == 1
            self.specaug = SpecAugment(F=args.freq_width,
                                       T=args.time_width,
                                       n_freq_masks=args.n_freq_masks,
                                       n_time_masks=args.n_time_masks,
                                       p=args.time_width_upper)

        # Frontend
        self.ssn = None
        if args.sequence_summary_network:
            assert args.input_type == 'speech'
            self.ssn = SequenceSummaryNetwork(args.input_dim,
                                              n_units=512,
                                              n_layers=3,
                                              bottleneck_dim=100,
                                              dropout=0,
                                              param_init=args.param_init)

        # Encoder
        self.enc = select_encoder(args)
        if args.freeze_encoder:
            for p in self.enc.parameters():
                p.requires_grad = False

        # main task
        directions = []
        if self.fwd_weight > 0 or self.ctc_weight > 0:
            directions.append('fwd')
        if self.bwd_weight > 0:
            directions.append('bwd')
        for dir in directions:
            # Load the LM for LM fusion
            if args.lm_fusion and dir == 'fwd':
                lm_fusion = RNNLM(args.lm_conf)
                lm_fusion, _ = load_checkpoint(lm_fusion, args.lm_fusion)
            else:
                lm_fusion = None
                # TODO(hirofumi): for backward RNNLM

            # Load the LM for LM initialization
            if args.lm_init and dir == 'fwd':
                lm_init = RNNLM(args.lm_conf)
                lm_init, _ = load_checkpoint(lm_init, args.lm_init)
            else:
                lm_init = None
                # TODO(hirofumi): for backward RNNLM

            # Decoder
            if args.dec_type == 'transformer':
                dec = TransformerDecoder(
                    eos=self.eos,
                    unk=self.unk,
                    pad=self.pad,
                    blank=self.blank,
                    enc_n_units=self.enc.output_dim,
                    attn_type=args.transformer_attn_type,
                    attn_n_heads=args.transformer_attn_n_heads,
                    n_layers=args.dec_n_layers,
                    d_model=args.d_model,
                    d_ff=args.d_ff,
                    vocab=self.vocab,
                    tie_embedding=args.tie_embedding,
                    pe_type=args.pe_type,
                    layer_norm_eps=args.layer_norm_eps,
                    dropout=args.dropout_dec,
                    dropout_emb=args.dropout_emb,
                    dropout_att=args.dropout_att,
                    lsm_prob=args.lsm_prob,
                    focal_loss_weight=args.focal_loss_weight,
                    focal_loss_gamma=args.focal_loss_gamma,
                    ctc_weight=self.ctc_weight if dir == 'fwd' else 0,
                    ctc_lsm_prob=args.ctc_lsm_prob,
                    ctc_fc_list=[
                        int(fc) for fc in args.ctc_fc_list.split('_')
                    ] if args.ctc_fc_list is not None
                    and len(args.ctc_fc_list) > 0 else [],
                    backward=(dir == 'bwd'),
                    global_weight=self.main_weight -
                    self.bwd_weight if dir == 'fwd' else self.bwd_weight,
                    mtl_per_batch=args.mtl_per_batch)
            elif 'transducer' in args.dec_type:
                dec = RNNTransducer(
                    eos=self.eos,
                    unk=self.unk,
                    pad=self.pad,
                    blank=self.blank,
                    enc_n_units=self.enc.output_dim,
                    rnn_type=args.dec_type,
                    n_units=args.dec_n_units,
                    n_projs=args.dec_n_projs,
                    n_layers=args.dec_n_layers,
                    residual=args.dec_residual,
                    bottleneck_dim=args.dec_bottleneck_dim,
                    emb_dim=args.emb_dim,
                    vocab=self.vocab,
                    dropout=args.dropout_dec,
                    dropout_emb=args.dropout_emb,
                    lsm_prob=args.lsm_prob,
                    ctc_weight=self.ctc_weight if dir == 'fwd' else 0,
                    ctc_lsm_prob=args.ctc_lsm_prob,
                    ctc_fc_list=[
                        int(fc) for fc in args.ctc_fc_list.split('_')
                    ] if args.ctc_fc_list is not None
                    and len(args.ctc_fc_list) > 0 else [],
                    lm_init=lm_init,
                    lmobj_weight=args.lmobj_weight,
                    share_lm_softmax=args.share_lm_softmax,
                    global_weight=self.main_weight -
                    self.bwd_weight if dir == 'fwd' else self.bwd_weight,
                    mtl_per_batch=args.mtl_per_batch,
                    param_init=args.param_init)
            else:
                dec = RNNDecoder(
                    eos=self.eos,
                    unk=self.unk,
                    pad=self.pad,
                    blank=self.blank,
                    enc_n_units=self.enc.output_dim,
                    attn_type=args.attn_type,
                    attn_dim=args.attn_dim,
                    attn_sharpening_factor=args.attn_sharpening,
                    attn_sigmoid_smoothing=args.attn_sigmoid,
                    attn_conv_out_channels=args.attn_conv_n_channels,
                    attn_conv_kernel_size=args.attn_conv_width,
                    attn_n_heads=args.attn_n_heads,
                    rnn_type=args.dec_type,
                    n_units=args.dec_n_units,
                    n_projs=args.dec_n_projs,
                    n_layers=args.dec_n_layers,
                    loop_type=args.dec_loop_type,
                    residual=args.dec_residual,
                    bottleneck_dim=args.dec_bottleneck_dim,
                    emb_dim=args.emb_dim,
                    vocab=self.vocab,
                    tie_embedding=args.tie_embedding,
                    dropout=args.dropout_dec,
                    dropout_emb=args.dropout_emb,
                    dropout_att=args.dropout_att,
                    zoneout=args.zoneout,
                    ss_prob=args.ss_prob,
                    ss_type=args.ss_type,
                    lsm_prob=args.lsm_prob,
                    focal_loss_weight=args.focal_loss_weight,
                    focal_loss_gamma=args.focal_loss_gamma,
                    ctc_weight=self.ctc_weight if dir == 'fwd' else 0,
                    ctc_lsm_prob=args.ctc_lsm_prob,
                    ctc_fc_list=[
                        int(fc) for fc in args.ctc_fc_list.split('_')
                    ] if args.ctc_fc_list is not None
                    and len(args.ctc_fc_list) > 0 else [],
                    input_feeding=args.input_feeding,
                    backward=(dir == 'bwd'),
                    lm_fusion=lm_fusion,
                    lm_fusion_type=args.lm_fusion_type,
                    discourse_aware=args.discourse_aware,
                    lm_init=lm_init,
                    lmobj_weight=args.lmobj_weight,
                    share_lm_softmax=args.share_lm_softmax,
                    global_weight=self.main_weight -
                    self.bwd_weight if dir == 'fwd' else self.bwd_weight,
                    mtl_per_batch=args.mtl_per_batch,
                    adaptive_softmax=args.adaptive_softmax,
                    param_init=args.param_init,
                    replace_sos=args.replace_sos)
            setattr(self, 'dec_' + dir, dec)

        # sub task
        for sub in ['sub1', 'sub2']:
            if getattr(self, sub + '_weight') > 0:
                if args.dec_type == 'transformer':
                    raise NotImplementedError
                else:
                    dec_sub = RNNDecoder(
                        eos=self.eos,
                        unk=self.unk,
                        pad=self.pad,
                        blank=self.blank,
                        enc_n_units=self.enc_n_units,
                        attn_type=args.attn_type,
                        attn_dim=args.attn_dim,
                        attn_sharpening_factor=args.attn_sharpening,
                        attn_sigmoid_smoothing=args.attn_sigmoid,
                        attn_conv_out_channels=args.attn_conv_n_channels,
                        attn_conv_kernel_size=args.attn_conv_width,
                        attn_n_heads=1,
                        rnn_type=args.dec_type,
                        n_units=args.dec_n_units,
                        n_projs=args.dec_n_projs,
                        n_layers=args.dec_n_layers,
                        loop_type=args.dec_loop_type,
                        residual=args.dec_residual,
                        bottleneck_dim=args.dec_bottleneck_dim,
                        emb_dim=args.emb_dim,
                        tie_embedding=args.tie_embedding,
                        vocab=getattr(self, 'vocab_' + sub),
                        dropout=args.dropout_dec,
                        dropout_emb=args.dropout_emb,
                        dropout_att=args.dropout_att,
                        ss_prob=args.ss_prob,
                        ss_type=args.ss_type,
                        lsm_prob=args.lsm_prob,
                        focal_loss_weight=args.focal_loss_weight,
                        focal_loss_gamma=args.focal_loss_gamma,
                        ctc_weight=getattr(self, 'ctc_weight_' + sub),
                        ctc_lsm_prob=args.ctc_lsm_prob,
                        ctc_fc_list=[
                            int(fc) for fc in getattr(args, 'ctc_fc_list_' +
                                                      sub).split('_')
                        ] if getattr(args, 'ctc_fc_list_' + sub) is not None
                        and len(getattr(args, 'ctc_fc_list_' + sub)) > 0 else
                        [],
                        input_feeding=args.input_feeding,
                        global_weight=getattr(self, sub + '_weight'),
                        mtl_per_batch=args.mtl_per_batch,
                        param_init=args.param_init)
                setattr(self, 'dec_fwd_' + sub, dec_sub)

        if args.input_type == 'text':
            if args.vocab == args.vocab_sub1:
                # Share the embedding layer between input and output
                self.embed = dec.embed
            else:
                self.embed = Embedding(vocab=args.vocab_sub1,
                                       emb_dim=args.emb_dim,
                                       dropout=args.dropout_emb,
                                       ignore_index=self.pad)

        # Recurrent weights are orthogonalized
        if args.rec_weight_orthogonal:
            self.reset_parameters(args.param_init,
                                  dist='orthogonal',
                                  keys=['rnn', 'weight'])

        # Initialize bias in forget gate with 1
        # self.init_forget_gate_bias_with_one()

        # Fix all parameters except for the gating parts in deep fusion
        if args.lm_fusion_type == 'deep' and args.lm_fusion:
            for n, p in self.named_parameters():
                if 'output' in n or 'output_bn' in n or 'linear' in n:
                    p.requires_grad = True
                else:
                    p.requires_grad = False
Exemple #18
0
def main():

    args = parse()

    # Load a conf file
    dir_name = os.path.dirname(args.recog_model[0])
    conf = load_config(os.path.join(dir_name, 'conf.yml'))

    # Overwrite conf
    for k, v in conf.items():
        if 'recog' not in k:
            setattr(args, k, v)
    recog_params = vars(args)

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'plot.log')):
        os.remove(os.path.join(args.recog_dir, 'plot.log'))
    logger = set_logger(os.path.join(args.recog_dir, 'plot.log'),
                        key='decoding', stdout=args.recog_stdout)

    for i, s in enumerate(args.recog_sets):
        subsample_factor = 1
        subsample = [int(s) for s in args.subsample.split('_')]
        if args.conv_poolings:
            for p in args.conv_poolings.split('_'):
                p = int(p.split(',')[0].replace('(', ''))
                if p > 1:
                    subsample_factor *= p
        subsample_factor *= np.prod(subsample)

        # Load dataset
        dataset = Dataset(corpus=args.corpus,
                          tsv_path=s,
                          dict_path=os.path.join(dir_name, 'dict.txt'),
                          dict_path_sub1=os.path.join(dir_name, 'dict_sub1.txt') if os.path.isfile(
                              os.path.join(dir_name, 'dict_sub1.txt')) else False,
                          nlsyms=args.nlsyms,
                          wp_model=os.path.join(dir_name, 'wp.model'),
                          unit=args.unit,
                          unit_sub1=args.unit_sub1,
                          batch_size=args.recog_batch_size,
                          is_test=True)

        if i == 0:
            # Load the ASR model
            model = Speech2Text(args, dir_name)
            model = load_checkpoint(model, args.recog_model[0])[0]
            epoch = int(args.recog_model[0].split('-')[-1])

            if not args.recog_unit:
                args.recog_unit = args.unit

            logger.info('recog unit: %s' % args.recog_unit)
            logger.info('epoch: %d' % (epoch - 1))
            logger.info('batch size: %d' % args.recog_batch_size)

            # GPU setting
            model.cuda()

        save_path = mkdir_join(args.recog_dir, 'ctc_probs')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)

        while True:
            batch, is_new_epoch = dataset.next(recog_params['recog_batch_size'])
            best_hyps_id, _, _ = model.decode(batch['xs'], recog_params,
                                              exclude_eos=False)

            # Get CTC probs
            ctc_probs, indices_topk, xlens = model.get_ctc_probs(
                batch['xs'], temperature=1, topk=min(100, model.vocab))
            # NOTE: ctc_probs: '[B, T, topk]'

            for b in range(len(batch['xs'])):
                tokens = dataset.idx2token[0](best_hyps_id[b], return_list=True)
                spk = batch['speakers'][b]

                plot_ctc_probs(
                    ctc_probs[b, :xlens[b]],
                    indices_topk[b],
                    n_frames=xlens[b],
                    subsample_factor=subsample_factor,
                    spectrogram=batch['xs'][b][:, :dataset.input_dim],
                    save_path=mkdir_join(save_path, spk, batch['utt_ids'][b] + '.png'),
                    figsize=(20, 8))

                hyp = ' '.join(tokens)
                logger.info('utt-id: %s' % batch['utt_ids'][b])
                logger.info('Ref: %s' % batch['text'][b].lower())
                logger.info('Hyp: %s' % hyp)
                logger.info('-' * 50)

            if is_new_epoch:
                break
Exemple #19
0
def main():

    # Load configuration
    args, dir_name = parse_args_eval(sys.argv[1:])

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'plot.log')):
        os.remove(os.path.join(args.recog_dir, 'plot.log'))
    set_logger(os.path.join(args.recog_dir, 'plot.log'), stdout=args.recog_stdout)

    for i, s in enumerate(args.recog_sets):
        # Load dataloader
        dataloader = build_dataloader(args=args,
                                      tsv_path=s,
                                      batch_size=1,
                                      is_test=True,
                                      first_n_utterances=args.recog_first_n_utt,
                                      longform_max_n_frames=args.recog_longform_max_n_frames)

        if i == 0:
            # Load ASR model
            model = Speech2Text(args, dir_name)
            epoch = int(float(args.recog_model[0].split('-')[-1]) * 10) / 10
            if args.recog_n_average > 1:
                # Model averaging for Transformer
                model = average_checkpoints(model, args.recog_model[0],
                                            n_average=args.recog_n_average)
            else:
                load_checkpoint(args.recog_model[0], model)

            # Ensemble (different models)
            ensemble_models = [model]
            if len(args.recog_model) > 1:
                for recog_model_e in args.recog_model[1:]:
                    conf_e = load_config(os.path.join(os.path.dirname(recog_model_e), 'conf.yml'))
                    args_e = copy.deepcopy(args)
                    for k, v in conf_e.items():
                        if 'recog' not in k:
                            setattr(args_e, k, v)
                    model_e = Speech2Text(args_e)
                    load_checkpoint(recog_model_e, model_e)
                    if args.recog_n_gpus >= 1:
                        model_e.cuda()
                    ensemble_models += [model_e]

            # Load LM for shallow fusion
            if not args.lm_fusion:
                # first path
                if args.recog_lm is not None and args.recog_lm_weight > 0:
                    conf_lm = load_config(os.path.join(os.path.dirname(args.recog_lm), 'conf.yml'))
                    args_lm = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm, k, v)
                    lm = build_lm(args_lm)
                    load_checkpoint(args.recog_lm, lm)
                    if args_lm.backward:
                        model.lm_bwd = lm
                    else:
                        model.lm_fwd = lm
                # NOTE: only support for first path

            if not args.recog_unit:
                args.recog_unit = args.unit

            logger.info('recog unit: %s' % args.recog_unit)
            logger.info('recog oracle: %s' % args.recog_oracle)
            logger.info('epoch: %d' % epoch)
            logger.info('batch size: %d' % args.recog_batch_size)
            logger.info('beam width: %d' % args.recog_beam_width)
            logger.info('min length ratio: %.3f' % args.recog_min_len_ratio)
            logger.info('max length ratio: %.3f' % args.recog_max_len_ratio)
            logger.info('length penalty: %.3f' % args.recog_length_penalty)
            logger.info('length norm: %s' % args.recog_length_norm)
            logger.info('coverage penalty: %.3f' % args.recog_coverage_penalty)
            logger.info('coverage threshold: %.3f' % args.recog_coverage_threshold)
            logger.info('CTC weight: %.3f' % args.recog_ctc_weight)
            logger.info('fist LM path: %s' % args.recog_lm)
            logger.info('LM weight: %.3f' % args.recog_lm_weight)
            logger.info('GNMT: %s' % args.recog_gnmt_decoding)
            logger.info('forward-backward attention: %s' % args.recog_fwd_bwd_attention)
            logger.info('resolving UNK: %s' % args.recog_resolving_unk)
            logger.info('ensemble: %d' % (len(ensemble_models)))
            logger.info('ASR decoder state carry over: %s' % (args.recog_asr_state_carry_over))
            logger.info('LM state carry over: %s' % (args.recog_lm_state_carry_over))
            logger.info('model average (Transformer): %d' % (args.recog_n_average))

            # GPU setting
            if args.recog_n_gpus >= 1:
                model.cudnn_setting(deterministic=True, benchmark=False)
                model.cuda()

        save_path = mkdir_join(args.recog_dir, 'att_weights')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)

        for batch in dataloader:
            nbest_hyps_id, aws = model.decode(
                batch['xs'], args, dataloader.idx2token[0],
                exclude_eos=False,
                refs_id=batch['ys'],
                ensemble_models=ensemble_models[1:] if len(ensemble_models) > 1 else [],
                speakers=batch['sessions'] if dataloader.corpus == 'swbd' else batch['speakers'])
            best_hyps_id = [h[0] for h in nbest_hyps_id]

            # Get CTC probs
            ctc_probs, topk_ids = None, None
            if args.ctc_weight > 0:
                ctc_probs, topk_ids, xlens = model.get_ctc_probs(
                    batch['xs'], task='ys', temperature=1, topk=min(100, model.vocab))
                # NOTE: ctc_probs: '[B, T, topk]'
            ctc_probs_sub1, topk_ids_sub1 = None, None
            if args.ctc_weight_sub1 > 0:
                ctc_probs_sub1, topk_ids_sub1, xlens_sub1 = model.get_ctc_probs(
                    batch['xs'], task='ys_sub1', temperature=1, topk=min(100, model.vocab_sub1))

            if model.bwd_weight > 0.5:
                # Reverse the order
                best_hyps_id = [hyp[::-1] for hyp in best_hyps_id]
                aws = [[aw[0][:, ::-1]] for aw in aws]

            for b in range(len(batch['xs'])):
                tokens = dataloader.idx2token[0](best_hyps_id[b], return_list=True)
                spk = batch['speakers'][b]

                plot_attention_weights(
                    aws[b][0][:, :len(tokens)], tokens,
                    spectrogram=batch['xs'][b][:, :dataloader.input_dim] if args.input_type == 'speech' else None,
                    factor=args.subsample_factor,
                    ref=batch['text'][b].lower(),
                    save_path=mkdir_join(save_path, spk, batch['utt_ids'][b] + '.png'),
                    figsize=(20, 8),
                    ctc_probs=ctc_probs[b, :xlens[b]] if ctc_probs is not None else None,
                    ctc_topk_ids=topk_ids[b] if topk_ids is not None else None,
                    ctc_probs_sub1=ctc_probs_sub1[b, :xlens_sub1[b]] if ctc_probs_sub1 is not None else None,
                    ctc_topk_ids_sub1=topk_ids_sub1[b] if topk_ids_sub1 is not None else None)

                if model.bwd_weight > 0.5:
                    hyp = ' '.join(tokens[::-1])
                else:
                    hyp = ' '.join(tokens)
                logger.info('utt-id: %s' % batch['utt_ids'][b])
                logger.info('Ref: %s' % batch['text'][b].lower())
                logger.info('Hyp: %s' % hyp)
                logger.info('-' * 50)
Exemple #20
0
def main():

    args = parse()

    # Load a conf file
    if args.resume:
        conf = load_config(
            os.path.join(os.path.dirname(args.resume), 'conf.yml'))
        for k, v in conf.items():
            if k != 'resume':
                setattr(args, k, v)

    # Set save path
    if args.resume:
        save_path = os.path.dirname(args.resume)
        dir_name = os.path.basename(save_path)
    else:
        dir_name = set_lm_name(args)
        save_path = mkdir_join(
            args.model_save_dir,
            '_'.join(os.path.basename(args.train_set).split('.')[:-1]),
            dir_name)
        save_path = set_save_path(save_path)  # avoid overwriting

    # Set logger
    logger = set_logger(os.path.join(save_path, 'train.log'),
                        key='training',
                        stdout=args.stdout)

    # Load dataset
    train_set = Dataset(corpus=args.corpus,
                        tsv_path=args.train_set,
                        dict_path=args.dict,
                        nlsyms=args.nlsyms,
                        unit=args.unit,
                        wp_model=args.wp_model,
                        batch_size=args.batch_size * args.n_gpus,
                        n_epochs=args.n_epochs,
                        min_n_tokens=args.min_n_tokens,
                        bptt=args.bptt,
                        backward=args.backward,
                        serialize=args.serialize)
    dev_set = Dataset(corpus=args.corpus,
                      tsv_path=args.dev_set,
                      dict_path=args.dict,
                      nlsyms=args.nlsyms,
                      unit=args.unit,
                      wp_model=args.wp_model,
                      batch_size=args.batch_size * args.n_gpus,
                      bptt=args.bptt,
                      backward=args.backward,
                      serialize=args.serialize)
    eval_sets = []
    for s in args.eval_sets:
        eval_sets += [
            Dataset(corpus=args.corpus,
                    tsv_path=s,
                    dict_path=args.dict,
                    nlsyms=args.nlsyms,
                    unit=args.unit,
                    wp_model=args.wp_model,
                    batch_size=1,
                    bptt=args.bptt,
                    backward=args.backward,
                    serialize=args.serialize)
        ]

    args.vocab = train_set.vocab

    # Model setting
    model = build_lm(args, save_path)

    if args.resume:
        # Set optimizer
        epoch = int(args.resume.split('-')[-1])
        optimizer = set_optimizer(
            model, 'sgd' if epoch > conf['convert_to_sgd_epoch'] else
            conf['optimizer'], conf['lr'], conf['weight_decay'])

        # Wrap optimizer by learning rate scheduler
        optimizer = LRScheduler(
            optimizer,
            conf['lr'],
            decay_type=conf['lr_decay_type'],
            decay_start_epoch=conf['lr_decay_start_epoch'],
            decay_rate=conf['lr_decay_rate'],
            decay_patient_n_epochs=conf['lr_decay_patient_n_epochs'],
            early_stop_patient_n_epochs=conf['early_stop_patient_n_epochs'],
            warmup_start_lr=conf['warmup_start_lr'],
            warmup_n_steps=conf['warmup_n_steps'],
            model_size=conf['d_model'],
            factor=conf['lr_factor'],
            noam=conf['lm_type'] == 'transformer')

        # Restore the last saved model
        model, optimizer = load_checkpoint(model,
                                           args.resume,
                                           optimizer,
                                           resume=True)

        # Resume between convert_to_sgd_epoch -1 and convert_to_sgd_epoch
        if epoch == conf['convert_to_sgd_epoch']:
            n_epochs = optimizer.n_epochs
            n_steps = optimizer.n_steps
            optimizer = set_optimizer(model, 'sgd', args.lr,
                                      conf['weight_decay'])
            optimizer = LRScheduler(optimizer,
                                    args.lr,
                                    decay_type='always',
                                    decay_start_epoch=0,
                                    decay_rate=0.5)
            optimizer._epoch = n_epochs
            optimizer._step = n_steps
            logger.info('========== Convert to SGD ==========')
    else:
        # Save the conf file as a yaml file
        save_config(vars(args), os.path.join(save_path, 'conf.yml'))

        # Save the nlsyms, dictionar, and wp_model
        if args.nlsyms:
            shutil.copy(args.nlsyms, os.path.join(save_path, 'nlsyms.txt'))
        shutil.copy(args.dict, os.path.join(save_path, 'dict.txt'))
        if args.unit == 'wp':
            shutil.copy(args.wp_model, os.path.join(save_path, 'wp.model'))

        for k, v in sorted(vars(args).items(), key=lambda x: x[0]):
            logger.info('%s: %s' % (k, str(v)))

        # Count total parameters
        for n in sorted(list(model.num_params_dict.keys())):
            n_params = model.num_params_dict[n]
            logger.info("%s %d" % (n, n_params))
        logger.info("Total %.2f M parameters" %
                    (model.total_parameters / 1000000))
        logger.info(model)

        # Set optimizer
        optimizer = set_optimizer(model, args.optimizer, args.lr,
                                  args.weight_decay)

        # Wrap optimizer by learning rate scheduler
        optimizer = LRScheduler(
            optimizer,
            args.lr,
            decay_type=args.lr_decay_type,
            decay_start_epoch=args.lr_decay_start_epoch,
            decay_rate=args.lr_decay_rate,
            decay_patient_n_epochs=args.lr_decay_patient_n_epochs,
            early_stop_patient_n_epochs=args.early_stop_patient_n_epochs,
            warmup_start_lr=args.warmup_start_lr,
            warmup_n_steps=args.warmup_n_steps,
            model_size=args.d_model,
            factor=args.lr_factor,
            noam=args.lm_type == 'transformer')

    # GPU setting
    if args.n_gpus >= 1:
        torch.backends.cudnn.benchmark = True
        model = CustomDataParallel(model,
                                   device_ids=list(range(0, args.n_gpus)))
        model.cuda()

    # Set process name
    logger.info('PID: %s' % os.getpid())
    logger.info('USERNAME: %s' % os.uname()[1])
    setproctitle(args.job_name if args.job_name else dir_name)

    # Set reporter
    reporter = Reporter(save_path)

    hidden = None
    start_time_train = time.time()
    start_time_epoch = time.time()
    start_time_step = time.time()
    pbar_epoch = tqdm(total=len(train_set))
    accum_n_tokens = 0
    while True:
        # Compute loss in the training set
        ys_train, is_new_epoch = train_set.next()
        accum_n_tokens += sum([len(y) for y in ys_train])
        optimizer.zero_grad()
        loss, hidden, reporter = model(ys_train, hidden, reporter)
        loss.backward()
        loss.detach()  # Trancate the graph
        if args.accum_grad_n_tokens == 0 or accum_n_tokens >= args.accum_grad_n_tokens:
            if args.clip_grad_norm > 0:
                total_norm = torch.nn.utils.clip_grad_norm_(
                    model.module.parameters(), args.clip_grad_norm)
                reporter.add_tensorboard_scalar('total_norm', total_norm)
            optimizer.step()
            optimizer.zero_grad()
            accum_n_tokens = 0
        loss_train = loss.item()
        del loss
        hidden = model.module.repackage_state(hidden)
        reporter.add_tensorboard_scalar('learning_rate', optimizer.lr)
        # NOTE: loss/acc/ppl are already added in the model
        reporter.step()

        if optimizer.n_steps % args.print_step == 0:
            # Compute loss in the dev set
            ys_dev = dev_set.next()[0]
            loss, _, reporter = model(ys_dev, None, reporter, is_eval=True)
            loss_dev = loss.item()
            del loss
            reporter.step(is_eval=True)

            duration_step = time.time() - start_time_step
            logger.info(
                "step:%d(ep:%.2f) loss:%.3f(%.3f)/ppl:%.3f(%.3f)/lr:%.5f/bs:%d (%.2f min)"
                % (optimizer.n_steps,
                   optimizer.n_epochs + train_set.epoch_detail, loss_train,
                   loss_dev, np.exp(loss_train), np.exp(loss_dev),
                   optimizer.lr, ys_train.shape[0], duration_step / 60))
            start_time_step = time.time()
        pbar_epoch.update(ys_train.shape[0] * (ys_train.shape[1] - 1))

        # Save fugures of loss and accuracy
        if optimizer.n_steps % (args.print_step * 10) == 0:
            reporter.snapshot()
            if args.lm_type == 'transformer':
                model.module.plot_attention()

        # Save checkpoint and evaluate model per epoch
        if is_new_epoch:
            duration_epoch = time.time() - start_time_epoch
            logger.info('========== EPOCH:%d (%.2f min) ==========' %
                        (optimizer.n_epochs + 1, duration_epoch / 60))

            if optimizer.n_epochs + 1 < args.eval_start_epoch:
                optimizer.epoch()  # lr decay
                reporter.epoch()  # plot

                # Save the model
                save_checkpoint(
                    model,
                    save_path,
                    optimizer,
                    optimizer.n_epochs,
                    remove_old_checkpoints=args.lm_type != 'transformer')
            else:
                start_time_eval = time.time()
                # dev
                ppl_dev, _ = eval_ppl([model.module],
                                      dev_set,
                                      batch_size=1,
                                      bptt=args.bptt)
                logger.info('PPL (%s, epoch:%d): %.2f' %
                            (dev_set.set, optimizer.n_epochs, ppl_dev))
                optimizer.epoch(ppl_dev)  # lr decay
                reporter.epoch(ppl_dev, name='perplexity')  # plot

                if optimizer.is_best:
                    # Save the model
                    save_checkpoint(
                        model,
                        save_path,
                        optimizer,
                        optimizer.n_epochs,
                        remove_old_checkpoints=args.lm_type != 'transformer')

                    # test
                    ppl_test_avg = 0.
                    for eval_set in eval_sets:
                        ppl_test, _ = eval_ppl([model.module],
                                               eval_set,
                                               batch_size=1,
                                               bptt=args.bptt)
                        logger.info(
                            'PPL (%s, epoch:%d): %.2f' %
                            (eval_set.set, optimizer.n_epochs, ppl_test))
                        ppl_test_avg += ppl_test
                    if len(eval_sets) > 0:
                        logger.info('PPL (avg., epoch:%d): %.2f' %
                                    (optimizer.n_epochs,
                                     ppl_test_avg / len(eval_sets)))

                duration_eval = time.time() - start_time_eval
                logger.info('Evaluation time: %.2f min' % (duration_eval / 60))

                # Early stopping
                if optimizer.is_early_stop:
                    break

                # Convert to fine-tuning stage
                if optimizer.n_epochs == args.convert_to_sgd_epoch:
                    n_epochs = optimizer.n_epochs
                    n_steps = optimizer.n_steps
                    optimizer = set_optimizer(model, 'sgd', args.lr,
                                              args.weight_decay)
                    optimizer = LRScheduler(optimizer,
                                            args.lr,
                                            decay_type='always',
                                            decay_start_epoch=0,
                                            decay_rate=0.5)
                    optimizer._epoch = n_epochs
                    optimizer._step = n_steps
                    logger.info('========== Convert to SGD ==========')

            pbar_epoch = tqdm(total=len(train_set))

            if optimizer.n_epochs == args.n_epochs:
                break

            start_time_step = time.time()
            start_time_epoch = time.time()

    duration_train = time.time() - start_time_train
    logger.info('Total time: %.2f hour' % (duration_train / 3600))

    reporter.tf_writer.close()
    pbar_epoch.close()

    return save_path
Exemple #21
0
def main(args):

    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    args_init = copy.deepcopy(args)
    args_teacher = copy.deepcopy(args)

    # Load a conf file
    if args.resume:
        conf = load_config(
            os.path.join(os.path.dirname(args.resume), 'conf.yml'))
        for k, v in conf.items():
            if k not in ['resume', 'local_rank']:
                setattr(args, k, v)

    args = compute_subsampling_factor(args)
    resume_epoch = int(args.resume.split('-')[-1]) if args.resume else 0

    # Load dataset
    train_set = build_dataloader(args=args,
                                 tsv_path=args.train_set,
                                 tsv_path_sub1=args.train_set_sub1,
                                 tsv_path_sub2=args.train_set_sub2,
                                 batch_size=args.batch_size,
                                 batch_size_type=args.batch_size_type,
                                 max_n_frames=args.max_n_frames,
                                 resume_epoch=resume_epoch,
                                 sort_by=args.sort_by,
                                 short2long=args.sort_short2long,
                                 sort_stop_epoch=args.sort_stop_epoch,
                                 num_workers=args.workers,
                                 pin_memory=args.pin_memory,
                                 distributed=args.distributed,
                                 word_alignment_dir=args.train_word_alignment,
                                 ctc_alignment_dir=args.train_ctc_alignment)
    dev_set = build_dataloader(
        args=args,
        tsv_path=args.dev_set,
        tsv_path_sub1=args.dev_set_sub1,
        tsv_path_sub2=args.dev_set_sub2,
        batch_size=1 if 'transducer' in args.dec_type else args.batch_size,
        batch_size_type='seq'
        if 'transducer' in args.dec_type else args.batch_size_type,
        max_n_frames=1600,
        word_alignment_dir=args.dev_word_alignment,
        ctc_alignment_dir=args.dev_ctc_alignment)
    eval_sets = [
        build_dataloader(args=args, tsv_path=s, batch_size=1, is_test=True)
        for s in args.eval_sets
    ]

    args.vocab = train_set.vocab
    args.vocab_sub1 = train_set.vocab_sub1
    args.vocab_sub2 = train_set.vocab_sub2
    args.input_dim = train_set.input_dim

    # Set save path
    if args.resume:
        args.save_path = os.path.dirname(args.resume)
        dir_name = os.path.basename(args.save_path)
    else:
        dir_name = set_asr_model_name(args)
        if args.mbr_training:
            assert args.asr_init
            args.save_path = mkdir_join(os.path.dirname(args.asr_init),
                                        dir_name)
        else:
            args.save_path = mkdir_join(
                args.model_save_dir,
                '_'.join(os.path.basename(args.train_set).split('.')[:-1]),
                dir_name)
        if args.local_rank > 0:
            time.sleep(1)
        args.save_path = set_save_path(args.save_path)  # avoid overwriting

    # Set logger
    set_logger(os.path.join(args.save_path, 'train.log'), args.stdout,
               args.local_rank)

    # Load a LM conf file for LM fusion & LM initialization
    if not args.resume and args.external_lm:
        lm_conf = load_config(
            os.path.join(os.path.dirname(args.external_lm), 'conf.yml'))
        args.lm_conf = argparse.Namespace()
        for k, v in lm_conf.items():
            setattr(args.lm_conf, k, v)
        assert args.unit == args.lm_conf.unit
        assert args.vocab == args.lm_conf.vocab

    # Model setting
    model = Speech2Text(args, args.save_path, train_set.idx2token[0])

    if not args.resume:
        # Save nlsyms, dictionary, and wp_model
        if args.nlsyms:
            shutil.copy(args.nlsyms, os.path.join(args.save_path,
                                                  'nlsyms.txt'))
        for sub in ['', '_sub1', '_sub2']:
            if args.get('dict' + sub):
                shutil.copy(
                    args.get('dict' + sub),
                    os.path.join(args.save_path, 'dict' + sub + '.txt'))
            if args.get('unit' + sub) == 'wp':
                shutil.copy(
                    args.get('wp_model' + sub),
                    os.path.join(args.save_path, 'wp' + sub + '.model'))

        for k, v in sorted(args.items(), key=lambda x: x[0]):
            logger.info('%s: %s' % (k, str(v)))

        # Count total parameters
        for n in sorted(list(model.num_params_dict.keys())):
            n_params = model.num_params_dict[n]
            logger.info("%s %d" % (n, n_params))
        logger.info("Total %.2f M parameters" %
                    (model.total_parameters / 1000000))
        logger.info('torch version: %s' % str(torch.__version__))
        logger.info(model)

        # Initialize with pre-trained model's parameters
        if args.asr_init:
            # Load ASR model (full model)
            conf_init = load_config(
                os.path.join(os.path.dirname(args.asr_init), 'conf.yml'))
            for k, v in conf_init.items():
                setattr(args_init, k, v)
            model_init = Speech2Text(args_init)
            load_checkpoint(args.asr_init, model_init)

            # Overwrite parameters
            param_dict = dict(model_init.named_parameters())
            for n, p in model.named_parameters():
                if n in param_dict.keys() and p.size() == param_dict[n].size():
                    if args.asr_init_enc_only and 'enc' not in n:
                        continue
                    p.data = param_dict[n].data
                    logger.info('Overwrite %s' % n)

    # Set optimizer
    optimizer = set_optimizer(
        model,
        'sgd' if resume_epoch > args.convert_to_sgd_epoch else args.optimizer,
        args.lr, args.weight_decay)

    # Wrap optimizer by learning rate scheduler
    is_transformer = 'former' in args.enc_type or 'former' in args.dec_type or 'former' in args.dec_type_sub1
    scheduler = LRScheduler(
        optimizer,
        args.lr,
        decay_type=args.lr_decay_type,
        decay_start_epoch=args.lr_decay_start_epoch,
        decay_rate=args.lr_decay_rate,
        decay_patient_n_epochs=args.lr_decay_patient_n_epochs,
        early_stop_patient_n_epochs=args.early_stop_patient_n_epochs,
        lower_better=args.metric not in ['accuracy', 'bleu'],
        warmup_start_lr=args.warmup_start_lr,
        warmup_n_steps=args.warmup_n_steps,
        peak_lr=0.05 / (args.get('transformer_enc_d_model', 0)**0.5)
        if 'conformer' in args.enc_type else 1e6,
        model_size=args.get('transformer_enc_d_model',
                            args.get('transformer_dec_d_model', 0)),
        factor=args.lr_factor,
        noam=args.optimizer == 'noam',
        save_checkpoints_topk=10 if is_transformer else 1)

    if args.resume:
        # Restore the last saved model
        load_checkpoint(args.resume, model, scheduler)

        # Resume between convert_to_sgd_epoch -1 and convert_to_sgd_epoch
        if resume_epoch == args.convert_to_sgd_epoch:
            scheduler.convert_to_sgd(model,
                                     args.lr,
                                     args.weight_decay,
                                     decay_type='always',
                                     decay_rate=0.5)

    # Load teacher ASR model
    teacher = None
    if args.teacher:
        assert os.path.isfile(args.teacher), 'There is no checkpoint.'
        conf_teacher = load_config(
            os.path.join(os.path.dirname(args.teacher), 'conf.yml'))
        for k, v in conf_teacher.items():
            setattr(args_teacher, k, v)
        # Setting for knowledge distillation
        args_teacher.ss_prob = 0
        args.lsm_prob = 0
        teacher = Speech2Text(args_teacher)
        load_checkpoint(args.teacher, teacher)

    # Load teacher LM
    teacher_lm = None
    if args.teacher_lm:
        assert os.path.isfile(args.teacher_lm), 'There is no checkpoint.'
        conf_lm = load_config(
            os.path.join(os.path.dirname(args.teacher_lm), 'conf.yml'))
        args_lm = argparse.Namespace()
        for k, v in conf_lm.items():
            setattr(args_lm, k, v)
        teacher_lm = build_lm(args_lm)
        load_checkpoint(args.teacher_lm, teacher_lm)

    # GPU setting
    args.use_apex = args.train_dtype in ["O0", "O1", "O2", "O3"]
    amp, scaler = None, None
    if args.n_gpus >= 1:
        model.cudnn_setting(
            deterministic=((not is_transformer) and (not args.cudnn_benchmark))
            or args.cudnn_deterministic,
            benchmark=(not is_transformer) and args.cudnn_benchmark)

        # Mixed precision training setting
        if args.use_apex:
            if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
                scaler = torch.cuda.amp.GradScaler()
            else:
                from apex import amp
                model, scheduler.optimizer = amp.initialize(
                    model, scheduler.optimizer, opt_level=args.train_dtype)
                from neural_sp.models.seq2seq.decoders.ctc import CTC
                amp.register_float_function(CTC, "loss_fn")
                # NOTE: see https://github.com/espnet/espnet/pull/1779
                amp.init()
                if args.resume:
                    load_checkpoint(args.resume, amp=amp)

        n = torch.cuda.device_count() // args.local_world_size
        device_ids = list(range(args.local_rank * n,
                                (args.local_rank + 1) * n))

        torch.cuda.set_device(device_ids[0])
        model.cuda(device_ids[0])
        scheduler.cuda(device_ids[0])
        if args.distributed:
            model = DDP(model, device_ids=device_ids)
        else:
            model = CustomDataParallel(model,
                                       device_ids=list(range(args.n_gpus)))

        if teacher is not None:
            teacher.cuda()
        if teacher_lm is not None:
            teacher_lm.cuda()
    else:
        model = CPUWrapperASR(model)

    # Set process name
    logger.info('PID: %s' % os.getpid())
    logger.info('USERNAME: %s' % os.uname()[1])
    logger.info('#GPU: %d' % torch.cuda.device_count())
    setproctitle(args.job_name if args.job_name else dir_name)

    # Set reporter
    reporter = Reporter(args, model, args.local_rank)
    args.wandb_id = reporter.wandb_id
    if args.resume:
        n_steps = scheduler.n_steps * max(
            1, args.accum_grad_n_steps // args.local_world_size)
        reporter.resume(n_steps, resume_epoch)

    # Save conf file as a yaml file
    if args.local_rank == 0:
        save_config(args, os.path.join(args.save_path, 'conf.yml'))
        if args.external_lm:
            save_config(args.lm_conf,
                        os.path.join(args.save_path, 'conf_lm.yml'))
        # NOTE: save after reporter for wandb ID

    # Define tasks
    if args.mtl_per_batch:
        # NOTE: from easier to harder tasks
        tasks = []
        if args.total_weight - args.bwd_weight - args.ctc_weight - args.sub1_weight - args.sub2_weight > 0:
            tasks += ['ys']
        if args.bwd_weight > 0:
            tasks = ['ys.bwd'] + tasks
        if args.ctc_weight > 0:
            tasks = ['ys.ctc'] + tasks
        if args.mbr_ce_weight > 0:
            tasks = ['ys.mbr'] + tasks
        for sub in ['sub1', 'sub2']:
            if args.get('train_set_' + sub) is not None:
                if args.get(sub + '_weight', 0) - args.get(
                        'ctc_weight_' + sub, 0) > 0:
                    tasks = ['ys_' + sub] + tasks
                if args.get('ctc_weight_' + sub, 0) > 0:
                    tasks = ['ys_' + sub + '.ctc'] + tasks
    else:
        tasks = ['all']

    if args.get('ss_start_epoch', 0) <= resume_epoch:
        model.module.trigger_scheduled_sampling()
    if args.get('mocha_quantity_loss_start_epoch', 0) <= resume_epoch:
        model.module.trigger_quantity_loss()

    start_time_train = time.time()
    for ep in range(resume_epoch, args.n_epochs):
        train_one_epoch(model, train_set, dev_set, eval_sets, scheduler,
                        reporter, logger, args, amp, scaler, tasks, teacher,
                        teacher_lm)

        # Save checkpoint and validate model per epoch
        if reporter.n_epochs + 1 < args.eval_start_epoch:
            scheduler.epoch()  # lr decay
            reporter.epoch()  # plot

            # Save model
            if args.local_rank == 0:
                scheduler.save_checkpoint(model,
                                          args.save_path,
                                          amp=amp,
                                          remove_old=(not is_transformer)
                                          and args.remove_old_checkpoints)
        else:
            start_time_eval = time.time()
            # dev
            metric_dev = validate([model.module], dev_set, args,
                                  reporter.n_epochs + 1, logger)
            scheduler.epoch(metric_dev)  # lr decay
            reporter.epoch(metric_dev, name=args.metric)  # plot
            reporter.add_scalar('dev/' + args.metric, metric_dev)

            if scheduler.is_topk or is_transformer:
                # Save model
                if args.local_rank == 0:
                    scheduler.save_checkpoint(model,
                                              args.save_path,
                                              amp=amp,
                                              remove_old=(not is_transformer)
                                              and args.remove_old_checkpoints)

                # test
                if scheduler.is_topk:
                    for eval_set in eval_sets:
                        validate([model.module], eval_set, args,
                                 reporter.n_epochs, logger)

            logger.info('Evaluation time: %.2f min' %
                        ((time.time() - start_time_eval) / 60))

            # Early stopping
            if scheduler.is_early_stop:
                break

            # Convert to fine-tuning stage
            if reporter.n_epochs == args.convert_to_sgd_epoch:
                scheduler.convert_to_sgd(model,
                                         args.lr,
                                         args.weight_decay,
                                         decay_type='always',
                                         decay_rate=0.5)

        if reporter.n_epochs >= args.n_epochs:
            break
        if args.get('ss_start_epoch', 0) == (ep + 1):
            model.module.trigger_scheduled_sampling()
        if args.get('mocha_quantity_loss_start_epoch', 0) == (ep + 1):
            model.module.trigger_quantity_loss()

    logger.info('Total time: %.2f hour' %
                ((time.time() - start_time_train) / 3600))
    reporter.close()

    return args.save_path
Exemple #22
0
def main():

    args = parse_args_train(sys.argv[1:])

    # Load a conf file
    if args.resume:
        conf = load_config(
            os.path.join(os.path.dirname(args.resume), 'conf.yml'))
        for k, v in conf.items():
            if k != 'resume':
                setattr(args, k, v)

    # Load dataset
    batch_size = args.batch_size * args.n_gpus if args.n_gpus >= 1 else args.batch_size
    train_set = Dataset(corpus=args.corpus,
                        tsv_path=args.train_set,
                        dict_path=args.dict,
                        nlsyms=args.nlsyms,
                        unit=args.unit,
                        wp_model=args.wp_model,
                        batch_size=batch_size,
                        n_epochs=args.n_epochs,
                        min_n_tokens=args.min_n_tokens,
                        bptt=args.bptt,
                        shuffle=args.shuffle,
                        backward=args.backward,
                        serialize=args.serialize)
    dev_set = Dataset(corpus=args.corpus,
                      tsv_path=args.dev_set,
                      dict_path=args.dict,
                      nlsyms=args.nlsyms,
                      unit=args.unit,
                      wp_model=args.wp_model,
                      batch_size=batch_size,
                      bptt=args.bptt,
                      backward=args.backward,
                      serialize=args.serialize)
    eval_sets = [
        Dataset(corpus=args.corpus,
                tsv_path=s,
                dict_path=args.dict,
                nlsyms=args.nlsyms,
                unit=args.unit,
                wp_model=args.wp_model,
                batch_size=1,
                bptt=args.bptt,
                backward=args.backward,
                serialize=args.serialize) for s in args.eval_sets
    ]

    args.vocab = train_set.vocab

    # Set save path
    if args.resume:
        save_path = os.path.dirname(args.resume)
        dir_name = os.path.basename(save_path)
    else:
        dir_name = set_lm_name(args)
        save_path = mkdir_join(
            args.model_save_dir,
            '_'.join(os.path.basename(args.train_set).split('.')[:-1]),
            dir_name)
        save_path = set_save_path(save_path)  # avoid overwriting

    # Set logger
    set_logger(os.path.join(save_path, 'train.log'), stdout=args.stdout)

    # Model setting
    model = build_lm(args, save_path)

    if not args.resume:
        # Save the conf file as a yaml file
        save_config(vars(args), os.path.join(save_path, 'conf.yml'))

        # Save the nlsyms, dictionary, and wp_model
        if args.nlsyms:
            shutil.copy(args.nlsyms, os.path.join(save_path, 'nlsyms.txt'))
        shutil.copy(args.dict, os.path.join(save_path, 'dict.txt'))
        if args.unit == 'wp':
            shutil.copy(args.wp_model, os.path.join(save_path, 'wp.model'))

        for k, v in sorted(vars(args).items(), key=lambda x: x[0]):
            logger.info('%s: %s' % (k, str(v)))

        # Count total parameters
        for n in sorted(list(model.num_params_dict.keys())):
            n_params = model.num_params_dict[n]
            logger.info("%s %d" % (n, n_params))
        logger.info("Total %.2f M parameters" %
                    (model.total_parameters / 1000000))
        logger.info(model)

    # Set optimizer
    resume_epoch = 0
    if args.resume:
        epoch = int(args.resume.split('-')[-1])
        optimizer = set_optimizer(
            model,
            'sgd' if epoch > args.convert_to_sgd_epoch else args.optimizer,
            args.lr, args.weight_decay)
    else:
        optimizer = set_optimizer(model, args.optimizer, args.lr,
                                  args.weight_decay)

    # Wrap optimizer by learning rate scheduler
    is_transformer = args.lm_type in ['transformer', 'transformer_xl']
    optimizer = LRScheduler(
        optimizer,
        args.lr,
        decay_type=args.lr_decay_type,
        decay_start_epoch=args.lr_decay_start_epoch,
        decay_rate=args.lr_decay_rate,
        decay_patient_n_epochs=args.lr_decay_patient_n_epochs,
        early_stop_patient_n_epochs=args.early_stop_patient_n_epochs,
        warmup_start_lr=args.warmup_start_lr,
        warmup_n_steps=args.warmup_n_steps,
        model_size=getattr(args, 'transformer_d_model', 0),
        factor=args.lr_factor,
        noam=is_transformer,
        save_checkpoints_topk=1)

    if args.resume:
        # Restore the last saved model
        load_checkpoint(args.resume, model, optimizer)

        # Resume between convert_to_sgd_epoch -1 and convert_to_sgd_epoch
        if resume_epoch == args.convert_to_sgd_epoch:
            optimizer.convert_to_sgd(model,
                                     args.lr,
                                     args.weight_decay,
                                     decay_type='always',
                                     decay_rate=0.5)

    # GPU setting
    use_apex = args.train_dtype in ["O0", "O1", "O2", "O3"]
    amp = None
    if args.n_gpus >= 1:
        model.cudnn_setting(
            deterministic=not (is_transformer or args.cudnn_benchmark),
            benchmark=args.cudnn_benchmark)
        model.cuda()

        # Mix precision training setting
        if use_apex:
            from apex import amp
            model, optimizer.optimizer = amp.initialize(
                model, optimizer.optimizer, opt_level=args.train_dtype)
            amp.init()
            if args.resume:
                load_checkpoint(args.resume, amp=amp)
        model = CustomDataParallel(model,
                                   device_ids=list(range(0, args.n_gpus)))
    else:
        model = CPUWrapperLM(model)

    # Set process name
    logger.info('PID: %s' % os.getpid())
    logger.info('USERNAME: %s' % os.uname()[1])
    logger.info('#GPU: %d' % torch.cuda.device_count())
    setproctitle(args.job_name if args.job_name else dir_name)

    # Set reporter
    reporter = Reporter(save_path)

    hidden = None
    start_time_train = time.time()
    start_time_epoch = time.time()
    start_time_step = time.time()
    pbar_epoch = tqdm(total=len(train_set))
    accum_n_steps = 0
    n_steps = optimizer.n_steps * args.accum_grad_n_steps
    while True:
        # Compute loss in the training set
        ys_train, is_new_epoch = train_set.next()
        accum_n_steps += 1

        loss, hidden, observation = model(ys_train, hidden)
        reporter.add(observation)
        if use_apex:
            with amp.scale_loss(loss, optimizer.optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()
        loss.detach()  # Trancate the graph
        if args.accum_grad_n_steps == 1 or accum_n_steps >= args.accum_grad_n_steps:
            if args.clip_grad_norm > 0:
                total_norm = torch.nn.utils.clip_grad_norm_(
                    model.module.parameters(), args.clip_grad_norm)
                reporter.add_tensorboard_scalar('total_norm', total_norm)
            optimizer.step()
            optimizer.zero_grad()
            accum_n_steps = 0
        loss_train = loss.item()
        del loss
        hidden = model.module.repackage_state(hidden)
        reporter.add_tensorboard_scalar('learning_rate', optimizer.lr)
        # NOTE: loss/acc/ppl are already added in the model
        reporter.step()
        pbar_epoch.update(ys_train.shape[0] * (ys_train.shape[1] - 1))
        n_steps += 1
        # NOTE: n_steps is different from the step counter in Noam Optimizer

        if n_steps % args.print_step == 0:
            # Compute loss in the dev set
            ys_dev = dev_set.next(bptt=args.bptt)[0]
            loss, _, observation = model(ys_dev, None, is_eval=True)
            reporter.add(observation, is_eval=True)
            loss_dev = loss.item()
            del loss
            reporter.step(is_eval=True)

            duration_step = time.time() - start_time_step
            logger.info(
                "step:%d(ep:%.2f) loss:%.3f(%.3f)/lr:%.5f/bs:%d (%.2f min)" %
                (n_steps, optimizer.n_epochs + train_set.epoch_detail,
                 loss_train, loss_dev, optimizer.lr, ys_train.shape[0],
                 duration_step / 60))
            start_time_step = time.time()

        # Save fugures of loss and accuracy
        if n_steps % (args.print_step * 10) == 0:
            reporter.snapshot()
            model.module.plot_attention()

        # Save checkpoint and evaluate model per epoch
        if is_new_epoch:
            duration_epoch = time.time() - start_time_epoch
            logger.info('========== EPOCH:%d (%.2f min) ==========' %
                        (optimizer.n_epochs + 1, duration_epoch / 60))

            if optimizer.n_epochs + 1 < args.eval_start_epoch:
                optimizer.epoch()  # lr decay
                reporter.epoch()  # plot

                # Save the model
                optimizer.save_checkpoint(model,
                                          save_path,
                                          remove_old=not is_transformer,
                                          amp=amp)
            else:
                start_time_eval = time.time()
                # dev
                model.module.reset_length(args.bptt)
                ppl_dev, _ = eval_ppl([model.module],
                                      dev_set,
                                      batch_size=1,
                                      bptt=args.bptt)
                model.module.reset_length(args.bptt)
                optimizer.epoch(ppl_dev)  # lr decay
                reporter.epoch(ppl_dev, name='perplexity')  # plot
                logger.info('PPL (%s, ep:%d): %.2f' %
                            (dev_set.set, optimizer.n_epochs, ppl_dev))

                if optimizer.is_topk or is_transformer:
                    # Save the model
                    optimizer.save_checkpoint(model,
                                              save_path,
                                              remove_old=not is_transformer,
                                              amp=amp)

                    # test
                    ppl_test_avg = 0.
                    for eval_set in eval_sets:
                        model.module.reset_length(args.bptt)
                        ppl_test, _ = eval_ppl([model.module],
                                               eval_set,
                                               batch_size=1,
                                               bptt=args.bptt)
                        model.module.reset_length(args.bptt)
                        logger.info(
                            'PPL (%s, ep:%d): %.2f' %
                            (eval_set.set, optimizer.n_epochs, ppl_test))
                        ppl_test_avg += ppl_test
                    if len(eval_sets) > 0:
                        logger.info('PPL (avg., ep:%d): %.2f' %
                                    (optimizer.n_epochs,
                                     ppl_test_avg / len(eval_sets)))

                duration_eval = time.time() - start_time_eval
                logger.info('Evaluation time: %.2f min' % (duration_eval / 60))

                # Early stopping
                if optimizer.is_early_stop:
                    break

                # Convert to fine-tuning stage
                if optimizer.n_epochs == args.convert_to_sgd_epoch:
                    optimizer.convert_to_sgd(model,
                                             args.lr,
                                             args.weight_decay,
                                             decay_type='always',
                                             decay_rate=0.5)

            pbar_epoch = tqdm(total=len(train_set))

            if optimizer.n_epochs >= args.n_epochs:
                break

            start_time_step = time.time()
            start_time_epoch = time.time()

    duration_train = time.time() - start_time_train
    logger.info('Total time: %.2f hour' % (duration_train / 3600))

    reporter.tf_writer.close()
    pbar_epoch.close()

    return save_path
Exemple #23
0
def main():

    args = parse()

    # Load a conf file
    dir_name = os.path.dirname(args.recog_model[0])
    conf = load_config(os.path.join(dir_name, 'conf.yml'))

    # Overwrite conf
    for k, v in conf.items():
        if 'recog' not in k:
            setattr(args, k, v)

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'plot.log')):
        os.remove(os.path.join(args.recog_dir, 'plot.log'))
    set_logger(os.path.join(args.recog_dir, 'plot.log'),
               stdout=args.recog_stdout)

    for i, s in enumerate(args.recog_sets):
        # Load dataset
        dataset = Dataset(corpus=args.corpus,
                          tsv_path=s,
                          dict_path=os.path.join(dir_name, 'dict.txt'),
                          wp_model=os.path.join(dir_name, 'wp.model'),
                          unit=args.unit,
                          batch_size=args.recog_batch_size,
                          bptt=args.bptt,
                          backward=args.backward,
                          serialize=args.serialize,
                          is_test=True)

        if i == 0:
            # Load the LM
            model = build_lm(args, dir_name)
            topk_list = load_checkpoint(model, args.recog_model[0])
            epoch = int(args.recog_model[0].split('-')[-1])

            # Model averaging for Transformer
            if conf['lm_type'] == 'transformer':
                model = average_checkpoints(model,
                                            args.recog_model[0],
                                            n_average=args.recog_n_average,
                                            topk_list=topk_list)

            logger.info('epoch: %d' % (epoch - 1))
            logger.info('batch size: %d' % args.recog_batch_size)
            # logger.info('recog unit: %s' % args.recog_unit)
            # logger.info('ensemble: %d' % (len(ensemble_models)))
            logger.info('BPTT: %d' % (args.bptt))
            logger.info('cache size: %d' % (args.recog_n_caches))
            logger.info('cache theta: %.3f' % (args.recog_cache_theta))
            logger.info('cache lambda: %.3f' % (args.recog_cache_lambda))
            model.cache_theta = args.recog_cache_theta
            model.cache_lambda = args.recog_cache_lambda

            # GPU setting
            model.cuda()

        assert args.recog_n_caches > 0
        save_path = mkdir_join(args.recog_dir, 'cache')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)

        hidden = None
        fig_count = 0
        toknen_count = 0
        n_tokens = args.recog_n_caches
        while True:
            ys, is_new_epoch = dataset.next()

            for t in range(ys.shape[1] - 1):
                loss, hidden = model(ys[:, t:t + 2],
                                     hidden,
                                     is_eval=True,
                                     n_caches=args.recog_n_caches)[:2]

                if len(model.cache_attn) > 0:
                    if toknen_count == n_tokens:
                        tokens_keys = dataset.idx2token[0](
                            model.cache_ids[:args.recog_n_caches],
                            return_list=True)
                        tokens_query = dataset.idx2token[0](
                            model.cache_ids[-n_tokens:], return_list=True)

                        # Slide attention matrix
                        n_keys = len(tokens_keys)
                        n_queries = len(tokens_query)
                        cache_probs = np.zeros(
                            (n_keys, n_queries))  # `[n_keys, n_queries]`
                        mask = np.zeros((n_keys, n_queries))
                        for i, aw in enumerate(model.cache_attn[-n_tokens:]):
                            cache_probs[:(n_keys - n_queries + i + 1),
                                        i] = aw[0,
                                                -(n_keys - n_queries + i + 1):]
                            mask[(n_keys - n_queries + i + 1):, i] = 1

                        plot_cache_weights(cache_probs,
                                           keys=tokens_keys,
                                           queries=tokens_query,
                                           save_path=mkdir_join(
                                               save_path,
                                               str(fig_count) + '.png'),
                                           figsize=(40, 16),
                                           mask=mask)
                        toknen_count = 0
                        fig_count += 1
                    else:
                        toknen_count += 1

            if is_new_epoch:
                break
Exemple #24
0
def main():

    args = parse()
    args_init = copy.deepcopy(args)
    args_teacher = copy.deepcopy(args)

    # Load a conf file
    if args.resume:
        conf = load_config(
            os.path.join(os.path.dirname(args.resume), 'conf.yml'))
        for k, v in conf.items():
            if k != 'resume':
                setattr(args, k, v)
    recog_params = vars(args)

    # Compute subsampling factor
    subsample_factor = 1
    subsample_factor_sub1 = 1
    subsample_factor_sub2 = 1
    subsample = [int(s) for s in args.subsample.split('_')]
    if args.conv_poolings and 'conv' in args.enc_type:
        for p in args.conv_poolings.split('_'):
            subsample_factor *= int(p.split(',')[0].replace('(', ''))
    else:
        subsample_factor = np.prod(subsample)
    if args.train_set_sub1:
        if args.conv_poolings and 'conv' in args.enc_type:
            subsample_factor_sub1 = subsample_factor * np.prod(
                subsample[:args.enc_n_layers_sub1 - 1])
        else:
            subsample_factor_sub1 = subsample_factor
    if args.train_set_sub2:
        if args.conv_poolings and 'conv' in args.enc_type:
            subsample_factor_sub2 = subsample_factor * np.prod(
                subsample[:args.enc_n_layers_sub2 - 1])
        else:
            subsample_factor_sub2 = subsample_factor

    # Set save path
    if args.resume:
        save_path = os.path.dirname(args.resume)
        dir_name = os.path.basename(save_path)
    else:
        dir_name = set_asr_model_name(args, subsample_factor)
        save_path = mkdir_join(
            args.model_save_dir,
            '_'.join(os.path.basename(args.train_set).split('.')[:-1]),
            dir_name)
        save_path = set_save_path(save_path)  # avoid overwriting

    # Set logger
    logger = set_logger(os.path.join(save_path, 'train.log'),
                        key='training',
                        stdout=args.stdout)

    # for multi-GPUs
    if args.n_gpus > 1:
        logger.info("Batch size is automatically reduced from %d to %d" %
                    (args.batch_size, args.batch_size // 2))
        args.batch_size //= 2

    skip_thought = 'skip' in args.enc_type

    # Load dataset
    train_set = Dataset(corpus=args.corpus,
                        tsv_path=args.train_set,
                        tsv_path_sub1=args.train_set_sub1,
                        tsv_path_sub2=args.train_set_sub2,
                        dict_path=args.dict,
                        dict_path_sub1=args.dict_sub1,
                        dict_path_sub2=args.dict_sub2,
                        nlsyms=args.nlsyms,
                        unit=args.unit,
                        unit_sub1=args.unit_sub1,
                        unit_sub2=args.unit_sub2,
                        wp_model=args.wp_model,
                        wp_model_sub1=args.wp_model_sub1,
                        wp_model_sub2=args.wp_model_sub2,
                        batch_size=args.batch_size * args.n_gpus,
                        n_epochs=args.n_epochs,
                        min_n_frames=args.min_n_frames,
                        max_n_frames=args.max_n_frames,
                        sort_by='input',
                        short2long=True,
                        sort_stop_epoch=args.sort_stop_epoch,
                        dynamic_batching=args.dynamic_batching,
                        ctc=args.ctc_weight > 0,
                        ctc_sub1=args.ctc_weight_sub1 > 0,
                        ctc_sub2=args.ctc_weight_sub2 > 0,
                        subsample_factor=subsample_factor,
                        subsample_factor_sub1=subsample_factor_sub1,
                        subsample_factor_sub2=subsample_factor_sub2,
                        discourse_aware=args.discourse_aware,
                        skip_thought=skip_thought)
    dev_set = Dataset(corpus=args.corpus,
                      tsv_path=args.dev_set,
                      tsv_path_sub1=args.dev_set_sub1,
                      tsv_path_sub2=args.dev_set_sub2,
                      dict_path=args.dict,
                      dict_path_sub1=args.dict_sub1,
                      dict_path_sub2=args.dict_sub2,
                      nlsyms=args.nlsyms,
                      unit=args.unit,
                      unit_sub1=args.unit_sub1,
                      unit_sub2=args.unit_sub2,
                      wp_model=args.wp_model,
                      wp_model_sub1=args.wp_model_sub1,
                      wp_model_sub2=args.wp_model_sub2,
                      batch_size=args.batch_size * args.n_gpus,
                      min_n_frames=args.min_n_frames,
                      max_n_frames=args.max_n_frames,
                      ctc=args.ctc_weight > 0,
                      ctc_sub1=args.ctc_weight_sub1 > 0,
                      ctc_sub2=args.ctc_weight_sub2 > 0,
                      subsample_factor=subsample_factor,
                      subsample_factor_sub1=subsample_factor_sub1,
                      subsample_factor_sub2=subsample_factor_sub2,
                      discourse_aware=args.discourse_aware,
                      skip_thought=skip_thought)
    eval_sets = []
    for s in args.eval_sets:
        eval_sets += [
            Dataset(corpus=args.corpus,
                    tsv_path=s,
                    dict_path=args.dict,
                    nlsyms=args.nlsyms,
                    unit=args.unit,
                    wp_model=args.wp_model,
                    batch_size=1,
                    discourse_aware=args.discourse_aware,
                    skip_thought=skip_thought,
                    is_test=True)
        ]

    args.vocab = train_set.vocab
    args.vocab_sub1 = train_set.vocab_sub1
    args.vocab_sub2 = train_set.vocab_sub2
    args.input_dim = train_set.input_dim

    # Load a LM conf file for LM fusion & LM initialization
    if not args.resume and (args.lm_fusion or args.lm_init):
        if args.lm_fusion:
            lm_conf = load_config(
                os.path.join(os.path.dirname(args.lm_fusion), 'conf.yml'))
        elif args.lm_init:
            lm_conf = load_config(
                os.path.join(os.path.dirname(args.lm_init), 'conf.yml'))
        args.lm_conf = argparse.Namespace()
        for k, v in lm_conf.items():
            setattr(args.lm_conf, k, v)
        assert args.unit == args.lm_conf.unit
        assert args.vocab == args.lm_conf.vocab

    # Model setting
    model = Speech2Text(args, save_path) if not skip_thought else SkipThought(
        args, save_path)

    if args.resume:
        # Set optimizer
        epoch = int(args.resume.split('-')[-1])
        optimizer = set_optimizer(
            model, 'sgd' if epoch > conf['convert_to_sgd_epoch'] else
            conf['optimizer'], conf['lr'], conf['weight_decay'])

        # Wrap optimizer by learning rate scheduler
        noam = 'transformer' in conf['enc_type'] or conf[
            'dec_type'] == 'transformer'
        optimizer = LRScheduler(
            optimizer,
            conf['lr'],
            decay_type=conf['lr_decay_type'],
            decay_start_epoch=conf['lr_decay_start_epoch'],
            decay_rate=conf['lr_decay_rate'],
            decay_patient_n_epochs=conf['lr_decay_patient_n_epochs'],
            early_stop_patient_n_epochs=conf['early_stop_patient_n_epochs'],
            warmup_start_lr=conf['warmup_start_lr'],
            warmup_n_steps=conf['warmup_n_steps'],
            model_size=conf['d_model'],
            factor=conf['lr_factor'],
            noam=noam)

        # Restore the last saved model
        model, optimizer = load_checkpoint(model,
                                           args.resume,
                                           optimizer,
                                           resume=True)

        # Resume between convert_to_sgd_epoch -1 and convert_to_sgd_epoch
        if epoch == conf['convert_to_sgd_epoch']:
            optimizer.convert_to_sgd(model,
                                     'sgd',
                                     args.lr,
                                     conf['weight_decay'],
                                     decay_type='always',
                                     decay_rate=0.5)
    else:
        # Save the conf file as a yaml file
        save_config(vars(args), os.path.join(save_path, 'conf.yml'))
        if args.lm_fusion:
            save_config(args.lm_conf, os.path.join(save_path, 'conf_lm.yml'))

        # Save the nlsyms, dictionar, and wp_model
        if args.nlsyms:
            shutil.copy(args.nlsyms, os.path.join(save_path, 'nlsyms.txt'))
        for sub in ['', '_sub1', '_sub2']:
            if getattr(args, 'dict' + sub):
                shutil.copy(getattr(args, 'dict' + sub),
                            os.path.join(save_path, 'dict' + sub + '.txt'))
            if getattr(args, 'unit' + sub) == 'wp':
                shutil.copy(getattr(args, 'wp_model' + sub),
                            os.path.join(save_path, 'wp' + sub + '.model'))

        for k, v in sorted(vars(args).items(), key=lambda x: x[0]):
            logger.info('%s: %s' % (k, str(v)))

        # Count total parameters
        for n in sorted(list(model.num_params_dict.keys())):
            n_params = model.num_params_dict[n]
            logger.info("%s %d" % (n, n_params))
        logger.info("Total %.2f M parameters" %
                    (model.total_parameters / 1000000))
        logger.info(model)

        # Initialize with pre-trained model's parameters
        if args.asr_init and os.path.isfile(args.asr_init):
            # Load the ASR model
            conf_init = load_config(
                os.path.join(os.path.dirname(args.asr_init), 'conf.yml'))
            for k, v in conf_init.items():
                setattr(args_init, k, v)
            model_init = Speech2Text(args_init)
            model_init = load_checkpoint(model_init, args.asr_init)[0]

            # Overwrite parameters
            only_enc = (args.enc_n_layers != args_init.enc_n_layers) or (
                args.unit != args_init.unit) or args_init.ctc_weight == 1
            param_dict = dict(model_init.named_parameters())
            for n, p in model.named_parameters():
                if n in param_dict.keys() and p.size() == param_dict[n].size():
                    if only_enc and 'enc' not in n:
                        continue
                    if args.lm_fusion_type == 'cache' and 'output' in n:
                        continue
                    p.data = param_dict[n].data
                    logger.info('Overwrite %s' % n)

        # Set optimizer
        optimizer = set_optimizer(model, args.optimizer, args.lr,
                                  args.weight_decay)

        # Wrap optimizer by learning rate scheduler
        noam = 'transformer' in args.enc_type or args.dec_type == 'transformer'
        optimizer = LRScheduler(
            optimizer,
            args.lr,
            decay_type=args.lr_decay_type,
            decay_start_epoch=args.lr_decay_start_epoch,
            decay_rate=args.lr_decay_rate,
            decay_patient_n_epochs=args.lr_decay_patient_n_epochs,
            early_stop_patient_n_epochs=args.early_stop_patient_n_epochs,
            warmup_start_lr=args.warmup_start_lr,
            warmup_n_steps=args.warmup_n_steps,
            model_size=args.d_model,
            factor=args.lr_factor,
            noam=noam)

    # Load the teacher ASR model
    teacher = None
    if args.teacher and os.path.isfile(args.teacher):
        conf_teacher = load_config(
            os.path.join(os.path.dirname(args.teacher), 'conf.yml'))
        for k, v in conf_teacher.items():
            setattr(args_teacher, k, v)
        # Setting for knowledge distillation
        args_teacher.ss_prob = 0
        args.lsm_prob = 0
        teacher = Speech2Text(args_teacher)
        teacher = load_checkpoint(teacher, args.teacher)[0]

    # Load the teacher LM
    teacher_lm = None
    if args.teacher_lm and os.path.isfile(args.teacher_lm):
        conf_lm = load_config(
            os.path.join(os.path.dirname(args.teacher_lm), 'conf.yml'))
        args_lm = argparse.Namespace()
        for k, v in conf_lm.items():
            setattr(args_lm, k, v)
        teacher_lm = build_lm(args_lm)
        teacher_lm = load_checkpoint(teacher_lm, args.teacher_lm)[0]

    # GPU setting
    if args.n_gpus >= 1:
        torch.backends.cudnn.benchmark = True
        model = CustomDataParallel(model,
                                   device_ids=list(range(0, args.n_gpus)))
        model.cuda()
        if teacher is not None:
            teacher.cuda()
        if teacher_lm is not None:
            teacher_lm.cuda()

    # Set process name
    logger.info('PID: %s' % os.getpid())
    logger.info('USERNAME: %s' % os.uname()[1])
    setproctitle(args.job_name if args.job_name else dir_name)

    # Set reporter
    reporter = Reporter(save_path)

    if args.mtl_per_batch:
        # NOTE: from easier to harder tasks
        tasks = []
        if 1 - args.bwd_weight - args.ctc_weight - args.sub1_weight - args.sub2_weight > 0:
            tasks += ['ys']
        if args.bwd_weight > 0:
            tasks = ['ys.bwd'] + tasks
        if args.ctc_weight > 0:
            tasks = ['ys.ctc'] + tasks
        for sub in ['sub1', 'sub2']:
            if getattr(args, 'train_set_' + sub):
                if getattr(args, sub + '_weight') - getattr(
                        args, 'ctc_weight_' + sub) > 0:
                    tasks = ['ys_' + sub] + tasks
                if getattr(args, 'ctc_weight_' + sub) > 0:
                    tasks = ['ys_' + sub + '.ctc'] + tasks
    else:
        tasks = ['all']

    start_time_train = time.time()
    start_time_epoch = time.time()
    start_time_step = time.time()
    pbar_epoch = tqdm(total=len(train_set))
    accum_n_tokens = 0
    while True:
        # Compute loss in the training set
        batch_train, is_new_epoch = train_set.next()
        accum_n_tokens += sum([len(y) for y in batch_train['ys']])

        # Change mini-batch depending on task
        for task in tasks:
            if skip_thought:
                loss, reporter = model(batch_train['ys'],
                                       ys_prev=batch_train['ys_prev'],
                                       ys_next=batch_train['ys_next'],
                                       reporter=reporter)
            else:
                loss, reporter = model(batch_train,
                                       reporter,
                                       task,
                                       teacher=teacher,
                                       teacher_lm=teacher_lm)
            loss.backward()
            loss.detach()  # Trancate the graph
            if args.accum_grad_n_tokens == 0 or accum_n_tokens >= args.accum_grad_n_tokens:
                if args.clip_grad_norm > 0:
                    total_norm = torch.nn.utils.clip_grad_norm_(
                        model.module.parameters(), args.clip_grad_norm)
                    reporter.add_tensorboard_scalar('total_norm', total_norm)
                optimizer.step()
                optimizer.zero_grad()
                accum_n_tokens = 0
            loss_train = loss.item()
            del loss
        reporter.add_tensorboard_scalar('learning_rate', optimizer.lr)
        # NOTE: loss/acc/ppl are already added in the model
        reporter.step()

        if optimizer.n_steps % args.print_step == 0:
            # Compute loss in the dev set
            batch_dev = dev_set.next()[0]
            # Change mini-batch depending on task
            for task in tasks:
                if skip_thought:
                    loss, reporter = model(batch_dev['ys'],
                                           ys_prev=batch_dev['ys_prev'],
                                           ys_next=batch_dev['ys_next'],
                                           reporter=reporter,
                                           is_eval=True)
                else:
                    loss, reporter = model(batch_dev,
                                           reporter,
                                           task,
                                           is_eval=True)
                loss_dev = loss.item()
                del loss
            # NOTE: this makes training slow
            # Compute WER/CER regardless of the output unit (greedy decoding)
            # best_hyps_id, _, _ = model.module.decode(
            #     batch_dev['xs'], recog_params, dev_set.idx2token[0], exclude_eos=True)
            # cer = 0.
            # ref_n_words, ref_n_chars = 0, 0
            # for b in range(len(batch_dev['xs'])):
            #     ref = batch_dev['text'][b]
            #     hyp = dev_set.idx2token[0](best_hyps_id[b])
            #     cer += editdistance.eval(hyp, ref)
            #     ref_n_words += len(ref.split())
            #     ref_n_chars += len(ref)
            # wer = cer / ref_n_words
            # cer /= ref_n_chars
            # reporter.add_tensorboard_scalar('dev/WER', wer)
            # reporter.add_tensorboard_scalar('dev/CER', cer)
            # logger.info('WER (dev)', wer)
            # logger.info('CER (dev)', cer)
            reporter.step(is_eval=True)

            duration_step = time.time() - start_time_step
            if args.input_type == 'speech':
                xlen = max(len(x) for x in batch_train['xs'])
                ylen = max(len(y) for y in batch_train['ys'])
            elif args.input_type == 'text':
                xlen = max(len(x) for x in batch_train['ys'])
                ylen = max(len(y) for y in batch_train['ys_sub1'])
            logger.info(
                "step:%d(ep:%.2f) loss:%.3f(%.3f)/lr:%.7f/bs:%d/xlen:%d/ylen:%d (%.2f min)"
                %
                (optimizer.n_steps, optimizer.n_epochs +
                 train_set.epoch_detail, loss_train, loss_dev, optimizer.lr,
                 len(batch_train['utt_ids']), xlen, ylen, duration_step / 60))
            start_time_step = time.time()
        pbar_epoch.update(len(batch_train['utt_ids']))

        # Save fugures of loss and accuracy
        if optimizer.n_steps % (args.print_step * 10) == 0:
            reporter.snapshot()
            model.module.plot_attention()

        # Save checkpoint and evaluate model per epoch
        if is_new_epoch:
            duration_epoch = time.time() - start_time_epoch
            logger.info('========== EPOCH:%d (%.2f min) ==========' %
                        (optimizer.n_epochs + 1, duration_epoch / 60))

            if optimizer.n_epochs + 1 < args.eval_start_epoch:
                optimizer.epoch()  # lr decay
                reporter.epoch()  # plot

                # Save the model
                save_checkpoint(model,
                                save_path,
                                optimizer,
                                optimizer.n_epochs,
                                remove_old_checkpoints=not noam)
            else:
                start_time_eval = time.time()
                # dev
                metric_dev = eval_epoch([model.module], dev_set, recog_params,
                                        args, optimizer.n_epochs + 1, logger)
                optimizer.epoch(metric_dev)  # lr decay
                reporter.epoch(metric_dev)  # plot

                if optimizer.is_best:
                    # Save the model
                    save_checkpoint(model,
                                    save_path,
                                    optimizer,
                                    optimizer.n_epochs,
                                    remove_old_checkpoints=not noam)

                    # test
                    for eval_set in eval_sets:
                        eval_epoch([model.module], eval_set, recog_params,
                                   args, optimizer.n_epochs, logger)

                    # start scheduled sampling
                    if args.ss_prob > 0:
                        model.module.scheduled_sampling_trigger()

                duration_eval = time.time() - start_time_eval
                logger.info('Evaluation time: %.2f min' % (duration_eval / 60))

                # Early stopping
                if optimizer.is_early_stop:
                    break

                # Convert to fine-tuning stage
                if optimizer.n_epochs == args.convert_to_sgd_epoch:
                    optimizer.convert_to_sgd(model,
                                             'sgd',
                                             args.lr,
                                             args.weight_decay,
                                             decay_type='always',
                                             decay_rate=0.5)

            pbar_epoch = tqdm(total=len(train_set))

            if optimizer.n_epochs == args.n_epochs:
                break

            start_time_step = time.time()
            start_time_epoch = time.time()

    duration_train = time.time() - start_time_train
    logger.info('Total time: %.2f hour' % (duration_train / 3600))

    reporter.tf_writer.close()
    pbar_epoch.close()

    return save_path
Exemple #25
0
def main():

    args = parse()

    # Load a conf file
    dir_name = os.path.dirname(args.recog_model[0])
    conf = load_config(os.path.join(dir_name, 'conf.yml'))

    # Overwrite conf
    for k, v in conf.items():
        if 'recog' not in k:
            setattr(args, k, v)
    recog_params = vars(args)

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'decode.log')):
        os.remove(os.path.join(args.recog_dir, 'decode.log'))
    logger = set_logger(os.path.join(args.recog_dir, 'decode.log'),
                        key='decoding')

    skip_thought = 'skip' in args.enc_type

    wer_avg, cer_avg, per_avg = 0, 0, 0
    ppl_avg, loss_avg = 0, 0
    for i, s in enumerate(args.recog_sets):
        # Load dataset
        dataset = Dataset(
            corpus=args.corpus,
            tsv_path=s,
            dict_path=os.path.join(dir_name, 'dict.txt'),
            dict_path_sub1=os.path.join(dir_name, 'dict_sub1.txt') if
            os.path.isfile(os.path.join(dir_name, 'dict_sub1.txt')) else False,
            dict_path_sub2=os.path.join(dir_name, 'dict_sub2.txt') if
            os.path.isfile(os.path.join(dir_name, 'dict_sub2.txt')) else False,
            nlsyms=os.path.join(dir_name, 'nlsyms.txt'),
            wp_model=os.path.join(dir_name, 'wp.model'),
            wp_model_sub1=os.path.join(dir_name, 'wp_sub1.model'),
            wp_model_sub2=os.path.join(dir_name, 'wp_sub2.model'),
            unit=args.unit,
            unit_sub1=args.unit_sub1,
            unit_sub2=args.unit_sub2,
            batch_size=args.recog_batch_size,
            skip_thought=skip_thought,
            is_test=True)

        if i == 0:
            # Load the ASR model
            if skip_thought:
                model = SkipThought(args, dir_name)
            else:
                model = Speech2Text(args, dir_name)
            model, checkpoint = load_checkpoint(model, args.recog_model[0])
            epoch = checkpoint['epoch']

            # ensemble (different models)
            ensemble_models = [model]
            if len(args.recog_model) > 1:
                for recog_model_e in args.recog_model[1:]:
                    conf_e = load_config(
                        os.path.join(os.path.dirname(recog_model_e),
                                     'conf.yml'))
                    args_e = copy.deepcopy(args)
                    for k, v in conf_e.items():
                        if 'recog' not in k:
                            setattr(args_e, k, v)
                    model_e = Speech2Text(args_e)
                    model_e, _ = load_checkpoint(model_e, recog_model_e)
                    model_e.cuda()
                    ensemble_models += [model_e]

            # Load the LM for shallow fusion
            if not args.lm_fusion:
                if args.recog_lm is not None and args.recog_lm_weight > 0:
                    conf_lm = load_config(
                        os.path.join(os.path.dirname(args.recog_lm),
                                     'conf.yml'))
                    args_lm = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm, k, v)
                    lm = select_lm(args_lm)
                    lm, _ = load_checkpoint(lm, args.recog_lm)
                    if args_lm.backward:
                        model.lm_bwd = lm
                    else:
                        model.lm_fwd = lm

                if args.recog_lm_bwd is not None and args.recog_lm_weight > 0 \
                        and (args.recog_fwd_bwd_attention or args.recog_reverse_lm_rescoring):
                    conf_lm = load_config(
                        os.path.join(os.path.dirname(args.recog_lm_bwd),
                                     'conf.yml'))
                    args_lm_bwd = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm_bwd, k, v)
                    lm_bwd = select_lm(args_lm_bwd)
                    lm_bwd, _ = load_checkpoint(lm_bwd, args.recog_lm_bwd)
                    model.lm_bwd = lm_bwd

            if not args.recog_unit:
                args.recog_unit = args.unit

            logger.info('recog unit: %s' % args.recog_unit)
            logger.info('recog metric: %s' % args.recog_metric)
            logger.info('recog oracle: %s' % args.recog_oracle)
            logger.info('epoch: %d' % (epoch - 1))
            logger.info('batch size: %d' % args.recog_batch_size)
            logger.info('beam width: %d' % args.recog_beam_width)
            logger.info('min length ratio: %.3f' % args.recog_min_len_ratio)
            logger.info('max length ratio: %.3f' % args.recog_max_len_ratio)
            logger.info('length penalty: %.3f' % args.recog_length_penalty)
            logger.info('coverage penalty: %.3f' % args.recog_coverage_penalty)
            logger.info('coverage threshold: %.3f' %
                        args.recog_coverage_threshold)
            logger.info('CTC weight: %.3f' % args.recog_ctc_weight)
            logger.info('LM path: %s' % args.recog_lm)
            logger.info('LM path (bwd): %s' % args.recog_lm_bwd)
            logger.info('LM weight: %.3f' % args.recog_lm_weight)
            logger.info('GNMT: %s' % args.recog_gnmt_decoding)
            logger.info('forward-backward attention: %s' %
                        args.recog_fwd_bwd_attention)
            logger.info('reverse LM rescoring: %s' %
                        args.recog_reverse_lm_rescoring)
            logger.info('resolving UNK: %s' % args.recog_resolving_unk)
            logger.info('ensemble: %d' % (len(ensemble_models)))
            logger.info('ASR decoder state carry over: %s' %
                        (args.recog_asr_state_carry_over))
            logger.info('LM state carry over: %s' %
                        (args.recog_lm_state_carry_over))
            logger.info('cache size: %d' % (args.recog_n_caches))
            logger.info('cache type: %s' % (args.recog_cache_type))
            logger.info('cache word frequency threshold: %s' %
                        (args.recog_cache_word_freq))
            logger.info('cache theta (speech): %.3f' %
                        (args.recog_cache_theta_speech))
            logger.info('cache lambda (speech): %.3f' %
                        (args.recog_cache_lambda_speech))
            logger.info('cache theta (lm): %.3f' % (args.recog_cache_theta_lm))
            logger.info('cache lambda (lm): %.3f' %
                        (args.recog_cache_lambda_lm))

            # GPU setting
            model.cuda()

        start_time = time.time()

        if args.recog_metric == 'edit_distance':
            if args.recog_unit in ['word', 'word_char']:
                wer, cer, _ = eval_word(ensemble_models,
                                        dataset,
                                        recog_params,
                                        epoch=epoch - 1,
                                        recog_dir=args.recog_dir,
                                        progressbar=True)
                wer_avg += wer
                cer_avg += cer
            elif args.recog_unit == 'wp':
                wer, cer = eval_wordpiece(ensemble_models,
                                          dataset,
                                          recog_params,
                                          epoch=epoch - 1,
                                          recog_dir=args.recog_dir,
                                          progressbar=True)
                wer_avg += wer
                cer_avg += cer
            elif 'char' in args.recog_unit:
                wer, cer = eval_char(ensemble_models,
                                     dataset,
                                     recog_params,
                                     epoch=epoch - 1,
                                     recog_dir=args.recog_dir,
                                     progressbar=True,
                                     task_idx=0)
                #  task_idx=1 if args.recog_unit and 'char' in args.recog_unit else 0)
                wer_avg += wer
                cer_avg += cer
            elif 'phone' in args.recog_unit:
                per = eval_phone(ensemble_models,
                                 dataset,
                                 recog_params,
                                 epoch=epoch - 1,
                                 recog_dir=args.recog_dir,
                                 progressbar=True)
                per_avg += per
            else:
                raise ValueError(args.recog_unit)
        elif args.recog_metric == 'acc':
            raise NotImplementedError
        elif args.recog_metric in ['ppl', 'loss']:
            ppl, loss = eval_ppl(ensemble_models,
                                 dataset,
                                 recog_params=recog_params,
                                 progressbar=True)
            ppl_avg += ppl
            loss_avg += loss
        elif args.recog_metric == 'bleu':
            raise NotImplementedError
        else:
            raise NotImplementedError
        logger.info('Elasped time: %.2f [sec]:' % (time.time() - start_time))

    if args.recog_metric == 'edit_distance':
        if 'phone' in args.recog_unit:
            logger.info('PER (avg.): %.2f %%\n' %
                        (per_avg / len(args.recog_sets)))
        else:
            logger.info('WER / CER (avg.): %.2f / %.2f %%\n' %
                        (wer_avg / len(args.recog_sets),
                         cer_avg / len(args.recog_sets)))
    elif args.recog_metric in ['ppl', 'loss']:
        logger.info('PPL (avg.): %.2f\n' % (ppl_avg / len(args.recog_sets)))
        print('PPL (avg.): %.2f' % (ppl_avg / len(args.recog_sets)))
        logger.info('Loss (avg.): %.2f\n' % (loss_avg / len(args.recog_sets)))
        print('Loss (avg.): %.2f' % (loss_avg / len(args.recog_sets)))
Exemple #26
0
def main():

    args = parse()

    # Load a conf file
    dir_name = os.path.dirname(args.recog_model[0])
    conf = load_config(os.path.join(dir_name, 'conf.yml'))

    # Overwrite conf
    for k, v in conf.items():
        if 'recog' not in k:
            setattr(args, k, v)
    recog_params = vars(args)

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'decode.log')):
        os.remove(os.path.join(args.recog_dir, 'decode.log'))
    set_logger(os.path.join(args.recog_dir, 'decode.log'),
               stdout=args.recog_stdout)

    wer_avg, cer_avg, per_avg = 0, 0, 0
    ppl_avg, loss_avg = 0, 0
    for i, s in enumerate(args.recog_sets):
        # Load dataset
        dataset = Dataset(
            corpus=args.corpus,
            tsv_path=s,
            dict_path=os.path.join(dir_name, 'dict.txt'),
            dict_path_sub1=os.path.join(dir_name, 'dict_sub1.txt') if
            os.path.isfile(os.path.join(dir_name, 'dict_sub1.txt')) else False,
            dict_path_sub2=os.path.join(dir_name, 'dict_sub2.txt') if
            os.path.isfile(os.path.join(dir_name, 'dict_sub2.txt')) else False,
            nlsyms=os.path.join(dir_name, 'nlsyms.txt'),
            wp_model=os.path.join(dir_name, 'wp.model'),
            wp_model_sub1=os.path.join(dir_name, 'wp_sub1.model'),
            wp_model_sub2=os.path.join(dir_name, 'wp_sub2.model'),
            unit=args.unit,
            unit_sub1=args.unit_sub1,
            unit_sub2=args.unit_sub2,
            batch_size=args.recog_batch_size,
            is_test=True)

        if i == 0:
            # Load the ASR model
            model = Speech2Text(args, dir_name)
            load_checkpoint(model, args.recog_model[0])
            epoch = int(args.recog_model[0].split('-')[-1])

            # Model averaging for Transformer
            if 'transformer' in conf['enc_type'] and conf[
                    'dec_type'] == 'transformer':
                model = average_checkpoints(model,
                                            args.recog_model[0],
                                            epoch,
                                            n_average=args.recog_n_average)

            # Ensemble (different models)
            ensemble_models = [model]
            if len(args.recog_model) > 1:
                for recog_model_e in args.recog_model[1:]:
                    conf_e = load_config(
                        os.path.join(os.path.dirname(recog_model_e),
                                     'conf.yml'))
                    args_e = copy.deepcopy(args)
                    for k, v in conf_e.items():
                        if 'recog' not in k:
                            setattr(args_e, k, v)
                    model_e = Speech2Text(args_e)
                    load_checkpoint(model_e, recog_model_e)
                    if args.recog_n_gpus >= 1:
                        model_e.cuda()
                    ensemble_models += [model_e]

            # Load the LM for shallow fusion
            if not args.lm_fusion:
                # first path
                if args.recog_lm is not None and args.recog_lm_weight > 0:
                    conf_lm = load_config(
                        os.path.join(os.path.dirname(args.recog_lm),
                                     'conf.yml'))
                    args_lm = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm, k, v)
                    lm = build_lm(args_lm,
                                  wordlm=args.recog_wordlm,
                                  lm_dict_path=os.path.join(
                                      os.path.dirname(args.recog_lm),
                                      'dict.txt'),
                                  asr_dict_path=os.path.join(
                                      dir_name, 'dict.txt'))
                    load_checkpoint(lm, args.recog_lm)
                    if args_lm.backward:
                        model.lm_bwd = lm
                    else:
                        model.lm_fwd = lm

                # second path (forward)
                if args.recog_lm_second is not None and args.recog_lm_second_weight > 0:
                    conf_lm_2nd = load_config(
                        os.path.join(os.path.dirname(args.recog_lm_second),
                                     'conf.yml'))
                    args_lm_2nd = argparse.Namespace()
                    for k, v in conf_lm_2nd.items():
                        setattr(args_lm_2nd, k, v)
                    lm_2nd = build_lm(args_lm_2nd)
                    load_checkpoint(lm_2nd, args.recog_lm_second)
                    model.lm_2nd = lm_2nd

                # second path (bakward)
                if args.recog_lm_bwd is not None and args.recog_lm_rev_weight > 0:
                    conf_lm = load_config(
                        os.path.join(os.path.dirname(args.recog_lm_bwd),
                                     'conf.yml'))
                    args_lm_bwd = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm_bwd, k, v)
                    lm_bwd = build_lm(args_lm_bwd)
                    load_checkpoint(lm_bwd, args.recog_lm_bwd)
                    model.lm_bwd = lm_bwd

            if not args.recog_unit:
                args.recog_unit = args.unit

            logger.info('recog unit: %s' % args.recog_unit)
            logger.info('recog metric: %s' % args.recog_metric)
            logger.info('recog oracle: %s' % args.recog_oracle)
            logger.info('epoch: %d' % epoch)
            logger.info('batch size: %d' % args.recog_batch_size)
            logger.info('beam width: %d' % args.recog_beam_width)
            logger.info('min length ratio: %.3f' % args.recog_min_len_ratio)
            logger.info('max length ratio: %.3f' % args.recog_max_len_ratio)
            logger.info('length penalty: %.3f' % args.recog_length_penalty)
            logger.info('length norm: %s' % args.recog_length_norm)
            logger.info('coverage penalty: %.3f' % args.recog_coverage_penalty)
            logger.info('coverage threshold: %.3f' %
                        args.recog_coverage_threshold)
            logger.info('CTC weight: %.3f' % args.recog_ctc_weight)
            logger.info('fist LM path: %s' % args.recog_lm)
            logger.info('second LM path: %s' % args.recog_lm_second)
            logger.info('backward LM path: %s' % args.recog_lm_bwd)
            logger.info('LM weight: %.3f' % args.recog_lm_weight)
            logger.info('GNMT: %s' % args.recog_gnmt_decoding)
            logger.info('forward-backward attention: %s' %
                        args.recog_fwd_bwd_attention)
            logger.info('resolving UNK: %s' % args.recog_resolving_unk)
            logger.info('ensemble: %d' % (len(ensemble_models)))
            logger.info('ASR decoder state carry over: %s' %
                        (args.recog_asr_state_carry_over))
            logger.info('LM state carry over: %s' %
                        (args.recog_lm_state_carry_over))
            logger.info('model average (Transformer): %d' %
                        (args.recog_n_average))

            # GPU setting
            if args.recog_n_gpus >= 1:
                model.cuda()

        start_time = time.time()

        if args.recog_metric == 'edit_distance':
            if args.recog_unit in ['word', 'word_char']:
                wer, cer, _ = eval_word(ensemble_models,
                                        dataset,
                                        recog_params,
                                        epoch=epoch - 1,
                                        recog_dir=args.recog_dir,
                                        progressbar=True)
                wer_avg += wer
                cer_avg += cer
            elif args.recog_unit == 'wp':
                wer, cer = eval_wordpiece(ensemble_models,
                                          dataset,
                                          recog_params,
                                          epoch=epoch - 1,
                                          recog_dir=args.recog_dir,
                                          streaming=args.recog_streaming,
                                          progressbar=True)
                wer_avg += wer
                cer_avg += cer
            elif 'char' in args.recog_unit:
                wer, cer = eval_char(ensemble_models,
                                     dataset,
                                     recog_params,
                                     epoch=epoch - 1,
                                     recog_dir=args.recog_dir,
                                     progressbar=True,
                                     task_idx=0)
                #  task_idx=1 if args.recog_unit and 'char' in args.recog_unit else 0)
                wer_avg += wer
                cer_avg += cer
            elif 'phone' in args.recog_unit:
                per = eval_phone(ensemble_models,
                                 dataset,
                                 recog_params,
                                 epoch=epoch - 1,
                                 recog_dir=args.recog_dir,
                                 progressbar=True)
                per_avg += per
            else:
                raise ValueError(args.recog_unit)
        elif args.recog_metric == 'acc':
            raise NotImplementedError
        elif args.recog_metric in ['ppl', 'loss']:
            ppl, loss = eval_ppl(ensemble_models, dataset, progressbar=True)
            ppl_avg += ppl
            loss_avg += loss
        elif args.recog_metric == 'bleu':
            raise NotImplementedError
        else:
            raise NotImplementedError
        logger.info('Elasped time: %.2f [sec]:' % (time.time() - start_time))

    if args.recog_metric == 'edit_distance':
        if 'phone' in args.recog_unit:
            logger.info('PER (avg.): %.2f %%\n' %
                        (per_avg / len(args.recog_sets)))
        else:
            logger.info('WER / CER (avg.): %.2f / %.2f %%\n' %
                        (wer_avg / len(args.recog_sets),
                         cer_avg / len(args.recog_sets)))
    elif args.recog_metric in ['ppl', 'loss']:
        logger.info('PPL (avg.): %.2f\n' % (ppl_avg / len(args.recog_sets)))
        print('PPL (avg.): %.2f' % (ppl_avg / len(args.recog_sets)))
        logger.info('Loss (avg.): %.2f\n' % (loss_avg / len(args.recog_sets)))
        print('Loss (avg.): %.2f' % (loss_avg / len(args.recog_sets)))
Exemple #27
0
def main():

    # Load configuration
    args, recog_params, dir_name = parse_args_eval(sys.argv[1:])

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'plot.log')):
        os.remove(os.path.join(args.recog_dir, 'plot.log'))
    set_logger(os.path.join(args.recog_dir, 'plot.log'),
               stdout=args.recog_stdout)

    for i, s in enumerate(args.recog_sets):
        # Load dataset
        dataset = Dataset(
            corpus=args.corpus,
            tsv_path=s,
            dict_path=os.path.join(dir_name, 'dict.txt'),
            dict_path_sub1=os.path.join(dir_name, 'dict_sub1.txt') if
            os.path.isfile(os.path.join(dir_name, 'dict_sub1.txt')) else False,
            nlsyms=args.nlsyms,
            wp_model=os.path.join(dir_name, 'wp.model'),
            unit=args.unit,
            unit_sub1=args.unit_sub1,
            batch_size=args.recog_batch_size,
            is_test=True)

        if i == 0:
            # Load the ASR model
            model = Speech2Text(args, dir_name)
            epoch = int(args.recog_model[0].split('-')[-1])
            if args.recog_n_average > 1:
                # Model averaging for Transformer
                model = average_checkpoints(model,
                                            args.recog_model[0],
                                            n_average=args.recog_n_average)
            else:
                load_checkpoint(args.recog_model[0], model)

            if not args.recog_unit:
                args.recog_unit = args.unit

            logger.info('recog unit: %s' % args.recog_unit)
            logger.info('epoch: %d' % epoch)
            logger.info('batch size: %d' % args.recog_batch_size)

            # GPU setting
            if args.recog_n_gpus >= 1:
                model.cudnn_setting(deterministic=True, benchmark=False)
                model.cuda()

        save_path = mkdir_join(args.recog_dir, 'ctc_probs')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)

        while True:
            batch, is_new_epoch = dataset.next(
                recog_params['recog_batch_size'])
            best_hyps_id, _ = model.decode(batch['xs'], recog_params)

            # Get CTC probs
            ctc_probs, topk_ids, xlens = model.get_ctc_probs(batch['xs'],
                                                             temperature=1,
                                                             topk=min(
                                                                 100,
                                                                 model.vocab))
            # NOTE: ctc_probs: '[B, T, topk]'

            for b in range(len(batch['xs'])):
                tokens = dataset.idx2token[0](best_hyps_id[b],
                                              return_list=True)
                spk = batch['speakers'][b]

                plot_ctc_probs(
                    ctc_probs[b, :xlens[b]],
                    topk_ids[b],
                    subsample_factor=args.subsample_factor,
                    spectrogram=batch['xs'][b][:, :dataset.input_dim],
                    save_path=mkdir_join(save_path, spk,
                                         batch['utt_ids'][b] + '.png'),
                    figsize=(20, 8))

                hyp = ' '.join(tokens)
                logger.info('utt-id: %s' % batch['utt_ids'][b])
                logger.info('Ref: %s' % batch['text'][b].lower())
                logger.info('Hyp: %s' % hyp)
                logger.info('-' * 50)

            if is_new_epoch:
                break
Exemple #28
0
def main():

    args = parse()

    # Load a conf file
    if args.resume:
        conf = load_config(
            os.path.join(os.path.dirname(args.resume), 'conf.yml'))
        for k, v in conf.items():
            if k != 'resume':
                setattr(args, k, v)

    # Load dataset
    train_set = Dataset(corpus=args.corpus,
                        tsv_path=args.train_set,
                        dict_path=args.dict,
                        nlsyms=args.nlsyms,
                        unit=args.unit,
                        wp_model=args.wp_model,
                        batch_size=args.batch_size * args.n_gpus,
                        n_epochs=args.n_epochs,
                        min_n_tokens=args.min_n_tokens,
                        bptt=args.bptt,
                        backward=args.backward,
                        serialize=args.serialize)
    dev_set = Dataset(corpus=args.corpus,
                      tsv_path=args.dev_set,
                      dict_path=args.dict,
                      nlsyms=args.nlsyms,
                      unit=args.unit,
                      wp_model=args.wp_model,
                      batch_size=args.batch_size * args.n_gpus,
                      bptt=args.bptt,
                      backward=args.backward,
                      serialize=args.serialize)
    eval_sets = []
    for s in args.eval_sets:
        eval_sets += [
            Dataset(corpus=args.corpus,
                    tsv_path=s,
                    dict_path=args.dict,
                    nlsyms=args.nlsyms,
                    unit=args.unit,
                    wp_model=args.wp_model,
                    batch_size=1,
                    bptt=args.bptt,
                    backward=args.backward,
                    serialize=args.serialize)
        ]

    args.vocab = train_set.vocab

    # Set save path
    if args.resume:
        save_path = os.path.dirname(args.resume)
        dir_name = os.path.basename(save_path)
    else:
        dir_name = make_model_name(args)
        save_path = mkdir_join(
            args.model,
            '_'.join(os.path.basename(args.train_set).split('.')[:-1]),
            dir_name)
        save_path = set_save_path(save_path)  # avoid overwriting

    # Set logger
    logger = set_logger(os.path.join(save_path, 'train.log'), key='training')

    # Model setting
    if 'gated_conv' in args.lm_type:
        model = GatedConvLM(args)
    else:
        model = RNNLM(args)
    model.save_path = save_path

    if args.resume:
        # Set optimizer
        epoch = int(args.resume.split('-')[-1])
        model.set_optimizer(
            optimizer='sgd'
            if epoch > conf['convert_to_sgd_epoch'] + 1 else conf['optimizer'],
            learning_rate=float(conf['learning_rate']),  # on-the-fly
            weight_decay=float(conf['weight_decay']))

        # Restore the last saved model
        model, checkpoint = load_checkpoint(model, args.resume, resume=True)
        lr_controller = checkpoint['lr_controller']
        epoch = checkpoint['epoch']
        step = checkpoint['step']
        ppl_dev_best = checkpoint['metric_dev_best']

        # Resume between convert_to_sgd_epoch and convert_to_sgd_epoch + 1
        if epoch == conf['convert_to_sgd_epoch'] + 1:
            model.set_optimizer(optimizer='sgd',
                                learning_rate=args.learning_rate,
                                weight_decay=float(conf['weight_decay']))
            logger.info('========== Convert to SGD ==========')
    else:
        # Save the conf file as a yaml file
        save_config(vars(args), os.path.join(model.save_path, 'conf.yml'))

        # Save the nlsyms, dictionar, and wp_model
        if args.nlsyms:
            shutil.copy(args.nlsyms, os.path.join(model.save_path,
                                                  'nlsyms.txt'))
        shutil.copy(args.dict, os.path.join(model.save_path, 'dict.txt'))
        if args.unit == 'wp':
            shutil.copy(args.wp_model, os.path.join(model.save_path,
                                                    'wp.model'))

        for k, v in sorted(vars(args).items(), key=lambda x: x[0]):
            logger.info('%s: %s' % (k, str(v)))

        # Count total parameters
        for n in sorted(list(model.num_params_dict.keys())):
            nparams = model.num_params_dict[n]
            logger.info("%s %d" % (n, nparams))
        logger.info("Total %.2f M parameters" %
                    (model.total_parameters / 1000000))
        logger.info(model)

        # Set optimizer
        model.set_optimizer(optimizer=args.optimizer,
                            learning_rate=float(args.learning_rate),
                            weight_decay=float(args.weight_decay))

        epoch, step = 1, 1
        ppl_dev_best = 10000

        # Set learning rate controller
        lr_controller = Controller(
            learning_rate=float(args.learning_rate),
            decay_type=args.decay_type,
            decay_start_epoch=args.decay_start_epoch,
            decay_rate=args.decay_rate,
            decay_patient_n_epochs=args.decay_patient_n_epochs,
            lower_better=True,
            best_value=ppl_dev_best)

    train_set.epoch = epoch - 1  # start from index:0

    # GPU setting
    if args.n_gpus >= 1:
        model = CustomDataParallel(model,
                                   device_ids=list(range(0, args.n_gpus, 1)),
                                   deterministic=False,
                                   benchmark=True)
        model.cuda()

    logger.info('PID: %s' % os.getpid())
    logger.info('USERNAME: %s' % os.uname()[1])

    # Set process name
    if args.job_name:
        setproctitle(args.job_name)
    else:
        setproctitle(dir_name)

    # Set reporter
    reporter = Reporter(model.module.save_path, tensorboard=True)

    hidden = None
    start_time_train = time.time()
    start_time_epoch = time.time()
    start_time_step = time.time()
    not_improved_epoch = 0
    pbar_epoch = tqdm(total=len(train_set))
    while True:
        # Compute loss in the training set
        ys_train, is_new_epoch = train_set.next()

        model.module.optimizer.zero_grad()
        loss, hidden, reporter = model(ys_train, hidden, reporter)
        if len(model.device_ids) > 1:
            loss.backward(torch.ones(len(model.device_ids)))
        else:
            loss.backward()
        loss.detach()  # Trancate the graph
        if args.clip_grad_norm > 0:
            torch.nn.utils.clip_grad_norm_(model.module.parameters(),
                                           args.clip_grad_norm)
        model.module.optimizer.step()
        loss_train = loss.item()
        del loss
        if 'gated_conv' not in args.lm_type:
            hidden = model.module.repackage_hidden(hidden)
        reporter.step(is_eval=False)

        if step % args.print_step == 0:
            # Compute loss in the dev set
            ys_dev = dev_set.next()[0]
            loss, _, reporter = model(ys_dev, None, reporter, is_eval=True)
            loss_dev = loss.item()
            del loss
            reporter.step(is_eval=True)

            duration_step = time.time() - start_time_step
            logger.info(
                "step:%d(ep:%.2f) loss:%.3f(%.3f)/ppl:%.3f(%.3f)/lr:%.5f/bs:%d (%.2f min)"
                % (step, train_set.epoch_detail, loss_train, loss_dev,
                   np.exp(loss_train), np.exp(loss_dev), lr_controller.lr,
                   ys_train.shape[0], duration_step / 60))
            start_time_step = time.time()
        step += args.n_gpus
        pbar_epoch.update(ys_train.shape[0] * (ys_train.shape[1] - 1))

        # Save fugures of loss and accuracy
        if step % (args.print_step * 10) == 0:
            reporter.snapshot()

        # Save checkpoint and evaluate model per epoch
        if is_new_epoch:
            duration_epoch = time.time() - start_time_epoch
            logger.info('========== EPOCH:%d (%.2f min) ==========' %
                        (epoch, duration_epoch / 60))

            if epoch < args.eval_start_epoch:
                # Save the model
                save_checkpoint(model.module,
                                model.module.save_path,
                                lr_controller,
                                epoch,
                                step - 1,
                                ppl_dev_best,
                                remove_old_checkpoints=True)
            else:
                start_time_eval = time.time()
                # dev
                ppl_dev, _ = eval_ppl([model.module],
                                      dev_set,
                                      batch_size=1,
                                      bptt=args.bptt)
                logger.info('PPL (%s): %.2f' % (dev_set.set, ppl_dev))

                # Update learning rate
                model.module.optimizer = lr_controller.decay(
                    model.module.optimizer, epoch=epoch, value=ppl_dev)

                if ppl_dev < ppl_dev_best:
                    ppl_dev_best = ppl_dev
                    not_improved_epoch = 0
                    logger.info('||||| Best Score |||||')

                    # Save the model
                    save_checkpoint(model.module,
                                    model.module.save_path,
                                    lr_controller,
                                    epoch,
                                    step - 1,
                                    ppl_dev_best,
                                    remove_old_checkpoints=True)

                    # test
                    ppl_test_avg = 0.
                    for eval_set in eval_sets:
                        ppl_test, _ = eval_ppl([model.module],
                                               eval_set,
                                               batch_size=1,
                                               bptt=args.bptt)
                        logger.info('PPL (%s): %.2f' %
                                    (eval_set.set, ppl_test))
                        ppl_test_avg += ppl_test
                    if len(eval_sets) > 0:
                        logger.info('PPL (avg.): %.2f' %
                                    (ppl_test_avg / len(eval_sets)))
                else:
                    not_improved_epoch += 1

                duration_eval = time.time() - start_time_eval
                logger.info('Evaluation time: %.2f min' % (duration_eval / 60))

                # Early stopping
                if not_improved_epoch == args.not_improved_patient_n_epochs:
                    break

                # Convert to fine-tuning stage
                if epoch == args.convert_to_sgd_epoch:
                    model.module.set_optimizer(
                        'sgd',
                        learning_rate=args.learning_rate,
                        weight_decay=float(args.weight_decay))
                    lr_controller = Controller(
                        learning_rate=args.learning_rate,
                        decay_type='epoch',
                        decay_start_epoch=epoch,
                        decay_rate=0.5,
                        lower_better=True)
                    logger.info('========== Convert to SGD ==========')

            pbar_epoch = tqdm(total=len(train_set))

            if epoch == args.n_epochs:
                break

            start_time_step = time.time()
            start_time_epoch = time.time()
            epoch += 1

    duration_train = time.time() - start_time_train
    logger.info('Total time: %.2f hour' % (duration_train / 3600))

    if reporter.tensorboard:
        reporter.tf_writer.close()
    pbar_epoch.close()

    return model.module.save_path
Exemple #29
0
def main():

    # Load configuration
    args, dir_name = parse_args_eval(sys.argv[1:])

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'plot.log')):
        os.remove(os.path.join(args.recog_dir, 'plot.log'))
    set_logger(os.path.join(args.recog_dir, 'plot.log'),
               stdout=args.recog_stdout)

    for i, s in enumerate(args.recog_sets):
        # Load dataloader
        dataloader = build_dataloader(
            args=args,
            tsv_path=s,
            batch_size=1,
            is_test=True,
            first_n_utterances=args.recog_first_n_utt,
            longform_max_n_frames=args.recog_longform_max_n_frames)

        if i == 0:
            # Load ASR model
            model = Speech2Text(args, dir_name)
            epoch = int(float(args.recog_model[0].split('-')[-1]) * 10) / 10
            if args.recog_n_average > 1:
                # Model averaging for Transformer
                model = average_checkpoints(model,
                                            args.recog_model[0],
                                            n_average=args.recog_n_average)
            else:
                load_checkpoint(args.recog_model[0], model)

            if not args.recog_unit:
                args.recog_unit = args.unit

            logger.info('recog unit: %s' % args.recog_unit)
            logger.info('epoch: %d' % epoch)
            logger.info('batch size: %d' % args.recog_batch_size)

            # GPU setting
            if args.recog_n_gpus >= 1:
                model.cudnn_setting(deterministic=True, benchmark=False)
                model.cuda()

        save_path = mkdir_join(args.recog_dir, 'ctc_probs')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)

        for batch in dataloader:
            nbest_hyps_id, _ = model.decode(batch['xs'], args,
                                            dataloader.idx2token[0])
            best_hyps_id = [h[0] for h in nbest_hyps_id]

            # Get CTC probs
            ctc_probs, topk_ids, xlens = model.get_ctc_probs(batch['xs'],
                                                             temperature=1,
                                                             topk=min(
                                                                 100,
                                                                 model.vocab))
            # NOTE: ctc_probs: '[B, T, topk]'

            for b in range(len(batch['xs'])):
                tokens = dataloader.idx2token[0](best_hyps_id[b],
                                                 return_list=True)
                spk = batch['speakers'][b]

                plot_ctc_probs(
                    ctc_probs[b, :xlens[b]],
                    topk_ids[b],
                    factor=args.subsample_factor,
                    spectrogram=batch['xs'][b][:, :dataloader.input_dim],
                    save_path=mkdir_join(save_path, spk,
                                         batch['utt_ids'][b] + '.png'),
                    figsize=(20, 8))

                hyp = ' '.join(tokens)
                logger.info('utt-id: %s' % batch['utt_ids'][b])
                logger.info('Ref: %s' % batch['text'][b].lower())
                logger.info('Hyp: %s' % hyp)
                logger.info('-' * 50)
Exemple #30
0
def main():

    # Load configuration
    args, _, dir_name = parse_args_eval(sys.argv[1:])

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'plot.log')):
        os.remove(os.path.join(args.recog_dir, 'plot.log'))
    set_logger(os.path.join(args.recog_dir, 'plot.log'),
               stdout=args.recog_stdout)

    # Load the LM
    model = build_lm(args, dir_name)
    load_checkpoint(args.recog_model[0], model)
    # NOTE: model averaging is not helpful for LM

    logger.info('batch size: %d' % args.recog_batch_size)
    logger.info('BPTT: %d' % (args.bptt))
    logger.info('cache size: %d' % (args.recog_n_caches))
    logger.info('cache theta: %.3f' % (args.recog_cache_theta))
    logger.info('cache lambda: %.3f' % (args.recog_cache_lambda))

    model.cache_theta = args.recog_cache_theta
    model.cache_lambda = args.recog_cache_lambda

    # GPU setting
    if args.recog_n_gpus > 0:
        model.cuda()

    for s in args.recog_sets:
        # Load dataset
        dataset = Dataset(corpus=args.corpus,
                          tsv_path=s,
                          batch_size=args.recog_batch_size,
                          bptt=args.bptt,
                          backward=args.backward,
                          serialize=args.serialize,
                          is_test=True)

        assert args.recog_n_caches > 0
        save_path = mkdir_join(args.recog_dir, 'cache')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)

        hidden = None
        fig_count = 0
        token_count = 0
        n_tokens = args.recog_n_caches
        while True:
            ys, is_new_epoch = dataset.next()

            for t in range(ys.shape[1] - 1):
                loss, hidden = model(ys[:, t:t + 2],
                                     hidden,
                                     is_eval=True,
                                     n_caches=args.recog_n_caches)[:2]

                if len(model.cache_attn) > 0:
                    if token_count == n_tokens:
                        tokens_keys = dataset.idx2token[0](
                            model.cache_ids[:args.recog_n_caches],
                            return_list=True)
                        tokens_query = dataset.idx2token[0](
                            model.cache_ids[-n_tokens:], return_list=True)

                        # Slide attention matrix
                        n_keys = len(tokens_keys)
                        n_queries = len(tokens_query)
                        cache_probs = np.zeros(
                            (n_keys, n_queries))  # `[n_keys, n_queries]`
                        mask = np.zeros((n_keys, n_queries))
                        for i, aw in enumerate(model.cache_attn[-n_tokens:]):
                            cache_probs[:(n_keys - n_queries + i + 1),
                                        i] = aw[0,
                                                -(n_keys - n_queries + i + 1):]
                            mask[(n_keys - n_queries + i + 1):, i] = 1

                        plot_cache_weights(cache_probs,
                                           keys=tokens_keys,
                                           queries=tokens_query,
                                           save_path=mkdir_join(
                                               save_path,
                                               str(fig_count) + '.png'),
                                           figsize=(40, 16),
                                           mask=mask)
                        token_count = 0
                        fig_count += 1
                    else:
                        token_count += 1

            if is_new_epoch:
                break