Exemple #1
0
def main():

    args = parse()

    # Load a conf file
    dir_name = os.path.dirname(args.recog_model[0])
    conf = load_config(os.path.join(dir_name, 'conf.yml'))

    # Overwrite conf
    for k, v in conf.items():
        if 'recog' not in k:
            setattr(args, k, v)
    recog_params = vars(args)

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'decode.log')):
        os.remove(os.path.join(args.recog_dir, 'decode.log'))
    logger = set_logger(os.path.join(args.recog_dir, 'decode.log'),
                        key='decoding')

    skip_thought = 'skip' in args.enc_type

    wer_avg, cer_avg, per_avg = 0, 0, 0
    ppl_avg, loss_avg = 0, 0
    for i, s in enumerate(args.recog_sets):
        # Load dataset
        dataset = Dataset(
            corpus=args.corpus,
            tsv_path=s,
            dict_path=os.path.join(dir_name, 'dict.txt'),
            dict_path_sub1=os.path.join(dir_name, 'dict_sub1.txt') if
            os.path.isfile(os.path.join(dir_name, 'dict_sub1.txt')) else False,
            dict_path_sub2=os.path.join(dir_name, 'dict_sub2.txt') if
            os.path.isfile(os.path.join(dir_name, 'dict_sub2.txt')) else False,
            nlsyms=os.path.join(dir_name, 'nlsyms.txt'),
            wp_model=os.path.join(dir_name, 'wp.model'),
            wp_model_sub1=os.path.join(dir_name, 'wp_sub1.model'),
            wp_model_sub2=os.path.join(dir_name, 'wp_sub2.model'),
            unit=args.unit,
            unit_sub1=args.unit_sub1,
            unit_sub2=args.unit_sub2,
            batch_size=args.recog_batch_size,
            skip_thought=skip_thought,
            is_test=True)

        if i == 0:
            # Load the ASR model
            if skip_thought:
                model = SkipThought(args, dir_name)
            else:
                model = Speech2Text(args, dir_name)
            model, checkpoint = load_checkpoint(model, args.recog_model[0])
            epoch = checkpoint['epoch']

            # ensemble (different models)
            ensemble_models = [model]
            if len(args.recog_model) > 1:
                for recog_model_e in args.recog_model[1:]:
                    conf_e = load_config(
                        os.path.join(os.path.dirname(recog_model_e),
                                     'conf.yml'))
                    args_e = copy.deepcopy(args)
                    for k, v in conf_e.items():
                        if 'recog' not in k:
                            setattr(args_e, k, v)
                    model_e = Speech2Text(args_e)
                    model_e, _ = load_checkpoint(model_e, recog_model_e)
                    model_e.cuda()
                    ensemble_models += [model_e]

            # Load the LM for shallow fusion
            if not args.lm_fusion:
                if args.recog_lm is not None and args.recog_lm_weight > 0:
                    conf_lm = load_config(
                        os.path.join(os.path.dirname(args.recog_lm),
                                     'conf.yml'))
                    args_lm = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm, k, v)
                    lm = select_lm(args_lm)
                    lm, _ = load_checkpoint(lm, args.recog_lm)
                    if args_lm.backward:
                        model.lm_bwd = lm
                    else:
                        model.lm_fwd = lm

                if args.recog_lm_bwd is not None and args.recog_lm_weight > 0 \
                        and (args.recog_fwd_bwd_attention or args.recog_reverse_lm_rescoring):
                    conf_lm = load_config(
                        os.path.join(os.path.dirname(args.recog_lm_bwd),
                                     'conf.yml'))
                    args_lm_bwd = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm_bwd, k, v)
                    lm_bwd = select_lm(args_lm_bwd)
                    lm_bwd, _ = load_checkpoint(lm_bwd, args.recog_lm_bwd)
                    model.lm_bwd = lm_bwd

            if not args.recog_unit:
                args.recog_unit = args.unit

            logger.info('recog unit: %s' % args.recog_unit)
            logger.info('recog metric: %s' % args.recog_metric)
            logger.info('recog oracle: %s' % args.recog_oracle)
            logger.info('epoch: %d' % (epoch - 1))
            logger.info('batch size: %d' % args.recog_batch_size)
            logger.info('beam width: %d' % args.recog_beam_width)
            logger.info('min length ratio: %.3f' % args.recog_min_len_ratio)
            logger.info('max length ratio: %.3f' % args.recog_max_len_ratio)
            logger.info('length penalty: %.3f' % args.recog_length_penalty)
            logger.info('coverage penalty: %.3f' % args.recog_coverage_penalty)
            logger.info('coverage threshold: %.3f' %
                        args.recog_coverage_threshold)
            logger.info('CTC weight: %.3f' % args.recog_ctc_weight)
            logger.info('LM path: %s' % args.recog_lm)
            logger.info('LM path (bwd): %s' % args.recog_lm_bwd)
            logger.info('LM weight: %.3f' % args.recog_lm_weight)
            logger.info('GNMT: %s' % args.recog_gnmt_decoding)
            logger.info('forward-backward attention: %s' %
                        args.recog_fwd_bwd_attention)
            logger.info('reverse LM rescoring: %s' %
                        args.recog_reverse_lm_rescoring)
            logger.info('resolving UNK: %s' % args.recog_resolving_unk)
            logger.info('ensemble: %d' % (len(ensemble_models)))
            logger.info('ASR decoder state carry over: %s' %
                        (args.recog_asr_state_carry_over))
            logger.info('LM state carry over: %s' %
                        (args.recog_lm_state_carry_over))
            logger.info('cache size: %d' % (args.recog_n_caches))
            logger.info('cache type: %s' % (args.recog_cache_type))
            logger.info('cache word frequency threshold: %s' %
                        (args.recog_cache_word_freq))
            logger.info('cache theta (speech): %.3f' %
                        (args.recog_cache_theta_speech))
            logger.info('cache lambda (speech): %.3f' %
                        (args.recog_cache_lambda_speech))
            logger.info('cache theta (lm): %.3f' % (args.recog_cache_theta_lm))
            logger.info('cache lambda (lm): %.3f' %
                        (args.recog_cache_lambda_lm))

            # GPU setting
            model.cuda()

        start_time = time.time()

        if args.recog_metric == 'edit_distance':
            if args.recog_unit in ['word', 'word_char']:
                wer, cer, _ = eval_word(ensemble_models,
                                        dataset,
                                        recog_params,
                                        epoch=epoch - 1,
                                        recog_dir=args.recog_dir,
                                        progressbar=True)
                wer_avg += wer
                cer_avg += cer
            elif args.recog_unit == 'wp':
                wer, cer = eval_wordpiece(ensemble_models,
                                          dataset,
                                          recog_params,
                                          epoch=epoch - 1,
                                          recog_dir=args.recog_dir,
                                          progressbar=True)
                wer_avg += wer
                cer_avg += cer
            elif 'char' in args.recog_unit:
                wer, cer = eval_char(ensemble_models,
                                     dataset,
                                     recog_params,
                                     epoch=epoch - 1,
                                     recog_dir=args.recog_dir,
                                     progressbar=True,
                                     task_idx=0)
                #  task_idx=1 if args.recog_unit and 'char' in args.recog_unit else 0)
                wer_avg += wer
                cer_avg += cer
            elif 'phone' in args.recog_unit:
                per = eval_phone(ensemble_models,
                                 dataset,
                                 recog_params,
                                 epoch=epoch - 1,
                                 recog_dir=args.recog_dir,
                                 progressbar=True)
                per_avg += per
            else:
                raise ValueError(args.recog_unit)
        elif args.recog_metric == 'acc':
            raise NotImplementedError
        elif args.recog_metric in ['ppl', 'loss']:
            ppl, loss = eval_ppl(ensemble_models,
                                 dataset,
                                 recog_params=recog_params,
                                 progressbar=True)
            ppl_avg += ppl
            loss_avg += loss
        elif args.recog_metric == 'bleu':
            raise NotImplementedError
        else:
            raise NotImplementedError
        logger.info('Elasped time: %.2f [sec]:' % (time.time() - start_time))

    if args.recog_metric == 'edit_distance':
        if 'phone' in args.recog_unit:
            logger.info('PER (avg.): %.2f %%\n' %
                        (per_avg / len(args.recog_sets)))
        else:
            logger.info('WER / CER (avg.): %.2f / %.2f %%\n' %
                        (wer_avg / len(args.recog_sets),
                         cer_avg / len(args.recog_sets)))
    elif args.recog_metric in ['ppl', 'loss']:
        logger.info('PPL (avg.): %.2f\n' % (ppl_avg / len(args.recog_sets)))
        print('PPL (avg.): %.2f' % (ppl_avg / len(args.recog_sets)))
        logger.info('Loss (avg.): %.2f\n' % (loss_avg / len(args.recog_sets)))
        print('Loss (avg.): %.2f' % (loss_avg / len(args.recog_sets)))
Exemple #2
0
def main():

    args = parse()
    args_pt = copy.deepcopy(args)

    # Load a conf file
    if args.resume:
        conf = load_config(
            os.path.join(os.path.dirname(args.resume), 'conf.yml'))
        for k, v in conf.items():
            if k != 'resume':
                setattr(args, k, v)
    recog_params = vars(args)

    # Automatically reduce batch size in multi-GPU setting
    if args.n_gpus > 1:
        args.batch_size -= 10
        args.print_step //= args.n_gpus

    subsample_factor = 1
    subsample_factor_sub1 = 1
    subsample_factor_sub2 = 1
    subsample_factor_sub3 = 1
    subsample = [int(s) for s in args.subsample.split('_')]
    if args.conv_poolings:
        for p in args.conv_poolings.split('_'):
            p = int(p.split(',')[1].replace(')', ''))
            if p > 1:
                subsample_factor *= p
    if args.train_set_sub1:
        subsample_factor_sub1 = subsample_factor * np.prod(
            subsample[:args.enc_n_layers_sub1 - 1])
    if args.train_set_sub2:
        subsample_factor_sub2 = subsample_factor * np.prod(
            subsample[:args.enc_n_layers_sub2 - 1])
    if args.train_set_sub3:
        subsample_factor_sub3 = subsample_factor * np.prod(
            subsample[:args.enc_n_layers_sub3 - 1])
    subsample_factor *= np.prod(subsample)

    # Load dataset
    train_set = Dataset(corpus=args.corpus,
                        tsv_path=args.train_set,
                        tsv_path_sub1=args.train_set_sub1,
                        tsv_path_sub2=args.train_set_sub2,
                        tsv_path_sub3=args.train_set_sub3,
                        dict_path=args.dict,
                        dict_path_sub1=args.dict_sub1,
                        dict_path_sub2=args.dict_sub2,
                        dict_path_sub3=args.dict_sub3,
                        nlsyms=args.nlsyms,
                        unit=args.unit,
                        unit_sub1=args.unit_sub1,
                        unit_sub2=args.unit_sub2,
                        unit_sub3=args.unit_sub3,
                        wp_model=args.wp_model,
                        wp_model_sub1=args.wp_model_sub1,
                        wp_model_sub2=args.wp_model_sub2,
                        wp_model_sub3=args.wp_model_sub3,
                        batch_size=args.batch_size * args.n_gpus,
                        n_epochs=args.n_epochs,
                        min_n_frames=args.min_n_frames,
                        max_n_frames=args.max_n_frames,
                        sort_by_input_length=True,
                        short2long=True,
                        sort_stop_epoch=args.sort_stop_epoch,
                        dynamic_batching=args.dynamic_batching,
                        ctc=args.ctc_weight > 0,
                        ctc_sub1=args.ctc_weight_sub1 > 0,
                        ctc_sub2=args.ctc_weight_sub2 > 0,
                        ctc_sub3=args.ctc_weight_sub3 > 0,
                        subsample_factor=subsample_factor,
                        subsample_factor_sub1=subsample_factor_sub1,
                        subsample_factor_sub2=subsample_factor_sub2,
                        subsample_factor_sub3=subsample_factor_sub3,
                        concat_prev_n_utterances=args.concat_prev_n_utterances,
                        n_caches=args.n_caches)
    dev_set = Dataset(corpus=args.corpus,
                      tsv_path=args.dev_set,
                      tsv_path_sub1=args.dev_set_sub1,
                      tsv_path_sub2=args.dev_set_sub2,
                      tsv_path_sub3=args.dev_set_sub3,
                      dict_path=args.dict,
                      dict_path_sub1=args.dict_sub1,
                      dict_path_sub2=args.dict_sub2,
                      dict_path_sub3=args.dict_sub3,
                      unit=args.unit,
                      unit_sub1=args.unit_sub1,
                      unit_sub2=args.unit_sub2,
                      unit_sub3=args.unit_sub3,
                      wp_model=args.wp_model,
                      wp_model_sub1=args.wp_model_sub1,
                      wp_model_sub2=args.wp_model_sub2,
                      wp_model_sub3=args.wp_model_sub3,
                      batch_size=args.batch_size * args.n_gpus,
                      min_n_frames=args.min_n_frames,
                      max_n_frames=args.max_n_frames,
                      shuffle=True if args.n_caches == 0 else False,
                      ctc=args.ctc_weight > 0,
                      ctc_sub1=args.ctc_weight_sub1 > 0,
                      ctc_sub2=args.ctc_weight_sub2 > 0,
                      ctc_sub3=args.ctc_weight_sub3 > 0,
                      subsample_factor=subsample_factor,
                      subsample_factor_sub1=subsample_factor_sub1,
                      subsample_factor_sub2=subsample_factor_sub2,
                      subsample_factor_sub3=subsample_factor_sub3,
                      n_caches=args.n_caches)
    eval_sets = []
    for s in args.eval_sets:
        eval_sets += [
            Dataset(corpus=args.corpus,
                    tsv_path=s,
                    dict_path=args.dict,
                    unit=args.unit,
                    wp_model=args.wp_model,
                    batch_size=1,
                    n_caches=args.n_caches,
                    is_test=True)
        ]

    args.vocab = train_set.vocab
    args.vocab_sub1 = train_set.vocab_sub1
    args.vocab_sub2 = train_set.vocab_sub2
    args.vocab_sub3 = train_set.vocab_sub3
    args.input_dim = train_set.input_dim

    # Load a LM conf file for cold fusion & LM initialization
    if args.lm_fusion:
        if args.model:
            lm_conf = load_config(
                os.path.join(os.path.dirname(args.lm_fusion), 'conf.yml'))
        elif args.resume:
            lm_conf = load_config(
                os.path.join(os.path.dirname(args.resume), 'conf_lm.yml'))
        args.lm_conf = argparse.Namespace()
        for k, v in lm_conf.items():
            setattr(args.lm_conf, k, v)
        assert args.unit == args.lm_conf.unit
        assert args.vocab == args.lm_conf.vocab

    if args.enc_type == 'transformer':
        args.decay_type = 'warmup'

    # Model setting
    model = Seq2seq(args)
    dir_name = make_model_name(args, subsample_factor)

    if args.resume:
        # Set save path
        model.save_path = os.path.dirname(args.resume)

        # Setting for logging
        logger = set_logger(os.path.join(os.path.dirname(args.resume),
                                         'train.log'),
                            key='training')

        # Set optimizer
        epoch = int(args.resume.split('-')[-1])
        model.set_optimizer(
            optimizer='sgd'
            if epoch > conf['convert_to_sgd_epoch'] + 1 else conf['optimizer'],
            learning_rate=float(conf['learning_rate']),  # on-the-fly
            weight_decay=float(conf['weight_decay']))

        # Restore the last saved model
        checkpoints = model.load_checkpoint(args.resume, resume=True)
        lr_controller = checkpoints['lr_controller']
        epoch = checkpoints['epoch']
        step = checkpoints['step']
        metric_dev_best = checkpoints['metric_dev_best']

        # Resume between convert_to_sgd_epoch and convert_to_sgd_epoch + 1
        if epoch == conf['convert_to_sgd_epoch'] + 1:
            model.set_optimizer(optimizer='sgd',
                                learning_rate=args.learning_rate,
                                weight_decay=float(conf['weight_decay']))
            logger.info('========== Convert to SGD ==========')
    else:
        # Set save path
        save_path = mkdir_join(
            args.model,
            '_'.join(os.path.basename(args.train_set).split('.')[:-1]),
            dir_name)
        model.set_save_path(save_path)  # avoid overwriting

        # Save the conf file as a yaml file
        save_config(vars(args), os.path.join(model.save_path, 'conf.yml'))
        if args.lm_fusion:
            save_config(args.lm_conf,
                        os.path.join(model.save_path, 'conf_lm.yml'))

        # Save the nlsyms, dictionar, and wp_model
        if args.nlsyms:
            shutil.copy(args.nlsyms, os.path.join(model.save_path,
                                                  'nlsyms.txt'))
        for sub in ['', '_sub1', '_sub2', '_sub3']:
            if getattr(args, 'dict' + sub):
                shutil.copy(
                    getattr(args, 'dict' + sub),
                    os.path.join(model.save_path, 'dict' + sub + '.txt'))
            if getattr(args, 'unit' + sub) == 'wp':
                shutil.copy(
                    getattr(args, 'wp_model' + sub),
                    os.path.join(model.save_path, 'wp' + sub + '.model'))

        # Setting for logging
        logger = set_logger(os.path.join(model.save_path, 'train.log'),
                            key='training')

        for k, v in sorted(vars(args).items(), key=lambda x: x[0]):
            logger.info('%s: %s' % (k, str(v)))

        # Count total parameters
        for n in sorted(list(model.num_params_dict.keys())):
            nparams = model.num_params_dict[n]
            logger.info("%s %d" % (n, nparams))
        logger.info("Total %.2f M parameters" %
                    (model.total_parameters / 1000000))
        logger.info(model)

        # Initialize with pre-trained model's parameters
        if args.pretrained_model and os.path.isfile(args.pretrained_model):
            # Load a conf file
            conf_pt = load_config(
                os.path.join(os.path.dirname(args.pretrained_model),
                             'conf.yml'))

            # Merge conf with args
            for k, v in conf_pt.items():
                setattr(args_pt, k, v)

            # Load the ASR model
            model_pt = Seq2seq(args_pt)
            model_pt.load_checkpoint(args.pretrained_model)

            # Overwrite parameters
            only_enc = (args.enc_n_layers !=
                        args_pt.enc_n_layers) or (args.unit != args_pt.unit)
            param_dict = dict(model_pt.named_parameters())
            for n, p in model.named_parameters():
                if n in param_dict.keys() and p.size() == param_dict[n].size():
                    if only_enc and 'enc' not in n:
                        continue
                    if args.lm_fusion_type == 'cache' and 'output' in n:
                        continue
                    p.data = param_dict[n].data
                    logger.info('Overwrite %s' % n)

        # Set optimizer
        model.set_optimizer(optimizer=args.optimizer,
                            learning_rate=float(args.learning_rate),
                            weight_decay=float(args.weight_decay),
                            transformer=True if args.enc_type == 'transformer'
                            or args.dec_type == 'transformer' else False)

        epoch, step = 1, 1
        metric_dev_best = 10000

        # Set learning rate controller
        lr_controller = Controller(
            learning_rate=float(args.learning_rate),
            decay_type=args.decay_type,
            decay_start_epoch=args.decay_start_epoch,
            decay_rate=args.decay_rate,
            decay_patient_n_epochs=args.decay_patient_n_epochs,
            lower_better=True,
            best_value=metric_dev_best,
            model_size=args.d_model,
            warmup_start_learning_rate=args.warmup_start_learning_rate,
            warmup_n_steps=args.warmup_n_steps,
            factor=1)

    train_set.epoch = epoch - 1  # start from index:0

    # GPU setting
    if args.n_gpus >= 1:
        model = CustomDataParallel(model,
                                   device_ids=list(range(0, args.n_gpus, 1)),
                                   deterministic=False,
                                   benchmark=True)
        model.cuda()

    logger.info('PID: %s' % os.getpid())
    logger.info('USERNAME: %s' % os.uname()[1])

    # Set process name
    if args.job_name:
        setproctitle(args.job_name)
    else:
        setproctitle(dir_name)

    # Set reporter
    reporter = Reporter(model.module.save_path, tensorboard=True)

    if args.mtl_per_batch:
        # NOTE: from easier to harder tasks
        tasks = []
        if 1 - args.bwd_weight - args.ctc_weight - args.sub1_weight - args.sub2_weight - args.sub3_weight > 0:
            tasks += ['ys']
        if args.bwd_weight > 0:
            tasks = ['ys.bwd'] + tasks
        if args.ctc_weight > 0:
            tasks = ['ys.ctc'] + tasks
        if args.lmobj_weight > 0:
            tasks = ['ys.lmobj'] + tasks
        if args.lm_fusion is not None and 'mtl' in args.lm_fusion_type:
            tasks = ['ys.lm'] + tasks
        for sub in ['sub1', 'sub2', 'sub3']:
            if getattr(args, 'train_set_' + sub):
                if getattr(args, sub + '_weight') - getattr(
                        args, 'bwd_weight_' + sub) - getattr(
                            args, 'ctc_weight_' + sub) > 0:
                    tasks = ['ys_' + sub] + tasks
                if getattr(args, 'bwd_weight_' + sub) > 0:
                    tasks = ['ys_' + sub + '.bwd'] + tasks
                if getattr(args, 'ctc_weight_' + sub) > 0:
                    tasks = ['ys_' + sub + '.ctc'] + tasks
                if getattr(args, 'lmobj_weight_' + sub) > 0:
                    tasks = ['ys_' + sub + '.lmobj'] + tasks
    else:
        tasks = ['all']

    start_time_train = time.time()
    start_time_epoch = time.time()
    start_time_step = time.time()
    not_improved_n_epochs = 0
    pbar_epoch = tqdm(total=len(train_set))
    while True:
        # Compute loss in the training set
        batch_train, is_new_epoch = train_set.next()

        # Change tasks depending on task
        for task in tasks:
            model.module.optimizer.zero_grad()
            loss, reporter = model(batch_train, reporter=reporter, task=task)
            if len(model.device_ids) > 1:
                loss.backward(torch.ones(len(model.device_ids)))
            else:
                loss.backward()
            loss.detach()  # Trancate the graph
            if args.clip_grad_norm > 0:
                torch.nn.utils.clip_grad_norm_(model.module.parameters(),
                                               args.clip_grad_norm)
            model.module.optimizer.step()
            loss_train = loss.item()
            del loss

        reporter.step(is_eval=False)

        # Update learning rate
        if args.decay_type == 'warmup' and step < args.warmup_n_steps:
            model.module.optimizer = lr_controller.warmup(
                model.module.optimizer, step=step)

        if step % args.print_step == 0:
            # Compute loss in the dev set
            batch_dev = dev_set.next()[0]
            # Change tasks depending on task
            for task in tasks:
                loss, reporter = model(batch_dev,
                                       reporter=reporter,
                                       task=task,
                                       is_eval=True)
                loss_dev = loss.item()
                del loss
            reporter.step(is_eval=True)

            duration_step = time.time() - start_time_step
            if args.input_type == 'speech':
                xlen = max(len(x) for x in batch_train['xs'])
            elif args.input_type == 'text':
                xlen = max(len(x) for x in batch_train['ys'])
            logger.info(
                "step:%d(ep:%.2f) loss:%.3f(%.3f)/lr:%.5f/bs:%d/xlen:%d (%.2f min)"
                % (step, train_set.epoch_detail, loss_train, loss_dev,
                   lr_controller.lr, len(
                       batch_train['utt_ids']), xlen, duration_step / 60))
            start_time_step = time.time()
        step += args.n_gpus
        pbar_epoch.update(len(batch_train['utt_ids']))

        # Save fugures of loss and accuracy
        if step % (args.print_step * 10) == 0:
            reporter.snapshot()

        # Save checkpoint and evaluate model per epoch
        if is_new_epoch:
            duration_epoch = time.time() - start_time_epoch
            logger.info('========== EPOCH:%d (%.2f min) ==========' %
                        (epoch, duration_epoch / 60))

            if epoch < args.eval_start_epoch:
                # Save the model
                model.module.save_checkpoint(model.module.save_path,
                                             lr_controller, epoch, step - 1,
                                             metric_dev_best)
                reporter._epoch += 1
                # TODO(hirofumi): fix later
            else:
                start_time_eval = time.time()
                # dev
                if args.metric == 'edit_distance':
                    if args.unit in ['word', 'word_char']:
                        metric_dev = eval_word([model.module],
                                               dev_set,
                                               recog_params,
                                               epoch=epoch)[0]
                        logger.info('WER (%s): %.2f %%' %
                                    (dev_set.set, metric_dev))
                    elif args.unit == 'wp':
                        metric_dev, cer_dev = eval_wordpiece([model.module],
                                                             dev_set,
                                                             recog_params,
                                                             epoch=epoch)
                        logger.info('WER (%s): %.2f %%' %
                                    (dev_set.set, metric_dev))
                        logger.info('CER (%s): %.2f %%' %
                                    (dev_set.set, cer_dev))
                    elif 'char' in args.unit:
                        metric_dev, cer_dev = eval_char([model.module],
                                                        dev_set,
                                                        recog_params,
                                                        epoch=epoch)
                        logger.info('WER (%s): %.2f %%' %
                                    (dev_set.set, metric_dev))
                        logger.info('CER (%s): %.2f %%' %
                                    (dev_set.set, cer_dev))
                    elif 'phone' in args.unit:
                        metric_dev = eval_phone([model.module],
                                                dev_set,
                                                recog_params,
                                                epoch=epoch)
                        logger.info('PER (%s): %.2f %%' %
                                    (dev_set.set, metric_dev))
                elif args.metric == 'ppl':
                    metric_dev = eval_ppl([model.module], dev_set,
                                          recog_params)[0]
                    logger.info('PPL (%s): %.2f %%' %
                                (dev_set.set, metric_dev))
                elif args.metric == 'loss':
                    metric_dev = eval_ppl([model.module], dev_set,
                                          recog_params)[1]
                    logger.info('Loss (%s): %.2f %%' %
                                (dev_set.set, metric_dev))
                else:
                    raise NotImplementedError(args.metric)
                reporter.epoch(metric_dev)

                # Update learning rate
                model.module.optimizer = lr_controller.decay(
                    model.module.optimizer, epoch=epoch, value=metric_dev)

                if metric_dev < metric_dev_best:
                    metric_dev_best = metric_dev
                    not_improved_n_epochs = 0
                    logger.info('||||| Best Score |||||')

                    # Save the model
                    model.module.save_checkpoint(model.module.save_path,
                                                 lr_controller, epoch,
                                                 step - 1, metric_dev_best)

                    # test
                    for s in eval_sets:
                        if args.metric == 'edit_distance':
                            if args.unit in ['word', 'word_char']:
                                wer_test = eval_word([model.module],
                                                     s,
                                                     recog_params,
                                                     epoch=epoch)[0]
                                logger.info('WER (%s): %.2f %%' %
                                            (s.set, wer_test))
                            elif args.unit == 'wp':
                                wer_test, cer_test = eval_wordpiece(
                                    [model.module],
                                    s,
                                    recog_params,
                                    epoch=epoch)
                                logger.info('WER (%s): %.2f %%' %
                                            (s.set, wer_test))
                                logger.info('CER (%s): %.2f %%' %
                                            (s.set, cer_test))
                            elif 'char' in args.unit:
                                wer_test, cer_test = eval_char([model.module],
                                                               s,
                                                               recog_params,
                                                               epoch=epoch)
                                logger.info('WER (%s): %.2f %%' %
                                            (s.set, wer_test))
                                logger.info('CER (%s): %.2f %%' %
                                            (s.set, cer_test))
                            elif 'phone' in args.unit:
                                per_test = eval_phone([model.module],
                                                      s,
                                                      recog_params,
                                                      epoch=epoch)
                                logger.info('PER (%s): %.2f %%' %
                                            (s.set, per_test))
                        elif args.metric == 'ppl':
                            ppl_test = eval_ppl([model.module], s,
                                                recog_params)[0]
                            logger.info('PPL (%s): %.2f %%' %
                                        (s.set, ppl_test))
                        elif args.metric == 'loss':
                            loss_test = eval_ppl([model.module], s,
                                                 recog_params)[1]
                            logger.info('Loss (%s): %.2f %%' %
                                        (s.set, loss_test))
                        else:
                            raise NotImplementedError(args.metric)
                else:
                    not_improved_n_epochs += 1

                    # start scheduled sampling
                    if args.ss_prob > 0:
                        model.module.scheduled_sampling_trigger()

                duration_eval = time.time() - start_time_eval
                logger.info('Evaluation time: %.2f min' % (duration_eval / 60))

                # Early stopping
                if not_improved_n_epochs == args.not_improved_patient_n_epochs:
                    break

                # Convert to fine-tuning stage
                if epoch == args.convert_to_sgd_epoch:
                    model.module.set_optimizer(
                        'sgd',
                        learning_rate=args.learning_rate,
                        weight_decay=float(args.weight_decay))
                    lr_controller = Controller(
                        learning_rate=args.learning_rate,
                        decay_type='epoch',
                        decay_start_epoch=epoch,
                        decay_rate=0.5,
                        lower_better=True)
                    logger.info('========== Convert to SGD ==========')

            pbar_epoch = tqdm(total=len(train_set))

            if epoch == args.n_epochs:
                break

            start_time_step = time.time()
            start_time_epoch = time.time()
            epoch += 1

    duration_train = time.time() - start_time_train
    logger.info('Total time: %.2f hour' % (duration_train / 3600))

    if reporter.tensorboard:
        reporter.tf_writer.close()
    pbar_epoch.close()

    return model.module.save_path
def main():

    # Load a config file
    config = load_config(os.path.join(args.model, 'config.yml'))

    decode_params = vars(args)

    # Merge config with args
    for k, v in config.items():
        if not hasattr(args, k):
            setattr(args, k, v)

    # Setting for logging
    logger = set_logger(os.path.join(args.plot_dir, 'plot.log'), key='decoding')

    for i, set in enumerate(args.eval_sets):
        # Load dataset
        eval_set = Dataset(csv_path=set,
                           dict_path=os.path.join(args.model, 'dict.txt'),
                           dict_path_sub=os.path.join(args.model, 'dict_sub.txt') if os.path.isfile(
                               os.path.join(args.model, 'dict_sub.txt')) else None,
                           wp_model=os.path.join(args.model, 'wp.model'),
                           unit=args.unit,
                           batch_size=args.batch_size,
                           max_num_frames=args.max_num_frames,
                           min_num_frames=args.min_num_frames,
                           is_test=True)

        if i == 0:
            args.vocab = eval_set.vocab
            args.vocab_sub = eval_set.vocab_sub
            args.input_dim = eval_set.input_dim

            # TODO(hirofumi): For cold fusion
            args.rnnlm_cold_fusion = None
            args.rnnlm_init = None

            # Load the ASR model
            model = Seq2seq(args)
            epoch, _, _, _ = model.load_checkpoint(args.model, epoch=args.epoch)

            model.save_path = args.model

            # For shallow fusion
            if args.rnnlm_cold_fusion is None and args.rnnlm is not None and args.rnnlm_weight > 0:
                # Load a RNNLM config file
                config_rnnlm = load_config(os.path.join(args.rnnlm, 'config.yml'))

                # Merge config with args
                args_rnnlm = argparse.Namespace()
                for k, v in config_rnnlm.items():
                    setattr(args_rnnlm, k, v)

                assert args.unit == args_rnnlm.unit
                args_rnnlm.vocab = eval_set.vocab

                # Load the pre-trianed RNNLM
                rnnlm = RNNLM(args_rnnlm)
                rnnlm.load_checkpoint(args.rnnlm, epoch=-1)
                if args_rnnlm.backward:
                    model.rnnlm_bwd_0 = rnnlm
                else:
                    model.rnnlm_fwd_0 = rnnlm

                logger.info('RNNLM path: %s' % args.rnnlm)
                logger.info('RNNLM weight: %.3f' % args.rnnlm_weight)
                logger.info('RNNLM backward: %s' % str(config_rnnlm['backward']))

            # GPU setting
            model.cuda()

            logger.info('beam width: %d' % args.beam_width)
            logger.info('length penalty: %.3f' % args.length_penalty)
            logger.info('coverage penalty: %.3f' % args.coverage_penalty)
            logger.info('coverage threshold: %.3f' % args.coverage_threshold)
            logger.info('epoch: %d' % (epoch - 1))

        save_path = mkdir_join(args.plot_dir, 'att_weights')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)

        while True:
            batch, is_new_epoch = eval_set.next(decode_params['batch_size'])
            best_hyps, aws, perm_idx = model.decode(batch['xs'], decode_params,
                                                    exclude_eos=False)
            ys = [batch['ys'][i] for i in perm_idx]

            if model.bwd_weight > 0.5:
                # Reverse the order
                best_hyps = [hyp[::-1] for hyp in best_hyps]
                aws = [aw[::-1] for aw in aws]

            for b in range(len(batch['xs'])):
                if args.unit == 'word':
                    token_list = eval_set.idx2word(best_hyps[b], return_list=True)
                if args.unit == 'wp':
                    token_list = eval_set.idx2wp(best_hyps[b], return_list=True)
                elif args.unit == 'char':
                    token_list = eval_set.idx2char(best_hyps[b], return_list=True)
                elif args.unit == 'phone':
                    token_list = eval_set.idx2phone(best_hyps[b], return_list=True)
                else:
                    raise NotImplementedError(args.unit)
                token_list = [unicode(t, 'utf-8') for t in token_list]
                speaker = '_'.join(batch['utt_ids'][b].replace('-', '_').split('_')[:-2])

                # error check
                assert len(batch['xs'][b]) <= 2000

                plot_attention_weights(aws[b][:len(token_list)],
                                       label_list=token_list,
                                       spectrogram=batch['xs'][b][:,
                                                                  :eval_set.input_dim] if args.input_type == 'speech' else None,
                                       save_path=mkdir_join(save_path, speaker, batch['utt_ids'][b] + '.png'),
                                       figsize=(20, 8))

                ref = ys[b]
                if model.bwd_weight > 0.5:
                    hyp = ' '.join(token_list[::-1])
                else:
                    hyp = ' '.join(token_list)
                logger.info('utt-id: %s' % batch['utt_ids'][b])
                logger.info('Ref: %s' % ref.lower())
                logger.info('Hyp: %s' % hyp)
                logger.info('-' * 50)

            if is_new_epoch:
                break
Exemple #4
0
def main():

    # Load a config file
    if args.resume_model is None:
        config = load_config(args.config)
    else:
        # Restart from the last checkpoint
        config = load_config(os.path.join(args.resume_model, 'config.yml'))

    # Check differences between args and yaml comfiguraiton
    for k, v in vars(args).items():
        if k not in config.keys():
            warnings.warn("key %s is automatically set to %s" % (k, str(v)))

    # Merge config with args
    for k, v in config.items():
        setattr(args, k, v)

    # Automatically reduce batch size in multi-GPU setting
    if args.ngpus > 1:
        args.batch_size -= 10
        args.print_step //= args.ngpus

    subsample_factor = 1
    subsample_factor_sub = 1
    for p in args.conv_poolings:
        if len(p) > 0:
            subsample_factor *= p[0]
    if args.train_set_sub is not None:
        subsample_factor_sub = subsample_factor * (2**sum(
            args.subsample[:args.enc_num_layers_sub - 1]))
    subsample_factor *= 2**sum(args.subsample)

    # Load dataset
    train_set = Dataset(csv_path=args.train_set,
                        dict_path=args.dict,
                        label_type=args.label_type,
                        batch_size=args.batch_size * args.ngpus,
                        max_epoch=args.num_epochs,
                        max_num_frames=args.max_num_frames,
                        min_num_frames=args.min_num_frames,
                        sort_by_input_length=True,
                        short2long=True,
                        sort_stop_epoch=args.sort_stop_epoch,
                        dynamic_batching=True,
                        use_ctc=args.ctc_weight > 0,
                        subsample_factor=subsample_factor,
                        csv_path_sub=args.train_set_sub,
                        dict_path_sub=args.dict_sub,
                        label_type_sub=args.label_type_sub,
                        use_ctc_sub=args.ctc_weight_sub > 0,
                        subsample_factor_sub=subsample_factor_sub,
                        skip_speech=(args.input_type != 'speech'))
    dev_set = Dataset(csv_path=args.dev_set,
                      dict_path=args.dict,
                      label_type=args.label_type,
                      batch_size=args.batch_size * args.ngpus,
                      max_epoch=args.num_epochs,
                      max_num_frames=args.max_num_frames,
                      min_num_frames=args.min_num_frames,
                      shuffle=True,
                      use_ctc=args.ctc_weight > 0,
                      subsample_factor=subsample_factor,
                      csv_path_sub=args.dev_set_sub,
                      dict_path_sub=args.dict_sub,
                      label_type_sub=args.label_type_sub,
                      use_ctc_sub=args.ctc_weight_sub > 0,
                      subsample_factor_sub=subsample_factor_sub,
                      skip_speech=(args.input_type != 'speech'))
    eval_sets = []
    for set in args.eval_sets:
        eval_sets += [
            Dataset(csv_path=set,
                    dict_path=args.dict,
                    label_type=args.label_type,
                    batch_size=1,
                    max_epoch=args.num_epochs,
                    is_test=True,
                    skip_speech=(args.input_type != 'speech'))
        ]

    args.num_classes = train_set.num_classes
    args.input_dim = train_set.input_dim
    args.num_classes_sub = train_set.num_classes_sub

    # Load a RNNLM config file for cold fusion & RNNLM initialization
    # if config['rnnlm_cf']:
    #     if args.model is not None:
    #         config['rnnlm_config_cold_fusion'] = load_config(
    #             os.path.join(config['rnnlm_cf'], 'config.yml'), is_eval=True)
    #     elif args.resume_model is not None:
    #         config = load_config(os.path.join(
    #             args.resume_model, 'config_rnnlm_cf.yml'))
    #     assert args.label_type == config['rnnlm_config_cold_fusion']['label_type']
    #     config['rnnlm_config_cold_fusion']['num_classes'] = train_set.num_classes
    args.rnnlm_cf = None
    args.rnnlm_init = None

    # Model setting
    model = Seq2seq(args)
    model.name = args.enc_type
    if len(args.conv_channels) > 0:
        tmp = model.name
        model.name = 'conv' + str(len(args.conv_channels)) + 'L'
        if args.conv_batch_norm:
            model.name += 'bn'
        model.name += tmp
    model.name += str(args.enc_num_units) + 'H'
    model.name += str(args.enc_num_projs) + 'P'
    model.name += str(args.enc_num_layers) + 'L'
    model.name += '_subsample' + str(subsample_factor)
    model.name += '_' + args.dec_type
    model.name += str(args.dec_num_units) + 'H'
    # model.name += str(args.dec_num_projs) + 'P'
    model.name += str(args.dec_num_layers) + 'L'
    model.name += '_' + args.att_type
    if args.att_num_heads > 1:
        model.name += '_head' + str(args.att_num_heads)
    model.name += '_' + args.optimizer
    model.name += '_lr' + str(args.learning_rate)
    model.name += '_bs' + str(args.batch_size)
    model.name += '_ss' + str(args.ss_prob)
    model.name += '_ls' + str(args.lsm_prob)
    if args.ctc_weight > 0:
        model.name += '_ctc' + str(args.ctc_weight)
    if args.bwd_weight > 0:
        model.name += '_bwd' + str(args.bwd_weight)
    if args.main_task_weight < 1:
        model.name += '_main' + str(args.main_task_weight)
        if args.ctc_weight_sub > 0:
            model.name += '_ctcsub' + str(args.ctc_weight_sub *
                                          (1 - args.main_task_weight))
        else:
            model.name += '_attsub' + str(1 - args.main_task_weight)

    if args.resume_model is None:
        # Load pre-trained RNNLM
        # if config['rnnlm_cf']:
        #     rnnlm = RNNLM(args)
        #     rnnlm.load_checkpoint(save_path=config['rnnlm_cf'], epoch=-1)
        #     rnnlm.flatten_parameters()
        #
        #     # Fix RNNLM parameters
        #     for param in rnnlm.parameters():
        #         param.requires_grad = False
        #
        #     # Set pre-trained parameters
        #     if config['rnnlm_config_cold_fusion']['backward']:
        #         model.dec_0_bwd.rnnlm = rnnlm
        #     else:
        #         model.dec_0_fwd.rnnlm = rnnlm
        # TODO(hirofumi): 最初にRNNLMのモデルをコピー

        # Set save path
        save_path = mkdir_join(
            args.model,
            '_'.join(os.path.basename(args.train_set).split('.')[:-1]),
            model.name)
        model.set_save_path(save_path)  # avoid overwriting

        # Save the config file as a yaml file
        save_config(vars(args), model.save_path)

        # Save the dictionary & wp_model
        shutil.copy(args.dict, os.path.join(save_path, 'dict.txt'))
        if args.dict_sub is not None:
            shutil.copy(args.dict_sub, os.path.join(save_path, 'dict_sub.txt'))
        if args.label_type == 'wordpiece':
            shutil.copy(args.wp_model, os.path.join(save_path, 'wp.model'))

        # Setting for logging
        logger = set_logger(os.path.join(model.save_path, 'train.log'),
                            key='training')

        for k, v in sorted(vars(args).items(), key=lambda x: x[0]):
            logger.info('%s: %s' % (k, str(v)))

        # if os.path.isdir(args.pretrained_model):
        #     # NOTE: Start training from the pre-trained model
        #     # This is defferent from resuming training
        #     model.load_checkpoint(args.pretrained_model, epoch=-1,
        #                           load_pretrained_model=True)

        # Count total parameters
        for name in sorted(list(model.num_params_dict.keys())):
            num_params = model.num_params_dict[name]
            logger.info("%s %d" % (name, num_params))
        logger.info("Total %.2f M parameters" %
                    (model.total_parameters / 1000000))

        # Set optimizer
        model.set_optimizer(optimizer=args.optimizer,
                            learning_rate_init=float(args.learning_rate),
                            weight_decay=float(args.weight_decay),
                            clip_grad_norm=args.clip_grad_norm,
                            lr_schedule=False,
                            factor=args.decay_rate,
                            patience_epoch=args.decay_patient_epoch)

        epoch, step = 1, 0
        learning_rate = float(args.learning_rate)
        metric_dev_best = 10000

    # NOTE: Restart from the last checkpoint
    # elif args.resume_model is not None:
    #     # Set save path
    #     model.save_path = args.resume_model
    #
    #     # Setting for logging
    #     logger = set_logger(os.path.join(model.save_path, 'train.log'), key='training')
    #
    #     # Set optimizer
    #     model.set_optimizer(
    #         optimizer=config['optimizer'],
    #         learning_rate_init=float(config['learning_rate']),  # on-the-fly
    #         weight_decay=float(config['weight_decay']),
    #         clip_grad_norm=config['clip_grad_norm'],
    #         lr_schedule=False,
    #         factor=config['decay_rate'],
    #         patience_epoch=config['decay_patient_epoch'])
    #
    #     # Restore the last saved model
    #     epoch, step, learning_rate, metric_dev_best = model.load_checkpoint(
    #         save_path=args.resume_model, epoch=-1, restart=True)
    #
    #     if epoch >= config['convert_to_sgd_epoch']:
    #         model.set_optimizer(
    #             optimizer='sgd',
    #             learning_rate_init=float(config['learning_rate']),  # on-the-fly
    #             weight_decay=float(config['weight_decay']),
    #             clip_grad_norm=config['clip_grad_norm'],
    #             lr_schedule=False,
    #             factor=config['decay_rate'],
    #             patience_epoch=config['decay_patient_epoch'])
    #
    #     if config['rnnlm_cf']:
    #         if config['rnnlm_config_cold_fusion']['backward']:
    #             model.rnnlm_0_bwd.flatten_parameters()
    #         else:
    #             model.rnnlm_0_fwd.flatten_parameters()

    train_set.epoch = epoch - 1  # start from index:0

    # GPU setting
    if args.ngpus >= 1:
        model = CustomDataParallel(model,
                                   device_ids=list(range(0, args.ngpus, 1)),
                                   deterministic=False,
                                   benchmark=True)
        model.cuda()

    logger.info('PID: %s' % os.getpid())
    logger.info('USERNAME: %s' % os.uname()[1])

    # Set process name
    # setproctitle(args.job_name)

    # Set learning rate controller
    lr_controller = Controller(learning_rate_init=learning_rate,
                               decay_type=args.decay_type,
                               decay_start_epoch=args.decay_start_epoch,
                               decay_rate=args.decay_rate,
                               decay_patient_epoch=args.decay_patient_epoch,
                               lower_better=True,
                               best_value=metric_dev_best)

    # Set reporter
    reporter = Reporter(model.module.save_path, max_loss=300)

    # Set the updater
    updater = Updater(args.clip_grad_norm)

    # Setting for tensorboard
    tf_writer = SummaryWriter(model.module.save_path)

    start_time_train = time.time()
    start_time_epoch = time.time()
    start_time_step = time.time()
    not_improved_epoch = 0.
    loss_train_mean, acc_train_mean = 0., 0.
    pbar_epoch = tqdm(total=len(train_set))
    pbar_all = tqdm(total=len(train_set) * args.num_epochs)
    while True:
        # Compute loss in the training set (including parameter update)
        batch_train, is_new_epoch = train_set.next()
        model, loss_train, acc_train = updater(model, batch_train)
        loss_train_mean += loss_train
        acc_train_mean += acc_train
        pbar_epoch.update(len(batch_train['utt_ids']))

        if (step + 1) % args.print_step == 0:
            # Compute loss in the dev set
            batch_dev = dev_set.next()[0]
            model, loss_dev, acc_dev = updater(model, batch_dev, is_eval=True)

            loss_train_mean /= args.print_step
            acc_train_mean /= args.print_step
            reporter.step(step, loss_train_mean, loss_dev, acc_train_mean,
                          acc_dev)

            # Logging by tensorboard
            tf_writer.add_scalar('train/loss', loss_train_mean, step + 1)
            tf_writer.add_scalar('dev/loss', loss_dev, step + 1)
            # for n, p in model.module.named_parameters():
            #     n = n.replace('.', '/')
            #     if p.grad is not None:
            #         tf_writer.add_histogram(n, p.data.cpu().numpy(), step + 1)
            #         tf_writer.add_histogram(n + '/grad', p.grad.data.cpu().numpy(), step + 1)

            duration_step = time.time() - start_time_step
            if args.input_type == 'speech':
                x_len = max(len(x) for x in batch_train['xs'])
            elif args.input_type == 'text':
                x_len = max(len(x) for x in batch_train['ys_sub'])
            logger.info(
                "...Step:%d(ep:%.2f) loss:%.2f(%.2f)/acc:%.2f(%.2f)/lr:%.5f/bs:%d/x_len:%d (%.2f min)"
                % (step + 1, train_set.epoch_detail, loss_train_mean, loss_dev,
                   acc_train_mean, acc_dev, learning_rate,
                   train_set.current_batch_size, x_len, duration_step / 60))
            start_time_step = time.time()
            loss_train_mean, acc_train_mean = 0, 0
        step += args.ngpus

        # Save checkpoint and evaluate model per epoch
        if is_new_epoch:
            duration_epoch = time.time() - start_time_epoch
            logger.info('===== EPOCH:%d (%.2f min) =====' %
                        (epoch, duration_epoch / 60))

            # Save fugures of loss and accuracy
            reporter.epoch()

            if epoch < args.eval_start_epoch:
                # Save the model
                model.module.save_checkpoint(model.module.save_path, epoch,
                                             step, learning_rate,
                                             metric_dev_best)
            else:
                start_time_eval = time.time()
                # dev
                if args.metric == 'ler':
                    if args.label_type == 'word':
                        metric_dev = eval_word([model.module],
                                               dev_set,
                                               decode_params,
                                               epoch=epoch)[0]
                        logger.info('  WER (%s): %.3f %%' %
                                    (dev_set.set, metric_dev))
                    elif args.label_type == 'wordpiece':
                        metric_dev = eval_wordpiece([model.module],
                                                    dev_set,
                                                    decode_params,
                                                    args.wp_model,
                                                    epoch=epoch)[0]
                        logger.info('  WER (%s): %.3f %%' %
                                    (dev_set.set, metric_dev))
                    elif 'char' in args.label_type:
                        metric_dev = eval_char([model.module],
                                               dev_set,
                                               decode_params,
                                               epoch=epoch)[1][0]
                        logger.info('  CER (%s): %.3f %%' %
                                    (dev_set.set, metric_dev))
                    elif 'phone' in args.label_type:
                        metric_dev = eval_phone([model.module],
                                                dev_set,
                                                decode_params,
                                                epoch=epoch)[0]
                        logger.info('  PER (%s): %.3f %%' %
                                    (dev_set.set, metric_dev))
                elif args.metric == 'loss':
                    metric_dev = eval_loss([model.module], dev_set,
                                           decode_params)
                    logger.info('  Loss (%s): %.3f %%' %
                                (dev_set.set, metric_dev))
                else:
                    raise NotImplementedError()

                if metric_dev < metric_dev_best:
                    metric_dev_best = metric_dev
                    not_improved_epoch = 0
                    logger.info('||||| Best Score |||||')

                    # Update learning rate
                    model.module.optimizer, learning_rate = lr_controller.decay_lr(
                        optimizer=model.module.optimizer,
                        learning_rate=learning_rate,
                        epoch=epoch,
                        value=metric_dev)

                    # Save the model
                    model.module.save_checkpoint(model.module.save_path, epoch,
                                                 step, learning_rate,
                                                 metric_dev_best)

                    # test
                    for eval_set in eval_sets:
                        if args.metric == 'ler':
                            if args.label_type == 'word':
                                wer_test = eval_word([model.module],
                                                     eval_set,
                                                     decode_params,
                                                     epoch=epoch)[0]
                                logger.info('  WER (%s): %.3f %%' %
                                            (eval_set.set, wer_test))
                            elif args.label_type == 'wordpiece':
                                wer_test = eval_wordpiece([model.module],
                                                          eval_set,
                                                          decode_params,
                                                          epoch=epoch)[0]
                                logger.info('  WER (%s): %.3f %%' %
                                            (eval_set.set, wer_test))
                            elif 'char' in args.label_type:
                                cer_test = eval_char([model.module],
                                                     eval_set,
                                                     decode_params,
                                                     epoch=epoch)[1][0]
                                logger.info('  CER (%s): %.3f / %.3f %%' %
                                            (eval_set.set, cer_test))
                            elif 'phone' in args.label_type:
                                per_test = eval_phone([model.module],
                                                      eval_set,
                                                      decode_params,
                                                      epoch=epoch)[0]
                                logger.info('  PER (%s): %.3f %%' %
                                            (eval_set.set, per_test))
                        elif args.metric == 'loss':
                            loss_test = eval_loss([model.module], eval_set,
                                                  decode_params)
                            logger.info('  Loss (%s): %.3f %%' %
                                        (eval_set.set, loss_test))
                        else:
                            raise NotImplementedError()
                else:
                    # Update learning rate
                    model.module.optimizer, learning_rate = lr_controller.decay_lr(
                        optimizer=model.module.optimizer,
                        learning_rate=learning_rate,
                        epoch=epoch,
                        value=metric_dev)

                    not_improved_epoch += 1

                duration_eval = time.time() - start_time_eval
                logger.info('Evaluation time: %.2f min' % (duration_eval / 60))

                # Early stopping
                if not_improved_epoch == args.not_improved_patient_epoch:
                    break

                if epoch == args.convert_to_sgd_epoch:
                    # Convert to fine-tuning stage
                    model.module.set_optimizer(
                        'sgd',
                        learning_rate_init=float(
                            args.learning_rate),  # TODO: ?
                        weight_decay=float(args.weight_decay),
                        clip_grad_norm=args.clip_grad_norm,
                        lr_schedule=False,
                        factor=args.decay_rate,
                        patience_epoch=args.decay_patient_epoch)
                    logger.info('========== Convert to SGD ==========')

            pbar_epoch = tqdm(total=len(train_set))
            pbar_all.update(len(train_set))

            if epoch == args.num_epochs:
                break

            start_time_step = time.time()
            start_time_epoch = time.time()
            epoch += 1

    duration_train = time.time() - start_time_train
    logger.info('Total time: %.2f hour' % (duration_train / 3600))

    tf_writer.close()
    pbar_epoch.close()
    pbar_all.close()

    return model.module.save_path
def main():

    # Load a config file
    config = load_config(os.path.join(args.model, 'config.yml'))

    decode_params = vars(args)

    # Merge config with args
    for k, v in config.items():
        if not hasattr(args, k):
            setattr(args, k, v)

    # Setting for logging
    logger = set_logger(os.path.join(args.model, 'decode.log'), key='decoding')

    for i, set in enumerate(args.eval_sets):
        # Load dataset
        eval_set = Dataset(
            csv_path=set,
            dict_path=os.path.join(args.model, 'dict.txt'),
            dict_path_sub=os.path.join(args.model, 'dict_sub.txt') if
            os.path.isfile(os.path.join(args.model, 'dict_sub.txt')) else None,
            label_type=args.label_type,
            batch_size=args.batch_size,
            max_epoch=args.num_epochs,
            max_num_frames=args.max_num_frames,
            min_num_frames=args.min_num_frames,
            is_test=False)

        if i == 0:
            args.num_classes = eval_set.num_classes
            args.input_dim = eval_set.input_dim
            args.num_classes_sub = eval_set.num_classes_sub

            # TODO(hirofumi): For cold fusion
            args.rnnlm_cf = None
            args.rnnlm_init = None

            # Load the ASR model
            model = Seq2seq(args)

            # Restore the saved parameters
            epoch, _, _, _ = model.load_checkpoint(args.model,
                                                   epoch=args.epoch)

            model.save_path = args.model

            # For shallow fusion
            if args.rnnlm_cf is None and args.rnnlm is not None and args.rnnlm_weight > 0:
                # Load a RNNLM config file
                config_rnnlm = load_config(
                    os.path.join(args.rnnlm, 'config.yml'))

                # Merge config with args
                args_rnnlm = argparse.Namespace()
                for k, v in config_rnnlm.items():
                    setattr(args_rnnlm, k, v)

                assert args.label_type == args_rnnlm.label_type
                args_rnnlm.num_classes = eval_set.num_classes

                # Load the pre-trianed RNNLM
                rnnlm = RNNLM(args_rnnlm)
                rnnlm.load_checkpoint(args.rnnlm, epoch=-1)
                if args_rnnlm.backward:
                    model.rnnlm_bwd_0 = rnnlm
                else:
                    model.rnnlm_fwd_0 = rnnlm

                logger.info('RNNLM path: %s' % args.rnnlm)
                logger.info('RNNLM weight: %.3f' % args.rnnlm_weight)
                logger.info('RNNLM backward: %s' %
                            str(config_rnnlm['backward']))

            # GPU setting
            model.set_cuda(deterministic=False, benchmark=True)

            logger.info('beam width: %d' % args.beam_width)
            logger.info('length penalty: %.3f' % args.length_penalty)
            logger.info('coverage penalty: %.3f' % args.coverage_penalty)
            logger.info('coverage threshold: %.3f' % args.coverage_threshold)
            logger.info('epoch: %d' % (epoch - 1))

        save_path = mkdir_join(args.model, 'att_weights')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)

        while True:
            batch, is_new_epoch = eval_set.next(decode_params['batch_size'])
            best_hyps, aw, perm_idx = model.decode(batch['xs'],
                                                   decode_params,
                                                   exclude_eos=False)
            ys = [batch['ys'][i] for i in perm_idx]

            for b in range(len(batch['xs'])):
                if args.label_type in ['word', 'wordpiece']:
                    token_list = eval_set.idx2word(best_hyps[b],
                                                   return_list=True)
                elif args.label_type == 'char':
                    token_list = eval_set.idx2char(best_hyps[b],
                                                   return_list=True)
                elif args.label_type == 'phone':
                    token_list = eval_set.idx2phone(best_hyps[b],
                                                    return_list=True)
                else:
                    raise NotImplementedError()
                token_list = [unicode(t, 'utf-8') for t in token_list]
                speaker = '_'.join(batch['utt_ids'][b].replace(
                    '-', '_').split('_')[:-2])

                # error check
                assert len(batch['xs'][b]) <= 2000

                plot_attention_weights(
                    aw[b][:len(token_list)],
                    label_list=token_list,
                    spectrogram=batch['xs'][b][:, :eval_set.input_dim]
                    if args.input_type == 'speech' else None,
                    save_path=mkdir_join(save_path, speaker,
                                         batch['utt_ids'][b] + '.png'),
                    figsize=(20, 8))

                # Reference
                if eval_set.is_test:
                    text_ref = ys[b]
                else:
                    if args.label_type in ['word', 'wordpiece']:
                        text_ref = eval_set.idx2word(ys[b])
                    if args.label_type in ['word', 'wordpiece']:
                        token_list = eval_set.idx2word(ys[b])
                    elif args.label_type == 'char':
                        token_list = eval_set.idx2char(ys[b])
                    elif args.label_type == 'phone':
                        token_list = eval_set.idx2phone(ys[b])

                # Hypothesis
                text_hyp = ' '.join(token_list)

                sys.stdout = open(
                    os.path.join(save_path, speaker,
                                 batch['utt_ids'][b] + '.txt'), 'w')
                ler = wer_align(
                    ref=text_ref.split(' '),
                    hyp=text_hyp.encode('utf-8').split(' '),
                    normalize=True,
                    double_byte=False)[0]  # TODO(hirofumi): add corpus to args
                print('\nLER: %.3f %%\n\n' % ler)

            if is_new_epoch:
                break
Exemple #6
0
def main():

    args = parse()

    # Load a conf file
    dir_name = os.path.dirname(args.recog_model[0])
    conf = load_config(os.path.join(dir_name, 'conf.yml'))

    # Overwrite conf
    for k, v in conf.items():
        if 'recog' not in k:
            setattr(args, k, v)
    recog_params = vars(args)

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'plot.log')):
        os.remove(os.path.join(args.recog_dir, 'plot.log'))
    logger = set_logger(os.path.join(args.recog_dir, 'plot.log'),
                        key='decoding')

    for i, s in enumerate(args.recog_sets):
        # Load dataset
        dataset = Dataset(
            corpus=args.corpus,
            tsv_path=s,
            dict_path=os.path.join(dir_name, 'dict.txt'),
            dict_path_sub1=os.path.join(dir_name, 'dict_sub1.txt') if
            os.path.isfile(os.path.join(dir_name, 'dict_sub1.txt')) else False,
            nlsyms=args.nlsyms,
            wp_model=os.path.join(dir_name, 'wp.model'),
            unit=args.unit,
            unit_sub1=args.unit_sub1,
            batch_size=args.recog_batch_size,
            is_test=True)

        if i == 0:
            # Load the ASR model
            model = Speech2Text(args, dir_name)
            model, checkpoint = load_checkpoint(model, args.recog_model[0])
            epoch = checkpoint['epoch']

            # ensemble (different models)
            ensemble_models = [model]
            if len(args.recog_model) > 1:
                for recog_model_e in args.recog_model[1:]:
                    # Load the ASR model
                    conf_e = load_config(
                        os.path.join(os.path.dirname(recog_model_e),
                                     'conf.yml'))
                    args_e = copy.deepcopy(args)
                    for k, v in conf_e.items():
                        if 'recog' not in k:
                            setattr(args_e, k, v)
                    model_e = Speech2Text(args_e)
                    model_e, _ = load_checkpoint(model_e, recog_model_e)
                    model_e.cuda()
                    ensemble_models += [model_e]

            # Load the LM for shallow fusion
            if not args.lm_fusion:
                if args.recog_lm is not None and args.recog_lm_weight > 0:
                    conf_lm = load_config(
                        os.path.join(os.path.dirname(args.recog_lm),
                                     'conf.yml'))
                    args_lm = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm, k, v)
                    lm = select_lm(args_lm)
                    lm, _ = load_checkpoint(lm, args.recog_lm)
                    if args_lm.backward:
                        model.lm_bwd = lm
                    else:
                        model.lm_fwd = lm

                if args.recog_lm_bwd is not None and args.recog_lm_weight > 0 and \
                        (args.recog_fwd_bwd_attention or args.recog_reverse_lm_rescoring):
                    conf_lm = load_config(
                        os.path.join(args.recog_lm_bwd, 'conf.yml'))
                    args_lm_bwd = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm_bwd, k, v)
                    lm_bwd = select_lm(args_lm_bwd)
                    lm_bwd, _ = load_checkpoint(lm_bwd, args.recog_lm_bwd)
                    model.lm_bwd = lm_bwd

            if not args.recog_unit:
                args.recog_unit = args.unit

            logger.info('recog unit: %s' % args.recog_unit)
            logger.info('recog metric: %s' % args.recog_metric)
            logger.info('recog oracle: %s' % args.recog_oracle)
            logger.info('epoch: %d' % (epoch - 1))
            logger.info('batch size: %d' % args.recog_batch_size)
            logger.info('beam width: %d' % args.recog_beam_width)
            logger.info('min length ratio: %.3f' % args.recog_min_len_ratio)
            logger.info('max length ratio: %.3f' % args.recog_max_len_ratio)
            logger.info('length penalty: %.3f' % args.recog_length_penalty)
            logger.info('coverage penalty: %.3f' % args.recog_coverage_penalty)
            logger.info('coverage threshold: %.3f' %
                        args.recog_coverage_threshold)
            logger.info('CTC weight: %.3f' % args.recog_ctc_weight)
            logger.info('LM path: %s' % args.recog_lm)
            logger.info('LM path (bwd): %s' % args.recog_lm_bwd)
            logger.info('LM weight: %.3f' % args.recog_lm_weight)
            logger.info('GNMT: %s' % args.recog_gnmt_decoding)
            logger.info('forward-backward attention: %s' %
                        args.recog_fwd_bwd_attention)
            logger.info('reverse LM rescoring: %s' %
                        args.recog_reverse_lm_rescoring)
            logger.info('resolving UNK: %s' % args.recog_resolving_unk)
            logger.info('ensemble: %d' % (len(ensemble_models)))
            logger.info('ASR decoder state carry over: %s' %
                        (args.recog_asr_state_carry_over))
            logger.info('LM state carry over: %s' %
                        (args.recog_lm_state_carry_over))
            logger.info('cache size: %d' % (args.recog_n_caches))
            logger.info('cache type: %s' % (args.recog_cache_type))
            logger.info('cache word frequency threshold: %s' %
                        (args.recog_cache_word_freq))
            logger.info('cache theta (speech): %.3f' %
                        (args.recog_cache_theta_speech))
            logger.info('cache lambda (speech): %.3f' %
                        (args.recog_cache_lambda_speech))
            logger.info('cache theta (lm): %.3f' % (args.recog_cache_theta_lm))
            logger.info('cache lambda (lm): %.3f' %
                        (args.recog_cache_lambda_lm))

            # GPU setting
            model.cuda()
            # TODO(hirofumi): move this

        save_path = mkdir_join(args.recog_dir, 'att_weights')
        if args.recog_n_caches > 0:
            save_path_cache = mkdir_join(args.recog_dir, 'cache')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)
            if args.recog_n_caches > 0:
                shutil.rmtree(save_path_cache)
                os.mkdir(save_path_cache)

        while True:
            batch, is_new_epoch = dataset.next(
                recog_params['recog_batch_size'])
            best_hyps_id, aws, (cache_attn_hist, cache_id_hist) = model.decode(
                batch['xs'],
                recog_params,
                dataset.idx2token[0],
                exclude_eos=False,
                refs_id=batch['ys'],
                ensemble_models=ensemble_models[1:]
                if len(ensemble_models) > 1 else [],
                speakers=batch['sessions']
                if dataset.corpus == 'swbd' else batch['speakers'])

            if model.bwd_weight > 0.5:
                # Reverse the order
                best_hyps_id = [hyp[::-1] for hyp in best_hyps_id]
                aws = [aw[::-1] for aw in aws]

            for b in range(len(batch['xs'])):
                tokens = dataset.idx2token[0](best_hyps_id[b],
                                              return_list=True)
                spk = batch['speakers'][b]

                plot_attention_weights(
                    aws[b][:len(tokens)],
                    tokens,
                    spectrogram=batch['xs'][b][:, :dataset.input_dim]
                    if args.input_type == 'speech' else None,
                    save_path=mkdir_join(save_path, spk,
                                         batch['utt_ids'][b] + '.png'),
                    figsize=(20, 8))

                if args.recog_n_caches > 0 and cache_id_hist is not None and cache_attn_hist is not None:
                    n_keys, n_queries = cache_attn_hist[0].shape
                    # mask = np.ones((n_keys, n_queries))
                    # for i in range(n_queries):
                    #     mask[:n_keys - i, -(i + 1)] = 0
                    mask = np.zeros((n_keys, n_queries))

                    plot_cache_weights(
                        cache_attn_hist[0],
                        keys=dataset.idx2token[0](cache_id_hist[-1],
                                                  return_list=True),  # fifo
                        # keys=dataset.idx2token[0](cache_id_hist, return_list=True),  # dict
                        queries=tokens,
                        save_path=mkdir_join(save_path_cache, spk,
                                             batch['utt_ids'][b] + '.png'),
                        figsize=(40, 16),
                        mask=mask)

                if model.bwd_weight > 0.5:
                    hyp = ' '.join(tokens[::-1])
                else:
                    hyp = ' '.join(tokens)
                logger.info('utt-id: %s' % batch['utt_ids'][b])
                logger.info('Ref: %s' % batch['text'][b].lower())
                logger.info('Hyp: %s' % hyp)
                logger.info('-' * 50)

            if is_new_epoch:
                break
Exemple #7
0
def main():

    # Load a config file
    config = load_config(os.path.join(args.model, 'config.yml'))

    decode_params = vars(args)

    # Merge config with args
    for k, v in config.items():
        if not hasattr(args, k):
            setattr(args, k, v)

    # Setting for logging
    logger = set_logger(os.path.join(args.model, 'decode.log'), key='decoding')

    wer_mean, cer_mean, per_mean = 0, 0, 0
    for i, set in enumerate(args.eval_sets):
        # Load dataset
        eval_set = Dataset(
            csv_path=set,
            dict_path=os.path.join(args.model, 'dict.txt'),
            dict_path_sub=os.path.join(args.model, 'dict_sub.txt') if
            os.path.isfile(os.path.join(args.model, 'dict_sub.txt')) else None,
            label_type=args.label_type,
            batch_size=args.batch_size,
            max_epoch=args.num_epochs,
            is_test=True)

        if i == 0:
            args.num_classes = eval_set.num_classes
            args.input_dim = eval_set.input_dim
            args.num_classes_sub = eval_set.num_classes_sub

            # For cold fusion
            # if args.rnnlm_cf:
            #     # Load a RNNLM config file
            #     config['rnnlm_config'] = load_config(os.path.join(args.model, 'config_rnnlm.yml'))
            #
            #     assert args.label_type == config['rnnlm_config']['label_type']
            #     rnnlm_args.num_classes = eval_set.num_classes
            #     logger.info('RNNLM path: %s' % config['rnnlm'])
            #     logger.info('RNNLM weight: %.3f' % args.rnnlm_weight)
            # else:
            #     pass

            args.rnnlm_cf = None
            args.rnnlm_init = None

            # Load the ASR model
            model = Seq2seq(args)

            # Restore the saved parameters
            epoch, _, _, _ = model.load_checkpoint(args.model,
                                                   epoch=args.epoch)

            model.save_path = args.model

            # For shallow fusion
            if args.rnnlm_cf is None and args.rnnlm is not None and args.rnnlm_weight > 0:
                # Load a RNNLM config file
                config_rnnlm = load_config(
                    os.path.join(args.rnnlm, 'config.yml'))

                # Merge config with args
                args_rnnlm = argparse.Namespace()
                for k, v in config_rnnlm.items():
                    setattr(args_rnnlm, k, v)

                assert args.label_type == args_rnnlm.label_type
                args_rnnlm.num_classes = eval_set.num_classes

                # Load the pre-trianed RNNLM
                rnnlm = RNNLM(args_rnnlm)
                rnnlm.load_checkpoint(args.rnnlm, epoch=-1)
                if args_rnnlm.backward:
                    model.rnnlm_bwd_0 = rnnlm
                else:
                    model.rnnlm_fwd_0 = rnnlm

                logger.info('RNNLM path: %s' % args.rnnlm)
                logger.info('RNNLM weight: %.3f' % args.rnnlm_weight)
                logger.info('RNNLM backward: %s' %
                            str(config_rnnlm['backward']))

            # GPU setting
            model.set_cuda(deterministic=False, benchmark=True)

            logger.info('beam width: %d' % args.beam_width)
            logger.info('length penalty: %.3f' % args.length_penalty)
            logger.info('coverage penalty: %.3f' % args.coverage_penalty)
            logger.info('coverage threshold: %.3f' % args.coverage_threshold)
            logger.info('epoch: %d' % (epoch - 1))

        start_time = time.time()

        if args.label_type == 'word':
            wer, _, _, _, decode_dir = eval_word([model],
                                                 eval_set,
                                                 decode_params,
                                                 epoch=epoch - 1,
                                                 progressbar=True)
            wer_mean += wer
            logger.info('  WER (%s): %.3f %%' % (eval_set.set, wer))
        elif args.label_type == 'wordpiece':
            wer, _, _, _, decode_dir = eval_wordpiece([model],
                                                      eval_set,
                                                      decode_params,
                                                      os.path.join(
                                                          args.model,
                                                          'wp.model'),
                                                      epoch=epoch - 1,
                                                      progressbar=True)
            wer_mean += wer
            logger.info('  WER (%s): %.3f %%' % (eval_set.set, wer))

        elif 'char' in args.label_type:
            (wer, _, _, _), (cer, _, _,
                             _), decode_dir = eval_char([model],
                                                        eval_set,
                                                        decode_params,
                                                        epoch=epoch - 1,
                                                        progressbar=True)
            wer_mean += wer
            cer_mean += cer
            logger.info('  WER / CER (%s): %.3f / %.3f %%' %
                        (eval_set.set, wer, cer))

        elif 'phone' in args.label_type:
            per, _, _, _, decode_dir = eval_phone([model],
                                                  eval_set,
                                                  decode_params,
                                                  epoch=epoch - 1,
                                                  progressbar=True)
            per_mean += per
            logger.info('  PER (%s): %.3f %%' % (eval_set.set, per))
        else:
            raise ValueError(args.label_type)

        logger.info('Elasped time: %.2f [sec.]:' % (time.time() - start_time))

    if args.label_type == 'word':
        logger.info('  WER (mean): %.3f %%\n' %
                    (wer_mean / len(args.eval_sets)))
    if args.label_type == 'wordpiece':
        logger.info('  WER (mean): %.3f %%\n' %
                    (wer_mean / len(args.eval_sets)))
    elif 'char' in args.label_type:
        logger.info(
            '  WER / CER (mean): %.3f / %.3f %%\n' %
            (wer_mean / len(args.eval_sets), cer_mean / len(args.eval_sets)))
    elif 'phone' in args.label_type:
        logger.info('  PER (mean): %.3f %%\n' %
                    (per_mean / len(args.eval_sets)))

    print(decode_dir)
Exemple #8
0
def main():

    # Load a config file
    if args.resume:
        config = load_config(os.path.join(args.resume, 'config.yml'))
        for k, v in config.items():
            setattr(args, k, v)

    # Automatically reduce batch size in multi-GPU setting
    if args.ngpus > 1:
        args.batch_size -= 10
        args.print_step //= args.ngpus

    subsample_factor = 1
    subsample_factor_sub1 = 1
    subsample_factor_sub2 = 1
    subsample = [int(s) for s in args.subsample.split('_')]
    if args.conv_poolings:
        for p in args.conv_poolings.split('_'):
            p = int(p.split(',')[0].replace('(', ''))
            if p > 1:
                subsample_factor *= p
    if args.train_set_sub1:
        subsample_factor_sub1 = subsample_factor * np.prod(
            subsample[:args.enc_nlayers_sub1 - 1])
    if args.train_set_sub2:
        subsample_factor_sub2 = subsample_factor * np.prod(
            subsample[:args.enc_nlayers_sub2 - 1])
    subsample_factor *= np.prod(subsample)

    # Load dataset
    train_set = Dataset(csv_path=args.train_set,
                        csv_path_sub1=args.train_set_sub1,
                        csv_path_sub2=args.train_set_sub2,
                        dict_path=args.dict,
                        dict_path_sub1=args.dict_sub1,
                        dict_path_sub2=args.dict_sub2,
                        unit=args.unit,
                        unit_sub1=args.unit_sub1,
                        unit_sub2=args.unit_sub2,
                        wp_model=args.wp_model,
                        wp_model_sub1=args.wp_model_sub1,
                        wp_model_sub2=args.wp_model_sub2,
                        batch_size=args.batch_size * args.ngpus,
                        nepochs=args.nepochs,
                        min_nframes=args.min_nframes,
                        max_nframes=args.max_nframes,
                        sort_by_input_length=True,
                        short2long=True,
                        sort_stop_epoch=args.sort_stop_epoch,
                        dynamic_batching=args.dynamic_batching,
                        ctc=args.ctc_weight > 0,
                        ctc_sub1=args.ctc_weight_sub1 > 0,
                        ctc_sub2=args.ctc_weight_sub2 > 0,
                        subsample_factor=subsample_factor,
                        subsample_factor_sub1=subsample_factor_sub1,
                        subsample_factor_sub2=subsample_factor_sub2,
                        skip_speech=(args.input_type != 'speech'))
    dev_set = Dataset(csv_path=args.dev_set,
                      csv_path_sub1=args.dev_set_sub1,
                      csv_path_sub2=args.dev_set_sub2,
                      dict_path=args.dict,
                      dict_path_sub1=args.dict_sub1,
                      dict_path_sub2=args.dict_sub2,
                      unit=args.unit,
                      unit_sub1=args.unit_sub1,
                      unit_sub2=args.unit_sub2,
                      wp_model=args.wp_model,
                      wp_model_sub1=args.wp_model_sub1,
                      wp_model_sub2=args.wp_model_sub2,
                      batch_size=args.batch_size * args.ngpus,
                      min_nframes=args.min_nframes,
                      max_nframes=args.max_nframes,
                      shuffle=True,
                      ctc=args.ctc_weight > 0,
                      ctc_sub1=args.ctc_weight_sub1 > 0,
                      ctc_sub2=args.ctc_weight_sub2 > 0,
                      subsample_factor=subsample_factor,
                      subsample_factor_sub1=subsample_factor_sub1,
                      subsample_factor_sub2=subsample_factor_sub2,
                      skip_speech=(args.input_type != 'speech'))
    eval_sets = []
    for set in args.eval_sets:
        eval_sets += [
            Dataset(csv_path=set,
                    dict_path=args.dict,
                    unit=args.unit,
                    wp_model=args.wp_model,
                    batch_size=1,
                    is_test=True,
                    skip_speech=(args.input_type != 'speech'))
        ]

    args.vocab = train_set.vocab
    args.vocab_sub1 = train_set.vocab_sub1
    args.vocab_sub2 = train_set.vocab_sub2
    args.input_dim = train_set.input_dim

    # Load a RNNLM config file for cold fusion & RNNLM initialization
    # if config['rnnlm_cold_fusion']:
    #     if args.model:
    #         config['rnnlm_config_cold_fusion'] = load_config(
    #             os.path.join(config['rnnlm_cold_fusion'], 'config.yml'), is_eval=True)
    #     elif args.resume:
    #         config = load_config(os.path.join(
    #             args.resume, 'config_rnnlm_cf.yml'))
    #     assert args.unit == config['rnnlm_config_cold_fusion']['unit']
    #     config['rnnlm_config_cold_fusion']['vocab'] = train_set.vocab
    args.rnnlm_cold_fusion = False

    # Model setting
    if args.transformer:
        model = Transformer(args)
        dir_name = 'transformer'
        if len(args.conv_channels) > 0:
            tmp = dir_name
            dir_name = 'conv' + str(len(args.conv_channels.split('_'))) + 'L'
            if args.conv_batch_norm:
                dir_name += 'bn'
            dir_name += tmp
        dir_name += str(args.d_model) + 'H'
        dir_name += str(args.enc_nlayers) + 'L'
        dir_name += str(args.dec_nlayers) + 'L'
        dir_name += '_head' + str(args.attn_nheads)
        dir_name += '_' + args.optimizer
        dir_name += '_lr' + str(args.learning_rate)
        dir_name += '_bs' + str(args.batch_size)
        dir_name += '_ls' + str(args.lsm_prob)
        dir_name += '_' + str(args.pre_process) + 't' + str(args.post_process)
        if args.nstacks > 1:
            dir_name += '_stack' + str(args.nstacks)
        if args.bwd_weight > 0:
            dir_name += '_bwd' + str(args.bwd_weight)
    else:
        model = Seq2seq(args)
        dir_name = args.enc_type
        if args.conv_channels and len(args.conv_channels.split('_')) > 0:
            tmp = dir_name
            dir_name = 'conv' + str(len(args.conv_channels.split('_'))) + 'L'
            if args.conv_batch_norm:
                dir_name += 'bn'
            dir_name += tmp
        dir_name += str(args.enc_nunits) + 'H'
        dir_name += str(args.enc_nprojs) + 'P'
        dir_name += str(args.enc_nlayers) + 'L'
        dir_name += '_' + args.subsample_type + str(subsample_factor)
        dir_name += '_' + args.dec_type
        if args.internal_lm > 0:
            dir_name += 'LM'
        dir_name += str(args.dec_nunits) + 'H'
        # dir_name += str(args.dec_nprojs) + 'P'
        dir_name += str(args.dec_nlayers) + 'L'
        if args.tie_embedding:
            dir_name += '_tie'
        dir_name += '_' + args.attn_type
        if args.attn_nheads > 1:
            dir_name += '_head' + str(args.attn_nheads)
        if args.attn_sigmoid:
            dir_name += '_sig'
        dir_name += '_' + args.optimizer
        dir_name += '_lr' + str(args.learning_rate)
        dir_name += '_bs' + str(args.batch_size)
        dir_name += '_ss' + str(args.ss_prob)
        dir_name += '_ls' + str(args.lsm_prob)
        if args.focal_loss_weight > 0:
            dir_name += '_fl' + str(args.focal_loss_weight)
        if args.layer_norm:
            dir_name += '_layernorm'
        # MTL
        if args.mtl_per_batch:
            dir_name += '_mtlperbatch'
            if args.ctc_weight > 0:
                dir_name += '_' + args.unit + 'ctc'
            if args.bwd_weight > 0:
                dir_name += '_' + args.unit + 'bwd'
            if args.lmobj_weight > 0:
                dir_name += '_' + args.unit + 'lmobj'
            if args.train_set_sub1:
                dir_name += '_' + args.unit_sub1
                if args.ctc_weight_sub1 == 0:
                    dir_name += 'att'
                elif args.ctc_weight_sub1 == args.sub1_weight:
                    dir_name += 'ctc'
                else:
                    dir_name += 'attctc'
            if args.train_set_sub2:
                dir_name += '_' + args.unit_sub2
                if args.ctc_weight_sub2 == 0:
                    dir_name += 'att'
                elif args.ctc_weight_sub2 == args.sub2_weight:
                    dir_name += 'ctc'
                else:
                    dir_name += 'attctc'
        else:
            if args.ctc_weight > 0:
                dir_name += '_ctc' + str(args.ctc_weight)
            if args.bwd_weight > 0:
                dir_name += '_bwd' + str(args.bwd_weight)
            if args.lmobj_weight > 0:
                dir_name += '_lmobj' + str(args.lmobj_weight)
            if args.sub1_weight > 0:
                if args.ctc_weight_sub1 == args.sub1_weight:
                    dir_name += '_ctcsub1' + str(args.ctc_weight_sub1)
                elif args.ctc_weight_sub1 == 0:
                    dir_name += '_attsub1' + str(args.sub1_weight)
                else:
                    dir_name += '_ctcsub1' + str(args.ctc_weight_sub1) + 'attsub1' + \
                        str(args.sub1_weight - args.ctc_weight_sub1)
                if args.sub2_weight > 0:
                    if args.ctc_weight_sub2 == args.sub2_weight:
                        dir_name += '_ctcsub2' + str(args.ctc_weight_sub2)
                    elif args.ctc_weight_sub2 == 0:
                        dir_name += '_attsub2' + str(args.sub2_weight)
                    else:
                        dir_name += '_ctcsub2' + str(args.ctc_weight_sub2) + 'attsub2' + \
                            str(args.sub2_weight - args.ctc_weight_sub2)
        if args.task_specific_layer:
            dir_name += '_tsl'
        # Pre-training
        if args.pretrained_model and os.path.isdir(args.pretrained_model):
            # Load a config file
            config_pre = load_config(
                os.path.join(args.pretrained_model, 'config.yml'))
            dir_name += '_' + config_pre['unit'] + 'pt'

    if not args.resume:
        # Load pre-trained RNNLM
        # if config['rnnlm_cold_fusion']:
        #     rnnlm = RNNLM(args)
        #     rnnlm.load_checkpoint(save_path=config['rnnlm_cold_fusion'], epoch=-1)
        #     rnnlm.flatten_parameters()
        #
        #     # Fix RNNLM parameters
        #     for param in rnnlm.parameters():
        #         param.requires_grad = False
        #
        #     # Set pre-trained parameters
        #     if config['rnnlm_config_cold_fusion']['backward']:
        #         model.dec_0_bwd.rnnlm = rnnlm
        #     else:
        #         model.dec_0_fwd.rnnlm = rnnlm
        # TODO(hirofumi): 最初にRNNLMのモデルをコピー

        # Set save path
        save_path = mkdir_join(
            args.model,
            '_'.join(os.path.basename(args.train_set).split('.')[:-1]),
            dir_name)
        model.set_save_path(save_path)  # avoid overwriting

        # Save the config file as a yaml file
        save_config(vars(args), model.save_path)

        # Save the dictionary & wp_model
        shutil.copy(args.dict, os.path.join(model.save_path, 'dict.txt'))
        if args.dict_sub1:
            shutil.copy(args.dict_sub1,
                        os.path.join(model.save_path, 'dict_sub1.txt'))
        if args.dict_sub2:
            shutil.copy(args.dict_sub2,
                        os.path.join(model.save_path, 'dict_sub2.txt'))
        if args.unit == 'wp':
            shutil.copy(args.wp_model, os.path.join(model.save_path,
                                                    'wp.model'))

        # Setting for logging
        logger = set_logger(os.path.join(model.save_path, 'train.log'),
                            key='training')

        for k, v in sorted(vars(args).items(), key=lambda x: x[0]):
            logger.info('%s: %s' % (k, str(v)))

        # Count total parameters
        for n in sorted(list(model.num_params_dict.keys())):
            nparams = model.num_params_dict[n]
            logger.info("%s %d" % (n, nparams))
        logger.info("Total %.2f M parameters" %
                    (model.total_parameters / 1000000))
        logger.info(model)

        # Initialize with pre-trained model's parameters
        if args.pretrained_model and os.path.isdir(args.pretrained_model):
            # Merge config with args
            for k, v in config_pre.items():
                setattr(args_pre, k, v)

            # Load the ASR model
            model_pre = Seq2seq(args_pre)
            model_pre.load_checkpoint(args.pretrained_model, epoch=-1)

            # Overwrite parameters
            param_dict = dict(model_pre.named_parameters())
            for n, p in model.named_parameters():
                if n in param_dict.keys() and p.size() == param_dict[n].size():
                    p.data = param_dict[n].data
                    logger.info('Overwrite %s' % n)

        # Set optimizer
        model.set_optimizer(optimizer=args.optimizer,
                            learning_rate_init=float(args.learning_rate),
                            weight_decay=float(args.weight_decay),
                            clip_grad_norm=args.clip_grad_norm,
                            lr_schedule=False,
                            factor=args.decay_rate,
                            patience_epoch=args.decay_patient_epoch)

        epoch, step = 1, 1
        learning_rate = float(args.learning_rate)
        metric_dev_best = 10000

    # NOTE: Restart from the last checkpoint
    # elif args.resume:
    #     # Set save path
    #     model.save_path = args.resume
    #
    #     # Setting for logging
    #     logger = set_logger(os.path.join(model.save_path, 'train.log'), key='training')
    #
    #     # Set optimizer
    #     model.set_optimizer(
    #         optimizer=config['optimizer'],
    #         learning_rate_init=float(config['learning_rate']),  # on-the-fly
    #         weight_decay=float(config['weight_decay']),
    #         clip_grad_norm=config['clip_grad_norm'],
    #         lr_schedule=False,
    #         factor=config['decay_rate'],
    #         patience_epoch=config['decay_patient_epoch'])
    #
    #     # Restore the last saved model
    #     epoch, step, learning_rate, metric_dev_best = model.load_checkpoint(
    #         save_path=args.resume, epoch=-1, restart=True)
    #
    #     if epoch >= config['convert_to_sgd_epoch']:
    #         model.set_optimizer(
    #             optimizer='sgd',
    #             learning_rate_init=float(config['learning_rate']),  # on-the-fly
    #             weight_decay=float(config['weight_decay']),
    #             clip_grad_norm=config['clip_grad_norm'],
    #             lr_schedule=False,
    #             factor=config['decay_rate'],
    #             patience_epoch=config['decay_patient_epoch'])
    #
    #     if config['rnnlm_cold_fusion']:
    #         if config['rnnlm_config_cold_fusion']['backward']:
    #             model.rnnlm_0_bwd.flatten_parameters()
    #         else:
    #             model.rnnlm_0_fwd.flatten_parameters()

    train_set.epoch = epoch - 1  # start from index:0

    # GPU setting
    if args.ngpus >= 1:
        model = CustomDataParallel(model,
                                   device_ids=list(range(0, args.ngpus, 1)),
                                   deterministic=False,
                                   benchmark=True)
        model.cuda()

    logger.info('PID: %s' % os.getpid())
    logger.info('USERNAME: %s' % os.uname()[1])

    # Set process name
    # if args.job_name:
    #     setproctitle(args.job_name)
    # else:
    #     setproctitle(dir_name)

    # Set learning rate controller
    lr_controller = Controller(learning_rate_init=learning_rate,
                               decay_type=args.decay_type,
                               decay_start_epoch=args.decay_start_epoch,
                               decay_rate=args.decay_rate,
                               decay_patient_epoch=args.decay_patient_epoch,
                               lower_better=True,
                               best_value=metric_dev_best,
                               model_size=args.d_model,
                               warmup_step=args.warmup_step,
                               factor=1)

    # Set reporter
    reporter = Reporter(model.module.save_path, tensorboard=True)

    if args.mtl_per_batch:
        # NOTE: from easier to harder tasks
        tasks = ['ys']
        if 0 < args.ctc_weight < 1:
            tasks = ['ys.ctc'] + tasks
        if 0 < args.bwd_weight < 1:
            tasks = ['ys.bwd'] + tasks
        if 0 < args.lmobj_weight < 1:
            tasks = ['ys.lmobj'] + tasks
        if args.train_set_sub1:
            if args.ctc_weight_sub1 > 0:
                tasks = ['ys_sub1.ctc'] + tasks
            else:
                tasks = ['ys_sub1'] + tasks
        if args.train_set_sub2:
            if args.ctc_weight_sub2 > 0:
                tasks = ['ys_sub2.ctc'] + tasks
            else:
                tasks = ['ys_sub2'] + tasks
    else:
        tasks = ['all']

    start_time_train = time.time()
    start_time_epoch = time.time()
    start_time_step = time.time()
    not_improved_epoch = 0
    pbar_epoch = tqdm(total=len(train_set))
    while True:
        # Compute loss in the training set
        batch_train, is_new_epoch = train_set.next()

        # Change tasks depending on task
        for task in tasks:
            model.module.optimizer.zero_grad()
            loss, reporter = model(batch_train, reporter=reporter, task=task)
            if len(model.device_ids) > 1:
                loss.backward(torch.ones(len(model.device_ids)))
            else:
                loss.backward()
            loss.detach()  # Trancate the graph
            if args.clip_grad_norm > 0:
                torch.nn.utils.clip_grad_norm_(model.module.parameters(),
                                               args.clip_grad_norm)
            model.module.optimizer.step()
            loss_train = loss.item()
            del loss
        reporter.step(is_eval=False)

        # Update learning rate
        if args.decay_type == 'warmup':
            model.module.optimizer, learning_rate = lr_controller.warmup_lr(
                optimizer=model.module.optimizer,
                learning_rate=learning_rate,
                step=step)

        if step % args.print_step == 0:
            # Compute loss in the dev set
            batch_dev = dev_set.next()[0]
            # Change tasks depending on task
            for task in tasks:
                loss, reporter = model(batch_dev,
                                       reporter=reporter,
                                       task=task,
                                       is_eval=True)
                loss_dev = loss.item()
                del loss
            reporter.step(is_eval=True)

            duration_step = time.time() - start_time_step
            if args.input_type == 'speech':
                x_len = max(len(x) for x in batch_train['xs'])
            elif args.input_type == 'text':
                x_len = max(len(x) for x in batch_train['ys'])
            logger.info(
                "step:%d(ep:%.2f) loss:%.3f(%.3f)/lr:%.5f/bs:%d/x_len:%d (%.2f min)"
                % (step, train_set.epoch_detail, loss_train, loss_dev,
                   learning_rate, len(
                       batch_train['utt_ids']), x_len, duration_step / 60))
            start_time_step = time.time()
        step += args.ngpus
        pbar_epoch.update(len(batch_train['utt_ids']))

        # Save fugures of loss and accuracy
        if step % (args.print_step * 10) == 0:
            reporter.snapshot()

        # Save checkpoint and evaluate model per epoch
        if is_new_epoch:
            duration_epoch = time.time() - start_time_epoch
            logger.info('========== EPOCH:%d (%.2f min) ==========' %
                        (epoch, duration_epoch / 60))

            if epoch < args.eval_start_epoch:
                # Save the model
                model.module.save_checkpoint(model.module.save_path, epoch,
                                             step - 1, learning_rate,
                                             metric_dev_best)
            else:
                start_time_eval = time.time()
                # dev
                if args.metric == 'edit_distance':
                    if args.unit in ['word', 'word_char']:
                        metric_dev = eval_word([model.module],
                                               dev_set,
                                               decode_params,
                                               epoch=epoch)[0]
                        logger.info('WER (%s): %.3f %%' %
                                    (dev_set.set, metric_dev))
                    elif args.unit == 'wp':
                        metric_dev = eval_wordpiece([model.module],
                                                    dev_set,
                                                    decode_params,
                                                    epoch=epoch)[0]
                        logger.info('WER (%s): %.3f %%' %
                                    (dev_set.set, metric_dev))
                    elif 'char' in args.unit:
                        dev_results = eval_char([model.module],
                                                dev_set,
                                                decode_params,
                                                epoch=epoch)
                        metric_dev = dev_results[1][0]
                        wer_dev = dev_results[0][0]
                        logger.info('CER (%s): %.3f %%' %
                                    (dev_set.set, metric_dev))
                        logger.info('WER (%s): %.3f %%' %
                                    (dev_set.set, wer_dev))
                    elif 'phone' in args.unit:
                        metric_dev = eval_phone([model.module],
                                                dev_set,
                                                decode_params,
                                                epoch=epoch)[0]
                        logger.info('PER (%s): %.3f %%' %
                                    (dev_set.set, metric_dev))
                elif args.metric == 'loss':
                    metric_dev = eval_loss([model.module], dev_set,
                                           decode_params)
                    logger.info('Loss (%s): %.3f %%' %
                                (dev_set.set, metric_dev))
                else:
                    raise NotImplementedError()

                # Update learning rate
                if args.decay_type != 'warmup':
                    model.module.optimizer, learning_rate = lr_controller.decay_lr(
                        optimizer=model.module.optimizer,
                        learning_rate=learning_rate,
                        epoch=epoch,
                        value=metric_dev)

                if metric_dev < metric_dev_best:
                    metric_dev_best = metric_dev
                    not_improved_epoch = 0
                    logger.info('||||| Best Score |||||')

                    # Save the model
                    model.module.save_checkpoint(model.module.save_path, epoch,
                                                 step - 1, learning_rate,
                                                 metric_dev_best)

                    # test
                    for eval_set in eval_sets:
                        if args.metric == 'edit_distance':
                            if args.unit in ['word', 'word_char']:
                                wer_test = eval_word([model.module],
                                                     eval_set,
                                                     decode_params,
                                                     epoch=epoch)[0]
                                logger.info('WER (%s): %.3f %%' %
                                            (eval_set.set, wer_test))
                            elif args.unit == 'wp':
                                wer_test = eval_wordpiece([model.module],
                                                          eval_set,
                                                          decode_params,
                                                          epoch=epoch)[0]
                                logger.info('WER (%s): %.3f %%' %
                                            (eval_set.set, wer_test))
                            elif 'char' in args.unit:
                                test_results = eval_char([model.module],
                                                         eval_set,
                                                         decode_params,
                                                         epoch=epoch)
                                cer_test = test_results[1][0]
                                wer_test = test_results[0][0]
                                logger.info('CER (%s): %.3f %%' %
                                            (eval_set.set, cer_test))
                                logger.info('WER (%s): %.3f %%' %
                                            (eval_set.set, wer_test))
                            elif 'phone' in args.unit:
                                per_test = eval_phone([model.module],
                                                      eval_set,
                                                      decode_params,
                                                      epoch=epoch)[0]
                                logger.info('PER (%s): %.3f %%' %
                                            (eval_set.set, per_test))
                        elif args.metric == 'loss':
                            loss_test = eval_loss([model.module], eval_set,
                                                  decode_params)
                            logger.info('Loss (%s): %.3f %%' %
                                        (eval_set.set, loss_test))
                        else:
                            raise NotImplementedError()
                else:
                    not_improved_epoch += 1

                duration_eval = time.time() - start_time_eval
                logger.info('Evaluation time: %.2f min' % (duration_eval / 60))

                # Early stopping
                if not_improved_epoch == args.not_improved_patient_epoch:
                    break

                if epoch == args.convert_to_sgd_epoch:
                    # Convert to fine-tuning stage
                    model.module.set_optimizer(
                        'sgd',
                        learning_rate_init=float(
                            args.learning_rate),  # TODO: ?
                        weight_decay=float(args.weight_decay),
                        clip_grad_norm=args.clip_grad_norm,
                        lr_schedule=False,
                        factor=args.decay_rate,
                        patience_epoch=args.decay_patient_epoch)
                    logger.info('========== Convert to SGD ==========')

            pbar_epoch = tqdm(total=len(train_set))

            if epoch == args.nepochs:
                break

            start_time_step = time.time()
            start_time_epoch = time.time()
            epoch += 1

    duration_train = time.time() - start_time_train
    logger.info('Total time: %.2f hour' % (duration_train / 3600))

    if reporter.tensorboard:
        reporter.tf_writer.close()
    pbar_epoch.close()

    return model.module.save_path
Exemple #9
0
def main():

    args = parse()

    # Load a conf file
    dir_name = os.path.dirname(args.recog_model[0])
    conf = load_config(os.path.join(dir_name, 'conf.yml'))

    # Overwrite conf
    for k, v in conf.items():
        if 'recog' not in k:
            setattr(args, k, v)
    recog_params = vars(args)

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'plot.log')):
        os.remove(os.path.join(args.recog_dir, 'plot.log'))
    logger = set_logger(os.path.join(args.recog_dir, 'plot.log'),
                        key='decoding')

    for i, s in enumerate(args.recog_sets):
        subsample_factor = 1
        subsample = [int(s) for s in args.subsample.split('_')]
        if args.conv_poolings:
            for p in args.conv_poolings.split('_'):
                p = int(p.split(',')[0].replace('(', ''))
                if p > 1:
                    subsample_factor *= p
        subsample_factor *= np.prod(subsample)

        # Load dataset
        dataset = Dataset(
            corpus=args.corpus,
            tsv_path=s,
            dict_path=os.path.join(dir_name, 'dict.txt'),
            dict_path_sub1=os.path.join(dir_name, 'dict_sub1.txt') if
            os.path.isfile(os.path.join(dir_name, 'dict_sub1.txt')) else False,
            nlsyms=args.nlsyms,
            wp_model=os.path.join(dir_name, 'wp.model'),
            unit=args.unit,
            unit_sub1=args.unit_sub1,
            batch_size=args.recog_batch_size,
            is_test=True)

        if i == 0:
            # Load the ASR model
            model = Speech2Text(args, dir_name)
            model = load_checkpoint(model, args.recog_model[0])[0]
            epoch = int(args.recog_model[0].split('-')[-1])

            if not args.recog_unit:
                args.recog_unit = args.unit

            logger.info('recog unit: %s' % args.recog_unit)
            logger.info('epoch: %d' % (epoch - 1))
            logger.info('batch size: %d' % args.recog_batch_size)

            # GPU setting
            model.cuda()
            # TODO(hirofumi): move this

        save_path = mkdir_join(args.plot_dir, 'ctc_probs')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)

        while True:
            batch, is_new_epoch = dataset.next(
                recog_params['recog_batch_size'])
            best_hyps_id, _, _ = model.decode(batch['xs'],
                                              recog_params,
                                              exclude_eos=False)

            # Get CTC probs
            ctc_probs, indices_topk, xlens = model.get_ctc_probs(
                batch['xs'], temperature=1, topk=min(100, model.vocab))
            # NOTE: ctc_probs: '[B, T, topk]'

            for b in range(len(batch['xs'])):
                tokens = dataset.idx2token[0](best_hyps_id[b],
                                              return_list=True)
                spk = '_'.join(batch['utt_ids'][b].replace(
                    '-', '_').split('_')[:-2])

                plot_ctc_probs(
                    ctc_probs[b, :xlens[b]],
                    indices_topk[b],
                    nframes=xlens[b],
                    subsample_factor=subsample_factor,
                    spectrogram=batch['xs'][b][:, :dataset.input_dim],
                    save_path=mkdir_join(save_path, spk,
                                         batch['utt_ids'][b] + '.png'),
                    figsize=(20, 8))

                ref = batch['text'][b]
                hyp = ' '.join(tokens)
                logger.info('utt-id: %s' % batch['utt_ids'][b])
                logger.info('Ref: %s' % ref.lower())
                logger.info('Hyp: %s' % hyp)
                logger.info('-' * 50)

            if is_new_epoch:
                break
Exemple #10
0
def main():

    # Load a config file
    config = load_config(os.path.join(args.model, 'config.yml'))

    decode_params = vars(args)

    # Merge config with args
    for k, v in config.items():
        if not hasattr(args, k):
            setattr(args, k, v)

    # Setting for logging
    if os.path.isfile(os.path.join(args.plot_dir, 'plot.log')):
        os.remove(os.path.join(args.plot_dir, 'plot.log'))
    logger = set_logger(os.path.join(args.plot_dir, 'plot.log'),
                        key='decoding')

    for i, set in enumerate(args.eval_sets):
        subsample_factor = 1
        subsample_factor_sub1 = 1
        subsample = [int(s) for s in args.subsample.split('_')]
        if args.conv_poolings:
            for p in args.conv_poolings.split('_'):
                p = int(p.split(',')[0].replace('(', ''))
                if p > 1:
                    subsample_factor *= p
        if args.train_set_sub1 is not None:
            subsample_factor_sub1 = subsample_factor * np.prod(
                subsample[:args.enc_nlayers_sub1 - 1])
        subsample_factor *= np.prod(subsample)

        # Load dataset
        dataset = Dataset(
            csv_path=set,
            dict_path=os.path.join(args.model, 'dict.txt'),
            dict_path_sub1=os.path.join(args.model, 'dict_sub.txt') if
            os.path.isfile(os.path.join(args.model, 'dict_sub.txt')) else None,
            wp_model=os.path.join(args.model, 'wp.model'),
            unit=args.unit,
            unit_sub1=args.unit_sub1,
            batch_size=args.batch_size,
            is_test=True)

        if i == 0:
            args.vocab = dataset.vocab
            args.vocab_sub1 = dataset.vocab_sub1
            args.input_dim = dataset.input_dim

            # TODO(hirofumi): For cold fusion
            args.rnnlm_cold_fusion = None
            args.rnnlm_init = None

            # Load the ASR model
            model = Seq2seq(args)
            epoch, _, _, _ = model.load_checkpoint(args.model,
                                                   epoch=args.epoch)

            model.save_path = args.model

            # GPU setting
            model.cuda()

            logger.info('epoch: %d' % (epoch - 1))

        save_path = mkdir_join(args.plot_dir, 'att_weights')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)

        while True:
            batch, is_new_epoch = dataset.next(decode_params['batch_size'])
            best_hyps, aws, perm_idx = model.decode(batch['xs'],
                                                    decode_params,
                                                    exclude_eos=False)
            ys = [batch['ys'][i] for i in perm_idx]

            # Get CTC probs
            ctc_probs, indices_topk, x_lens = model.get_ctc_posteriors(
                batch['xs'], temperature=1, topk=min(100, model.vocab))
            # NOTE: ctc_probs: '[B, T, topk]'

            for b in range(len(batch['xs'])):
                if args.unit == 'word':
                    token_list = dataset.idx2word(best_hyps[b],
                                                  return_list=True)
                elif args.unit == 'wp':
                    token_list = dataset.idx2wp(best_hyps[b], return_list=True)
                elif args.unit == 'char':
                    token_list = dataset.idx2char(best_hyps[b],
                                                  return_list=True)
                elif args.unit == 'phone':
                    token_list = dataset.idx2phone(best_hyps[b],
                                                   return_list=True)
                else:
                    raise NotImplementedError(args.unit)
                token_list = [unicode(t, 'utf-8') for t in token_list]
                speaker = '_'.join(batch['utt_ids'][b].replace(
                    '-', '_').split('_')[:-2])

                plot_ctc_probs(
                    ctc_probs[b, :x_lens[b]],
                    indices_topk[b],
                    nframes=x_lens[b],
                    subsample_factor=subsample_factor,
                    spectrogram=batch['xs'][b][:, :dataset.input_dim],
                    save_path=mkdir_join(save_path, speaker,
                                         batch['utt_ids'][b] + '.png'),
                    figsize=(20, 8))

                ref = ys[b]
                hyp = ' '.join(token_list)
                logger.info('utt-id: %s' % batch['utt_ids'][b])
                logger.info('Ref: %s' % ref.lower())
                logger.info('Hyp: %s' % hyp)
                logger.info('-' * 50)

            if is_new_epoch:
                break
Exemple #11
0
def main():

    # Load a config file
    config = load_config(os.path.join(args.model, 'config.yml'))

    decode_params = vars(args)

    # Merge config with args
    for k, v in config.items():
        if not hasattr(args, k):
            setattr(args, k, v)

    # Setting for logging
    if os.path.isfile(os.path.join(args.decode_dir, 'decode.log')):
        os.remove(os.path.join(args.decode_dir, 'decode.log'))
    logger = set_logger(os.path.join(args.decode_dir, 'decode.log'), key='decoding')

    wer_mean, cer_mean, per_mean = 0, 0, 0
    for i, set in enumerate(args.eval_sets):
        # Load dataset
        eval_set = Dataset(csv_path=set,
                           dict_path=os.path.join(args.model, 'dict.txt'),
                           dict_path_sub1=os.path.join(args.model, 'dict_sub1.txt') if os.path.isfile(
                               os.path.join(args.model, 'dict_sub1.txt')) else None,
                           dict_path_sub2=os.path.join(args.model, 'dict_sub2.txt') if os.path.isfile(
                               os.path.join(args.model, 'dict_sub2.txt')) else None,
                           wp_model=os.path.join(args.model, 'wp.model'),
                           unit=args.unit,
                           unit_sub1=args.unit_sub1,
                           unit_sub2=args.unit_sub2,
                           batch_size=args.batch_size,
                           is_test=True)

        if i == 0:
            args.vocab = eval_set.vocab
            args.vocab_sub1 = eval_set.vocab_sub1
            args.input_dim = eval_set.input_dim

            # For cold fusion
            # if args.rnnlm_cold_fusion:
            #     # Load a RNNLM config file
            #     config['rnnlm_config'] = load_config(os.path.join(args.model, 'config_rnnlm.yml'))
            #
            #     assert args.unit == config['rnnlm_config']['unit']
            #     rnnlm_args.vocab = eval_set.vocab
            #     logger.info('RNNLM path: %s' % config['rnnlm'])
            #     logger.info('RNNLM weight: %.3f' % args.rnnlm_weight)
            # else:
            #     pass

            args.rnnlm_cold_fusion = None
            args.rnnlm_init = None

            # Load the ASR model
            model = Seq2seq(args)
            epoch, _, _, _ = model.load_checkpoint(args.model, epoch=args.epoch)

            model.save_path = args.model

            # For shallow fusion
            if (not args.rnnlm_cold_fusion) and args.rnnlm is not None and args.rnnlm_weight > 0:
                # Load a RNNLM config file
                config_rnnlm = load_config(os.path.join(args.rnnlm, 'config.yml'))

                # Merge config with args
                args_rnnlm = argparse.Namespace()
                for k, v in config_rnnlm.items():
                    setattr(args_rnnlm, k, v)

                assert args.unit == args_rnnlm.unit
                args_rnnlm.vocab = eval_set.vocab

                # Load the pre-trianed RNNLM
                seq_rnnlm = SeqRNNLM(args_rnnlm)
                seq_rnnlm.load_checkpoint(args.rnnlm, epoch=-1)

                # Copy parameters
                rnnlm = RNNLM(args_rnnlm)
                rnnlm.copy_from_seqrnnlm(seq_rnnlm)

                if args_rnnlm.backward:
                    model.rnnlm_bwd = rnnlm
                else:
                    model.rnnlm_fwd = rnnlm

                logger.info('RNNLM path: %s' % args.rnnlm)
                logger.info('RNNLM weight: %.3f' % args.rnnlm_weight)
                logger.info('RNNLM backward: %s' % str(config_rnnlm['backward']))

            # GPU setting
            model.cuda()

            logger.info('beam width: %d' % args.beam_width)
            logger.info('length penalty: %.3f' % args.length_penalty)
            logger.info('coverage penalty: %.3f' % args.coverage_penalty)
            logger.info('coverage threshold: %.3f' % args.coverage_threshold)
            logger.info('epoch: %d' % (epoch - 1))

        start_time = time.time()

        if args.unit in ['word', 'word_char'] and not args.recog_unit:
            wer, nsub, nins, ndel, noov_total = eval_word(
                [model], eval_set, decode_params,
                epoch=epoch - 1,
                decode_dir=args.decode_dir,
                progressbar=True)
            wer_mean += wer
            logger.info('WER (%s): %.3f %%' % (eval_set.set, wer))
            logger.info('SUB: %.3f / INS: %.3f / DEL: %.3f' % (nsub, nins, ndel))
            logger.info('OOV (total): %d' % (noov_total))

        elif (args.unit == 'wp' and not args.recog_unit) or args.recog_unit == 'wp':
            wer, nsub, nins, ndel = eval_wordpiece(
                [model], eval_set, decode_params,
                epoch=epoch - 1,
                decode_dir=args.decode_dir,
                progressbar=True)
            wer_mean += wer
            logger.info('WER (%s): %.3f %%' % (eval_set.set, wer))
            logger.info('SUB: %.3f / INS: %.3f / DEL: %.3f' % (nsub, nins, ndel))

        elif ('char' in args.unit and not args.recog_unit) or 'char' in args.recog_unit:
            (wer, nsub, nins, ndel), (cer, _, _, _) = eval_char(
                [model], eval_set, decode_params,
                epoch=epoch - 1,
                decode_dir=args.decode_dir,
                progressbar=True,
                task_id=1 if args.recog_unit and 'char' in args.recog_unit else 0)
            wer_mean += wer
            cer_mean += cer
            logger.info('WER / CER (%s): %.3f / %.3f %%' % (eval_set.set, wer, cer))
            logger.info('SUB: %.3f / INS: %.3f / DEL: %.3f' % (nsub, nins, ndel))

        elif 'phone' in args.unit:
            per, nsub, nins, ndel = eval_phone(
                [model], eval_set, decode_params,
                epoch=epoch - 1,
                decode_dir=args.decode_dir,
                progressbar=True)
            per_mean += per
            logger.info('PER (%s): %.3f %%' % (eval_set.set, per))
            logger.info('SUB: %.3f / INS: %.3f / DEL: %.3f' % (nsub, nins, ndel))

        else:
            raise ValueError(args.unit)

        logger.info('Elasped time: %.2f [sec]:' % (time.time() - start_time))

    if args.unit == 'word':
        logger.info('WER (mean): %.3f %%\n' % (wer_mean / len(args.eval_sets)))
    if args.unit == 'wp':
        logger.info('WER (mean): %.3f %%\n' % (wer_mean / len(args.eval_sets)))
    elif 'char' in args.unit:
        logger.info('WER / CER (mean): %.3f / %.3f %%\n' %
                    (wer_mean / len(args.eval_sets), cer_mean / len(args.eval_sets)))
    elif 'phone' in args.unit:
        logger.info('PER (mean): %.3f %%\n' % (per_mean / len(args.eval_sets)))
Exemple #12
0
def main():

    args = parse()
    args_pt = copy.deepcopy(args)
    args_teacher = copy.deepcopy(args)

    # Load a conf file
    if args.resume:
        conf = load_config(os.path.join(os.path.dirname(args.resume), 'conf.yml'))
        for k, v in conf.items():
            if k != 'resume':
                setattr(args, k, v)
    recog_params = vars(args)

    # Automatically reduce batch size in multi-GPU setting
    if args.n_gpus > 1:
        args.batch_size -= 10
        args.print_step //= args.n_gpus

    # Compute subsampling factor
    subsample_factor = 1
    subsample_factor_sub1 = 1
    subsample_factor_sub2 = 1
    subsample = [int(s) for s in args.subsample.split('_')]
    if args.conv_poolings and 'conv' in args.enc_type:
        for p in args.conv_poolings.split('_'):
            subsample_factor *= int(p.split(',')[0].replace('(', ''))
    else:
        subsample_factor = np.prod(subsample)
    if args.train_set_sub1:
        if args.conv_poolings and 'conv' in args.enc_type:
            subsample_factor_sub1 = subsample_factor * np.prod(subsample[:args.enc_n_layers_sub1 - 1])
        else:
            subsample_factor_sub1 = subsample_factor
    if args.train_set_sub2:
        if args.conv_poolings and 'conv' in args.enc_type:
            subsample_factor_sub2 = subsample_factor * np.prod(subsample[:args.enc_n_layers_sub2 - 1])
        else:
            subsample_factor_sub2 = subsample_factor

    skip_thought = 'skip' in args.enc_type

    # Load dataset
    train_set = Dataset(corpus=args.corpus,
                        tsv_path=args.train_set,
                        tsv_path_sub1=args.train_set_sub1,
                        tsv_path_sub2=args.train_set_sub2,
                        dict_path=args.dict,
                        dict_path_sub1=args.dict_sub1,
                        dict_path_sub2=args.dict_sub2,
                        nlsyms=args.nlsyms,
                        unit=args.unit,
                        unit_sub1=args.unit_sub1,
                        unit_sub2=args.unit_sub2,
                        wp_model=args.wp_model,
                        wp_model_sub1=args.wp_model_sub1,
                        wp_model_sub2=args.wp_model_sub2,
                        batch_size=args.batch_size * args.n_gpus,
                        n_epochs=args.n_epochs,
                        min_n_frames=args.min_n_frames,
                        max_n_frames=args.max_n_frames,
                        sort_by_input_length=True,
                        short2long=True,
                        sort_stop_epoch=args.sort_stop_epoch,
                        dynamic_batching=args.dynamic_batching,
                        ctc=args.ctc_weight > 0,
                        ctc_sub1=args.ctc_weight_sub1 > 0,
                        ctc_sub2=args.ctc_weight_sub2 > 0,
                        subsample_factor=subsample_factor,
                        subsample_factor_sub1=subsample_factor_sub1,
                        subsample_factor_sub2=subsample_factor_sub2,
                        discourse_aware=args.discourse_aware,
                        skip_thought=skip_thought)
    dev_set = Dataset(corpus=args.corpus,
                      tsv_path=args.dev_set,
                      tsv_path_sub1=args.dev_set_sub1,
                      tsv_path_sub2=args.dev_set_sub2,
                      dict_path=args.dict,
                      dict_path_sub1=args.dict_sub1,
                      dict_path_sub2=args.dict_sub2,
                      nlsyms=args.nlsyms,
                      unit=args.unit,
                      unit_sub1=args.unit_sub1,
                      unit_sub2=args.unit_sub2,
                      wp_model=args.wp_model,
                      wp_model_sub1=args.wp_model_sub1,
                      wp_model_sub2=args.wp_model_sub2,
                      batch_size=args.batch_size * args.n_gpus,
                      min_n_frames=args.min_n_frames,
                      max_n_frames=args.max_n_frames,
                      shuffle=True if args.discourse_aware else False,
                      ctc=args.ctc_weight > 0,
                      ctc_sub1=args.ctc_weight_sub1 > 0,
                      ctc_sub2=args.ctc_weight_sub2 > 0,
                      subsample_factor=subsample_factor,
                      subsample_factor_sub1=subsample_factor_sub1,
                      subsample_factor_sub2=subsample_factor_sub2,
                      discourse_aware=args.discourse_aware,
                      skip_thought=skip_thought)
    eval_sets = []
    for s in args.eval_sets:
        eval_sets += [Dataset(corpus=args.corpus,
                              tsv_path=s,
                              dict_path=args.dict,
                              nlsyms=args.nlsyms,
                              unit=args.unit,
                              wp_model=args.wp_model,
                              batch_size=1,
                              discourse_aware=args.discourse_aware,
                              skip_thought=skip_thought,
                              is_test=True)]

    args.vocab = train_set.vocab
    args.vocab_sub1 = train_set.vocab_sub1
    args.vocab_sub2 = train_set.vocab_sub2
    args.input_dim = train_set.input_dim

    # Load a LM conf file for LM fusion & LM initialization
    if not args.resume and (args.lm_fusion or args.lm_init):
        if args.lm_fusion:
            lm_conf = load_config(os.path.join(os.path.dirname(args.lm_fusion), 'conf.yml'))
        elif args.lm_init:
            lm_conf = load_config(os.path.join(os.path.dirname(args.lm_init), 'conf.yml'))
        args.lm_conf = argparse.Namespace()
        for k, v in lm_conf.items():
            setattr(args.lm_conf, k, v)
        assert args.unit == args.lm_conf.unit
        assert args.vocab == args.lm_conf.vocab

    # Set save path
    if args.resume:
        save_path = os.path.dirname(args.resume)
        dir_name = os.path.basename(save_path)
    else:
        dir_name = set_asr_model_name(args, subsample_factor)
        save_path = mkdir_join(args.model_save_dir, '_'.join(
            os.path.basename(args.train_set).split('.')[:-1]), dir_name)
        save_path = set_save_path(save_path)  # avoid overwriting

    # Set logger
    logger = set_logger(os.path.join(save_path, 'train.log'), key='training', stdout=args.stdout)

    # Model setting
    model = Speech2Text(args, save_path) if not skip_thought else SkipThought(args, save_path)

    if args.resume:
        # Set optimizer
        epoch = int(args.resume.split('-')[-1])
        optimizer = set_optimizer(model, 'sgd' if epoch > conf['convert_to_sgd_epoch'] else conf['optimizer'],
                                  conf['lr'], conf['weight_decay'])

        # Restore the last saved model
        model, optimizer = load_checkpoint(model, args.resume, optimizer, resume=True)

        # Resume between convert_to_sgd_epoch -1 and convert_to_sgd_epoch
        if epoch == conf['convert_to_sgd_epoch']:
            optimizer = set_optimizer(model, 'sgd', args.lr, conf['weight_decay'])
            optimizer = LRScheduler(optimizer, args.lr,
                                    decay_type='always',
                                    decay_start_epoch=0,
                                    decay_rate=0.5)
            logger.info('========== Convert to SGD ==========')
    else:
        # Save the conf file as a yaml file
        save_config(vars(args), os.path.join(save_path, 'conf.yml'))
        if args.lm_fusion:
            save_config(args.lm_conf, os.path.join(save_path, 'conf_lm.yml'))

        # Save the nlsyms, dictionar, and wp_model
        if args.nlsyms:
            shutil.copy(args.nlsyms, os.path.join(save_path, 'nlsyms.txt'))
        for sub in ['', '_sub1', '_sub2']:
            if getattr(args, 'dict' + sub):
                shutil.copy(getattr(args, 'dict' + sub), os.path.join(save_path, 'dict' + sub + '.txt'))
            if getattr(args, 'unit' + sub) == 'wp':
                shutil.copy(getattr(args, 'wp_model' + sub), os.path.join(save_path, 'wp' + sub + '.model'))

        for k, v in sorted(vars(args).items(), key=lambda x: x[0]):
            logger.info('%s: %s' % (k, str(v)))

        # Count total parameters
        for n in sorted(list(model.num_params_dict.keys())):
            n_params = model.num_params_dict[n]
            logger.info("%s %d" % (n, n_params))
        logger.info("Total %.2f M parameters" % (model.total_parameters / 1000000))
        logger.info(model)

        # Initialize with pre-trained model's parameters
        if args.pretrained_model and os.path.isfile(args.pretrained_model):
            # Load the ASR model
            conf_pt = load_config(os.path.join(os.path.dirname(args.pretrained_model), 'conf.yml'))
            for k, v in conf_pt.items():
                setattr(args_pt, k, v)
            model_pt = Speech2Text(args_pt)
            model_pt = load_checkpoint(model_pt, args.pretrained_model)[0]

            # Overwrite parameters
            only_enc = (args.enc_n_layers != args_pt.enc_n_layers) or (
                args.unit != args_pt.unit) or args_pt.ctc_weight == 1
            param_dict = dict(model_pt.named_parameters())
            for n, p in model.named_parameters():
                if n in param_dict.keys() and p.size() == param_dict[n].size():
                    if only_enc and 'enc' not in n:
                        continue
                    if args.lm_fusion_type == 'cache' and 'output' in n:
                        continue
                    p.data = param_dict[n].data
                    logger.info('Overwrite %s' % n)

        # Set optimizer
        optimizer = set_optimizer(model, args.optimizer, args.lr, args.weight_decay)

        # Wrap optimizer by learning rate scheduler
        noam = 'transformer' in args.enc_type or args.dec_type == 'transformer'
        optimizer = LRScheduler(optimizer, args.lr,
                                decay_type=args.lr_decay_type,
                                decay_start_epoch=args.lr_decay_start_epoch,
                                decay_rate=args.lr_decay_rate,
                                decay_patient_n_epochs=args.lr_decay_patient_n_epochs,
                                early_stop_patient_n_epochs=args.early_stop_patient_n_epochs,
                                warmup_start_lr=args.warmup_start_lr,
                                warmup_n_steps=args.warmup_n_steps,
                                model_size=args.d_model,
                                factor=args.lr_factor,
                                noam=noam)

    # Load the teacher ASR model
    teacher = None
    teacher_lm = None
    if args.teacher and os.path.isfile(args.teacher):
        conf_teacher = load_config(os.path.join(os.path.dirname(args.teacher), 'conf.yml'))
        for k, v in conf_teacher.items():
            setattr(args_teacher, k, v)
        # Setting for knowledge distillation
        args_teacher.ss_prob = 0
        args.lsm_prob = 0
        teacher = Speech2Text(args_teacher)
        teacher = load_checkpoint(teacher, args.teacher)[0]

        # Load the teacher LM
        if args.teacher_lm and os.path.isfile(args.teacher_lm):
            conf_lm = load_config(os.path.join(os.path.dirname(args.teacher_lm), 'conf.yml'))
            args_lm = argparse.Namespace()
            for k, v in conf_lm.items():
                setattr(args_lm, k, v)
            teacher_lm = select_lm(args_lm)
            teacher_lm = load_checkpoint(teacher_lm, args.teacher_lm)[0]

    # GPU setting
    if args.n_gpus >= 1:
        model = CustomDataParallel(model,
                                   device_ids=list(range(0, args.n_gpus, 1)),
                                   deterministic=False,
                                   benchmark=True)
        model.cuda()
        if teacher is not None:
            teacher.cuda()
        if teacher_lm is not None:
            teacher_lm.cuda()

    # Set process name
    logger.info('PID: %s' % os.getpid())
    logger.info('USERNAME: %s' % os.uname()[1])
    setproctitle(args.job_name if args.job_name else dir_name)

    # Set reporter
    reporter = Reporter(save_path, tensorboard=True)

    if args.mtl_per_batch:
        # NOTE: from easier to harder tasks
        tasks = []
        if 1 - args.bwd_weight - args.ctc_weight - args.sub1_weight - args.sub2_weight > 0:
            tasks += ['ys']
        if args.bwd_weight > 0:
            tasks = ['ys.bwd'] + tasks
        if args.ctc_weight > 0:
            tasks = ['ys.ctc'] + tasks
        if args.lmobj_weight > 0:
            tasks = ['ys.lmobj'] + tasks
        for sub in ['sub1', 'sub2']:
            if getattr(args, 'train_set_' + sub):
                if getattr(args, sub + '_weight') - getattr(args, 'ctc_weight_' + sub) > 0:
                    tasks = ['ys_' + sub] + tasks
                if getattr(args, 'ctc_weight_' + sub) > 0:
                    tasks = ['ys_' + sub + '.ctc'] + tasks
    else:
        tasks = ['all']

    start_time_train = time.time()
    start_time_epoch = time.time()
    start_time_step = time.time()
    pbar_epoch = tqdm(total=len(train_set))
    accum_n_tokens = 0
    while True:
        # Compute loss in the training set
        batch_train, is_new_epoch = train_set.next()
        accum_n_tokens += sum([len(y) for y in batch_train['ys']])

        # Change mini-batch depending on task
        for task in tasks:
            if skip_thought:
                loss, reporter = model(batch_train['ys'],
                                       ys_prev=batch_train['ys_prev'],
                                       ys_next=batch_train['ys_next'],
                                       reporter=reporter)
            else:
                loss, reporter = model(batch_train, reporter=reporter, task=task,
                                       teacher=teacher, teacher_lm=teacher_lm)
            # loss /= args.accum_grad_n_steps
            if len(model.device_ids) > 1:
                loss.backward(torch.ones(len(model.device_ids)))
            else:
                loss.backward()
            loss.detach()  # Trancate the graph
            if args.accum_grad_n_tokens == 0 or accum_n_tokens >= args.accum_grad_n_tokens:
                if args.clip_grad_norm > 0:
                    torch.nn.utils.clip_grad_norm_(model.module.parameters(), args.clip_grad_norm)
                optimizer.step()
                optimizer.zero_grad()
                accum_n_tokens = 0
            loss_train = loss.item()
            del loss
        reporter.step()

        if optimizer.n_steps % args.print_step == 0:
            # Compute loss in the dev set
            batch_dev = dev_set.next()[0]
            # Change mini-batch depending on task
            for task in tasks:
                if skip_thought:
                    loss, reporter = model(batch_dev['ys'],
                                           ys_prev=batch_dev['ys_prev'],
                                           ys_next=batch_dev['ys_next'],
                                           reporter=reporter,
                                           is_eval=True)
                else:
                    loss, reporter = model(batch_dev, reporter=reporter, task=task,
                                           is_eval=True)
                loss_dev = loss.item()
                del loss
            reporter.step(is_eval=True)

            duration_step = time.time() - start_time_step
            if args.input_type == 'speech':
                xlen = max(len(x) for x in batch_train['xs'])
                ylen = max(len(y) for y in batch_train['ys'])
            elif args.input_type == 'text':
                xlen = max(len(x) for x in batch_train['ys'])
                ylen = max(len(y) for y in batch_train['ys_sub1'])
            logger.info("step:%d(ep:%.2f) loss:%.3f(%.3f)/lr:%.5f/bs:%d/xlen:%d/ylen:%d (%.2f min)" %
                        (optimizer.n_steps, optimizer.n_epochs + train_set.epoch_detail,
                         loss_train, loss_dev,
                         optimizer.lr, len(batch_train['utt_ids']),
                         xlen, ylen, duration_step / 60))
            start_time_step = time.time()
        pbar_epoch.update(len(batch_train['utt_ids']))

        # Save fugures of loss and accuracy
        if optimizer.n_steps % (args.print_step * 10) == 0:
            reporter.snapshot()
            model.module.plot_attention()

        # Save checkpoint and evaluate model per epoch
        if is_new_epoch:
            duration_epoch = time.time() - start_time_epoch
            logger.info('========== EPOCH:%d (%.2f min) ==========' %
                        (optimizer.n_epochs + 1, duration_epoch / 60))

            if optimizer.n_epochs + 1 < args.eval_start_epoch:
                optimizer.epoch()
                reporter.epoch()

                # Save the model
                save_checkpoint(model, save_path, optimizer, optimizer.n_epochs,
                                remove_old_checkpoints=not noam)
            else:
                start_time_eval = time.time()
                # dev
                metric_dev = eval_epoch([model.module], dev_set, recog_params, args,
                                        optimizer.n_epochs + 1, logger)
                optimizer.epoch(metric_dev)
                reporter.epoch(metric_dev)

                if optimizer.is_best:
                    # Save the model
                    save_checkpoint(model, save_path, optimizer, optimizer.n_epochs,
                                    remove_old_checkpoints=not noam)

                    # test
                    for eval_set in eval_sets:
                        eval_epoch([model.module], eval_set, recog_params, args,
                                   optimizer.n_epochs, logger)

                    # start scheduled sampling
                    if args.ss_prob > 0:
                        model.module.scheduled_sampling_trigger()

                duration_eval = time.time() - start_time_eval
                logger.info('Evaluation time: %.2f min' % (duration_eval / 60))

                # Early stopping
                if optimizer.is_early_stop:
                    break

                # Convert to fine-tuning stage
                if optimizer.n_epochs == args.convert_to_sgd_epoch:
                    optimizer = set_optimizer(model, 'sgd', args.lr, args.weight_decay)
                    optimizer = LRScheduler(optimizer, args.lr,
                                            decay_type='always',
                                            decay_start_epoch=0,
                                            decay_rate=0.5)
                    logger.info('========== Convert to SGD ==========')

            pbar_epoch = tqdm(total=len(train_set))

            if optimizer.n_epochs == args.n_epochs:
                break

            start_time_step = time.time()
            start_time_epoch = time.time()

    duration_train = time.time() - start_time_train
    logger.info('Total time: %.2f hour' % (duration_train / 3600))

    if reporter.tensorboard:
        reporter.tf_writer.close()
    pbar_epoch.close()

    return save_path