Exemple #1
0
    def get_kernels(get: Get, x_test: Optional[np.ndarray], compute_cov: bool,
                    **kernel_fn_test_test_kwargs):
        get = _get_dependency(get, compute_cov)
        k_dd = get_k_train_train(get)
        if x_test is None:
            k_td = None
            nngp_tt = compute_cov or None
        else:
            args_train, _ = utils.split_kwargs(kernel_fn_train_train_kwargs,
                                               x_train)
            args_test, _ = utils.split_kwargs(kernel_fn_test_test_kwargs,
                                              x_test)

            def is_array(x):
                return tree_all(
                    tree_map(lambda x: isinstance(x, np.ndarray), x))

            kwargs_td = dict(kernel_fn_train_train_kwargs)
            kwargs_tt = dict(kernel_fn_train_train_kwargs)

            for k in kernel_fn_test_test_kwargs.keys():
                v_tt = kernel_fn_test_test_kwargs[k]
                v_dd = kernel_fn_train_train_kwargs[k]

                if is_array(v_dd) and is_array(v_tt):
                    if (isinstance(v_dd, tuple) and len(v_dd) == 2
                            and isinstance(v_tt, tuple) and len(v_tt) == 2):
                        v_td = (args_test[k], args_train[k])
                    else:
                        v_td = v_tt

                elif v_dd != v_tt:
                    raise ValueError(
                        f'Same keyword argument {k} of `kernel_fn` is set to'
                        f'different values {v_dd} != {v_tt} when computing '
                        f'the train-train and test-train/test-test kernels. '
                        f'If this is your intention, please submit a feature'
                        f' request at '
                        f'https://github.com/google/neural-tangents/issues')

                else:
                    v_td = v_tt

                kwargs_td[k] = v_td
                kwargs_tt[k] = v_tt

            k_td = kernel_fn(x_test, x_train, get, **kwargs_td)

            if compute_cov:
                nngp_tt = kernel_fn(x_test, None, 'nngp', **kwargs_tt)
            else:
                nngp_tt = None
        return k_dd, k_td, nngp_tt
    def ntk_fn(x1: NTTree[np.ndarray], x2: Optional[NTTree[np.ndarray]],
               params: PyTree, **apply_fn_kwargs) -> np.ndarray:
        """Computes a single sample of the empirical NTK (implicit differentiation).

    Args:
      x1:
        first batch of inputs.
      x2:
        second batch of inputs. `x2=None` means `x2=x1`. `f(x2)` must have a
        matching shape with `f(x1)` on `trace_axes` and `diagonal_axes`.
      params:
        A `PyTree` of parameters about which we would like to compute the
        neural tangent kernel.
      **apply_fn_kwargs:
        keyword arguments passed to `apply_fn`. `apply_fn_kwargs` will be split
        into `apply_fn_kwargs1` and `apply_fn_kwargs2` by the `split_kwargs`
        function which will be passed to `apply_fn`. In particular, the rng key
        in `apply_fn_kwargs`, will be split into two different (if `x1 != x2`)
        or same (if `x1 == x2`) rng keys. See the `_read_key` function for more
        details.

    Returns:
      A single sample of the empirical NTK. The shape of the kernel is "almost"
      `zip(f(x1).shape, f(x2).shape)` except for:
      1) `trace_axes` are absent as they are contracted over.
      2) `diagonal_axes` are present only once.
      All other axes are present twice.
    """
        kwargs1, kwargs2 = utils.split_kwargs(apply_fn_kwargs, x1, x2)
        f1 = _flatten(_get_f_params(f, x1, **kwargs1))
        f2 = (f1 if utils.all_none(x2) else _flatten(
            _get_f_params(f, x2, **kwargs2)))

        def delta_vjp_jvp(delta):
            def delta_vjp(delta):
                return vjp(f2, params)[1](delta)

            return jvp(f1, (params, ), delta_vjp(delta))[1]

        # Since we are taking the Jacobian of a linear function (which does not
        # depend on its coefficients), it is more efficient to substitute fx_dummy
        # for the outputs of the network. fx_dummy has the same shape as the output
        # of the network on a single piece of input data.
        fx2_struct = eval_shape(f2, params)

        @utils.nt_tree_fn()
        def dummy_output(fx_struct):
            return np.ones(fx_struct.shape, fx_struct.dtype)

        fx_dummy = dummy_output(fx2_struct)

        ntk = jacobian(delta_vjp_jvp)(fx_dummy)
        if utils.is_list_or_tuple(fx_dummy):
            fx_treedef = tree_structure(
                eval_shape(_get_f_params(f, x1, **kwargs1), params))
            ntk = [ntk[i][i] for i in range(len(fx_dummy))]
            ntk = tree_unflatten(fx_treedef, ntk)

        return _trace_and_diagonal(ntk, trace_axes, diagonal_axes)
    def ntk_fn(x1: NTTree[np.ndarray], x2: Optional[NTTree[np.ndarray]],
               params: PyTree, **apply_fn_kwargs) -> np.ndarray:
        """Computes a single sample of the empirical NTK (jacobian outer product).

    Args:
      x1:
        first batch of inputs.
      x2:
        second batch of inputs. `x2=None` means `x2=x1`. `f(x2)` must have a
        matching shape with `f(x1)` on `trace_axes` and `diagonal_axes`.
      params:
        A `PyTree` of parameters about which we would like to compute the
        neural tangent kernel.
      **apply_fn_kwargs:
        keyword arguments passed to `apply_fn`. `apply_fn_kwargs` will be split
        into `apply_fn_kwargs1` and `apply_fn_kwargs2` by the `split_kwargs`
        function which will be passed to `apply_fn`. In particular, the rng key
        in `apply_fn_kwargs`, will be split into two different (if `x1!=x2`) or
        same (if `x1==x2`) rng keys. See the `_read_key` function for more
        details.

    Returns:
      A single sample of the empirical NTK. The shape of the kernel is "almost"
      `zip(f(x1).shape, f(x2).shape)` except for:
      1) `trace_axes` are absent as they are contracted over.
      2) `diagonal_axes` are present only once.
      All other axes are present twice.
    """
        kwargs1, kwargs2 = utils.split_kwargs(apply_fn_kwargs, x1, x2)
        fx1 = eval_shape(f, params, x1, **kwargs1)
        x_axis, fx_axis, kw_axes = _canonicalize_axes(vmap_axes, x1, fx1,
                                                      **kwargs1)

        keys = apply_fn_kwargs.keys()
        args1, args2 = (kwargs1[k] for k in keys), (kwargs2[k] for k in keys)

        def j_fn(x, *args):
            _kwargs = {k: v for k, v in zip(keys, args)}
            fx = _get_f_params(f, x, x_axis, fx_axis, kw_axes, **_kwargs)
            jx = jacobian(fx)(params)
            return jx

        if x_axis is not None or kw_axes:
            in_axes = [x_axis] + [
                kw_axes[k] if k in kw_axes else None for k in keys
            ]
            j_fn = vmap(j_fn, in_axes=in_axes, out_axes=fx_axis)

        j1 = j_fn(x1, *args1)
        j2 = j_fn(x2, *args2) if not utils.all_none(x2) else j1
        ntk = sum_and_contract(fx1, j1, j2)
        return ntk
    def nngp_fn(x1: np.ndarray, x2: Optional[np.ndarray], params: PyTree,
                **apply_fn_kwargs) -> np.ndarray:
        """Computes a single sample of the empirical NNGP.

    Args:
      x1:
        first batch of inputs.
      x2:
        second batch of inputs. `x2=None` means `x2=x1`. `f(x2)` must have a
        matching shape with `f(x1)` on `trace_axes` and `diagonal_axes`.
      params:
        A `PyTree` of parameters about which we would like to compute the
        neural tangent kernel.
      **apply_fn_kwargs:
        keyword arguments passed to `apply_fn`. `apply_fn_kwargs` will be split
        into `apply_fn_kwargs1` and `apply_fn_kwargs2` by the `split_kwargs`
        function which will be passed to `apply_fn`. In particular, the rng key
        in `apply_fn_kwargs`, will be split into two different (if `x1!=x2`) or
        same (if `x1==x2`) rng keys. See the `_read_key` function for more
        details.

    Returns:
      A single sample of the empirical NNGP. The shape of the kernel is "almost"
      `zip(f(x1).shape, f(x2).shape)` except for:
      1) `trace_axes` are absent as they are contracted over.
      2) `diagonal_axes` are present only once.
      All other axes are present twice.
    """
        def output(x, **kwargs):
            out = f(params, x, **kwargs)
            masked_output = utils.get_masked_array(out)
            return utils.nt_tree_fn()(lambda x: x.masked_value)(masked_output)

        kwargs1, kwargs2 = utils.split_kwargs(apply_fn_kwargs, x1, x2)

        out1 = output(x1, **kwargs1)
        if utils.all_none(x2):
            out2 = out1
        else:
            out2 = output(x2, **kwargs2)

        @utils.nt_tree_fn()
        def contract(out1, out2):
            dot = utils.dot_general(out1, out2, trace_axes, diagonal_axes)
            return dot / utils.size_at(out1, trace_axes)

        return contract(out1, out2)
    def ntk_fn(x1: NTTree[np.ndarray], x2: Optional[NTTree[np.ndarray]],
               params: PyTree, **apply_fn_kwargs) -> np.ndarray:
        """Computes a single sample of the empirical NTK (jacobian outer product).

    Args:
      x1:
        first batch of inputs.
      x2:
        second batch of inputs. `x2=None` means `x2=x1`. `f(x2)` must have a
        matching shape with `f(x1)` on `trace_axes` and `diagonal_axes`.
      params:
        A `PyTree` of parameters about which we would like to compute the
        neural tangent kernel.
      **apply_fn_kwargs:
        keyword arguments passed to `apply_fn`. `apply_fn_kwargs` will be split
        into `apply_fn_kwargs1` and `apply_fn_kwargs2` by the `split_kwargs`
        function which will be passed to `apply_fn`. In particular, the rng key
        in `apply_fn_kwargs`, will be split into two different (if `x1!=x2`) or
        same (if `x1==x2`) rng keys. See the `_read_key` function for more
        details.

    Returns:
      A single sample of the empirical NTK. The shape of the kernel is "almost"
      `zip(f(x1).shape, f(x2).shape)` except for:
      1) `trace_axes` are absent as they are contracted over.
      2) `diagonal_axes` are present only once.
      All other axes are present twice.
    """

        kwargs1, kwargs2 = utils.split_kwargs(apply_fn_kwargs, x1, x2)
        f1 = _get_f_params(f, x1, **kwargs1)
        jac_fn1 = jacobian(f1)
        j1 = jac_fn1(params)
        if x2 is None:
            j2 = j1
        else:
            f2 = _get_f_params(f, x2, **kwargs2)
            jac_fn2 = jacobian(f2)
            j2 = jac_fn2(params)

        fx1 = eval_shape(f1, params)

        ntk = sum_and_contract(fx1, j1, j2)
        return ntk
    def ntk_fn(x1: NTTree[np.ndarray], x2: Optional[NTTree[np.ndarray]],
               params: PyTree, **apply_fn_kwargs) -> np.ndarray:
        """Computes a single sample of the empirical NTK (implicit differentiation).

    Args:
      x1:
        first batch of inputs.
      x2:
        second batch of inputs. `x2=None` means `x2=x1`. `f(x2)` must have a
        matching shape with `f(x1)` on `trace_axes` and `diagonal_axes`.
      params:
        A `PyTree` of parameters about which we would like to compute the
        neural tangent kernel.
      **apply_fn_kwargs:
        keyword arguments passed to `apply_fn`. `apply_fn_kwargs` will be split
        into `apply_fn_kwargs1` and `apply_fn_kwargs2` by the `split_kwargs`
        function which will be passed to `apply_fn`. In particular, the rng key
        in `apply_fn_kwargs`, will be split into two different (if `x1 != x2`)
        or same (if `x1 == x2`) rng keys. See the `_read_key` function for more
        details.

    Returns:
      A single sample of the empirical NTK. The shape of the kernel is "almost"
      `zip(f(x1).shape, f(x2).shape)` except for:
      1) `trace_axes` are absent as they are contracted over.
      2) `diagonal_axes` are present only once.
      All other axes are present twice.
    """
        kwargs1, kwargs2 = utils.split_kwargs(apply_fn_kwargs, x1, x2)
        fx1 = eval_shape(f, params, x1, **kwargs1)
        x_axis, fx_axis, kw_axes = _canonicalize_axes(vmap_axes, x1, fx1,
                                                      **kwargs1)

        keys = apply_fn_kwargs.keys()
        args1 = (kwargs1[k] for k in keys)
        args2 = (kwargs1[k]
                 if k in kw_axes and kwargs2[k] is None else kwargs2[k]
                 for k in keys)

        def get_ntk(x1, x2, *args):
            args1, args2 = args[:len(args) // 2], args[len(args) // 2:]
            _kwargs1 = {k: v for k, v in zip(keys, args1)}
            _kwargs2 = {k: v for k, v in zip(keys, args2)}

            f1 = _get_f_params(f, x1, x_axis, fx_axis, kw_axes, **_kwargs1)
            f2 = f1 if utils.all_none(x2) else _get_f_params(
                f, x2, x_axis, fx_axis, kw_axes, **_kwargs2)

            def delta_vjp_jvp(delta):
                def delta_vjp(delta):
                    return vjp(f2, params)[1](delta)

                return jvp(f1, (params, ), delta_vjp(delta))[1]

            fx1, fx2 = eval_shape(f1, params), eval_shape(f2, params)
            eye = _std_basis(fx1)
            ntk = vmap(linear_transpose(delta_vjp_jvp, fx2))(eye)
            ntk = tree_map(
                lambda fx12: _unravel_array_into_pytree(fx1, 0, fx12), ntk)
            ntk = _diagonal(ntk, fx1)
            return ntk

        if x_axis is not None or kw_axes:
            x2 = x1 if utils.all_none(x2) else x2

            kw_in_axes = [kw_axes[k] if k in kw_axes else None for k in keys]
            in_axes1 = [x_axis, None] + kw_in_axes + [None] * len(kw_in_axes)
            in_axes2 = [None, x_axis] + [None] * len(kw_in_axes) + kw_in_axes

            get_ntk = vmap(vmap(get_ntk, in_axes1, fx_axis), in_axes2,
                           _add(fx_axis, _ndim(fx1)))

        return _trace_and_diagonal(get_ntk(x1, x2, *args1, *args2), trace_axes,
                                   diagonal_axes)