def parse_templates_json(templates_json="templates.json", ignore_chans = [], save_example_files=False, verbose=False): with open(templates_json, "r") as templates_json_file: json_cells = json.load(templates_json_file) concentrationModels = '' for firing_type_u in json_cells: if verbose: print("\n --------------- %s "%(firing_type_u)) firing_type = str(firing_type_u) cell_dict = json_cells[firing_type] nml_doc = neuroml.NeuroMLDocument(id=firing_type) # Membrane properties # included_channels[firing_type] = [] channel_densities = [] channel_density_nernsts = [] channel_density_non_uniform_nernsts = [] channel_density_non_uniforms = [] species = [] for section_list in cell_dict['forsecs']: for parameter_name in cell_dict['forsecs'][section_list]: value = cell_dict['forsecs'][section_list][parameter_name] if verbose: print(" --- %s, %s: %s "%(section_list,parameter_name,value)) if parameter_name == 'g_pas': channel = 'pas' arguments = {} cond_density = "%s S_per_cm2" % value if verbose: print(' - Adding %s with %s'%(channel, cond_density)) channel_nml2_file = "%s.channel.nml"%channel if channel_nml2_file not in included_channels[firing_type]: nml_doc.includes.append( neuroml.IncludeType( href="../../NeuroML2/%s" % channel_nml2_file)) included_channels[firing_type].append(channel_nml2_file) erev = cell_dict['forsecs'][section_list]['e_pas'] erev = "%s mV" % erev arguments["cond_density"] = cond_density arguments['ion_channel'] = channel arguments["ion"] = "non_specific" arguments["erev"] = erev arguments["id"] = "%s_%s" % (section_list, parameter_name) channel_class = 'ChannelDensity' density = getattr(neuroml, channel_class)(**arguments) channel_densities.append(density) for section_list in cell_dict['parameters']: for parameter_name in cell_dict['parameters'][section_list]: if parameter_name != 'e_pas' and 'CaDynamics_E2' not in parameter_name: parameter_dict = cell_dict['parameters'][section_list][parameter_name] if verbose: print(" --- %s, %s: %s "%(section_list,parameter_name,parameter_dict)) channel = parameter_dict['channel'] if channel not in ignore_chans: arguments = {} cond_density = None variable_parameters = None if parameter_dict['distribution']['disttype'] == "uniform": value = float(parameter_dict['distribution']['value']) if channel in density_scales: value = value * density_scales[channel] cond_density = "%s S_per_cm2" % value else: new_expr = '1e4 * (%s)'%parameter_dict['distribution']['value'].replace('x','p').replace('epp','exp') iv = neuroml.InhomogeneousValue(inhomogeneous_parameters="PathLengthOver_%s"%section_list, value=new_expr) variable_parameters = [ neuroml.VariableParameter( segment_groups=section_list, parameter='condDensity', inhomogeneous_value=iv)] channel_name = channel if channel_substitutes.has_key(channel): channel_name = channel_substitutes[channel] channel_nml2_file = "%s.channel.nml"%channel_name if channel_nml2_file not in included_channels[firing_type]: nml_doc.includes.append( neuroml.IncludeType( href="../../NeuroML2/%s" % channel_nml2_file)) included_channels[firing_type].append(channel_nml2_file) arguments['ion'] = channel_ions[channel] erev = ion_erevs[arguments["ion"]] channel_class = 'ChannelDensity' if erev == "nernst": erev = None channel_class = 'ChannelDensityNernst' elif erev == "pas": erev = cell_dict['parameters'] \ [section_list]['e_pas']['distribution']\ ['value'] erev = "%s mV" % erev arguments["ion"] = "non_specific" if variable_parameters is not None: channel_class += 'NonUniform' else: arguments["segment_groups"] = section_list if erev is not None: arguments["erev"] = erev arguments["id"] = "%s_%s" % (section_list, parameter_name) if cond_density is not None: arguments["cond_density"] = cond_density arguments['ion_channel'] = channel_name if variable_parameters is not None: arguments['variable_parameters'] = variable_parameters density = getattr(neuroml, channel_class)(**arguments) if channel_class == "ChannelDensityNernst": channel_density_nernsts.append(density) elif channel_class == "ChannelDensityNernstNonUniform": channel_density_non_uniform_nernsts.append(density) elif channel_class == "ChannelDensityNonUniform": channel_density_non_uniforms.append(density) else: channel_densities.append(density) elif 'gamma_CaDynamics_E2' in parameter_name: parameter_dict = cell_dict['parameters'][section_list][parameter_name] model = 'CaDynamics_E2_NML2__%s_%s'%(firing_type,section_list) value = parameter_dict['distribution']['value'] concentrationModels+='<concentrationModel id="%s" ion="ca" '%model +\ 'type="concentrationModelHayEtAl" minCai="1e-4 mM" ' +\ 'gamma="%s" '%value elif 'decay_CaDynamics_E2' in parameter_name: # calcium_model = \ # neuroml.DecayingPoolConcentrationModel(ion='ca') model = 'CaDynamics_E2_NML2__%s_%s'%(firing_type,section_list) species.append(neuroml.Species( id='ca', ion='ca', initial_concentration='5.0E-11 mol_per_cm3', initial_ext_concentration='2.0E-6 mol_per_cm3', concentration_model=model, segment_groups=section_list)) channel_nml2_file = 'CaDynamics_E2_NML2.nml' if channel_nml2_file not in included_channels[firing_type]: included_channels[firing_type].append(channel_nml2_file) parameter_dict = cell_dict['parameters'][section_list][parameter_name] value = parameter_dict['distribution']['value'] concentrationModels+='decay="%s ms" depth="0.1 um"/> <!-- For group %s in %s-->\n\n'%(value,section_list,firing_type) capacitance_overwrites = {} for section_list in cell_dict['forsecs']: for parameter_name in cell_dict['forsecs'][section_list]: if parameter_name == "cm" and section_list != 'all': value = cell_dict['forsecs'][section_list][parameter_name] capacitance_overwrites[ section_list] = "%s uF_per_cm2" % value specific_capacitances = [] for section_list in default_capacitances: if section_list in capacitance_overwrites: capacitance = capacitance_overwrites[section_list] else: capacitance = default_capacitances[section_list] specific_capacitances.append( neuroml.SpecificCapacitance(value=capacitance, segment_groups=section_list)) init_memb_potentials = [neuroml.InitMembPotential( value="-80 mV", segment_groups='all')] membrane_properties = neuroml.MembraneProperties( channel_densities=channel_densities, channel_density_nernsts=channel_density_nernsts, channel_density_non_uniform_nernsts=channel_density_non_uniform_nernsts, channel_density_non_uniforms=channel_density_non_uniforms, specific_capacitances=specific_capacitances, init_memb_potentials=init_memb_potentials) # Intracellular Properties # resistivities = [] resistivities.append(neuroml.Resistivity( value="100 ohm_cm", segment_groups='all')) intracellular_properties = neuroml.IntracellularProperties( resistivities=resistivities, species=species) # Cell construction # biophysical_properties = \ neuroml.BiophysicalProperties(id="biophys", intracellular_properties= intracellular_properties, membrane_properties= membrane_properties) biophysical_properties_vs_types[firing_type] = biophysical_properties if save_example_files: cell = neuroml.Cell(id=firing_type, notes="\n*************************\nThis is not a physiologically constrained cell model!!\n"+\ "It is only for testing formatting of the biophysicalProperties extracted from templates.json\n*************************\n", biophysical_properties=biophysical_properties) nml_doc.cells.append(cell) cell.morphology = neuroml.Morphology(id="morph") cell.morphology.segments.append(neuroml.Segment(id='0', name='soma', proximal=neuroml.Point3DWithDiam(x=0,y=0,z=0,diameter=10), distal=neuroml.Point3DWithDiam(x=0,y=20,z=0,diameter=10))) cell.morphology.segment_groups.append(neuroml.SegmentGroup(id="soma", neuro_lex_id="sao864921383", members=[neuroml.Member("0")])) cell.morphology.segments.append(neuroml.Segment(id='1', name='axon', parent=neuroml.SegmentParent(segments='0',fraction_along="0"), proximal=neuroml.Point3DWithDiam(x=0,y=0,z=0,diameter=2), distal=neuroml.Point3DWithDiam(x=0,y=-50,z=0,diameter=2))) cell.morphology.segment_groups.append(neuroml.SegmentGroup(id="axon", neuro_lex_id="sao864921383", members=[neuroml.Member("1")])) cell.morphology.segments.append(neuroml.Segment(id='2', name='basal_dend', parent=neuroml.SegmentParent(segments='0'), proximal=neuroml.Point3DWithDiam(x=0,y=20,z=0,diameter=3), distal=neuroml.Point3DWithDiam(x=50,y=20,z=0,diameter=3))) cell.morphology.segment_groups.append(neuroml.SegmentGroup(id="basal_dend", neuro_lex_id="sao864921383", members=[neuroml.Member("2")])) cell.morphology.segments.append(neuroml.Segment(id='3', name='apical_dend1', parent=neuroml.SegmentParent(segments='0'), proximal=neuroml.Point3DWithDiam(x=0,y=20,z=0,diameter=3), distal=neuroml.Point3DWithDiam(x=0,y=120,z=0,diameter=3))) cell.morphology.segments.append(neuroml.Segment(id='4', name='apical_dend2', parent=neuroml.SegmentParent(segments='0'), proximal=neuroml.Point3DWithDiam(x=0,y=120,z=0,diameter=3), distal=neuroml.Point3DWithDiam(x=0,y=220,z=0,diameter=3))) cell.morphology.segment_groups.append(neuroml.SegmentGroup(id="apical_dend", neuro_lex_id="sao864921383", members=[neuroml.Member("3"),neuroml.Member("4")])) cell.morphology.segment_groups.append(neuroml.SegmentGroup(id="somatic",includes=[neuroml.Include("soma")])) cell.morphology.segment_groups.append(neuroml.SegmentGroup(id="axonal", includes=[neuroml.Include("axon")])) sg = neuroml.SegmentGroup(id="basal", includes=[neuroml.Include("basal_dend")]) sg.inhomogeneous_parameters.append(neuroml.InhomogeneousParameter(id="PathLengthOver_"+"basal", variable="x", metric="Path Length from root", proximal=neuroml.ProximalDetails(translation_start="0"))) cell.morphology.segment_groups.append(sg) sg = neuroml.SegmentGroup(id="apical", includes=[neuroml.Include("apical_dend")]) sg.inhomogeneous_parameters.append(neuroml.InhomogeneousParameter(id="PathLengthOver_"+"apical", variable="x", metric="Path Length from root", proximal=neuroml.ProximalDetails(translation_start="0"))) cell.morphology.segment_groups.append(sg) nml_filename = 'test/%s.cell.nml' % firing_type neuroml.writers.NeuroMLWriter.write(nml_doc, nml_filename) logging.debug("Written cell file to: %s", nml_filename) neuroml.utils.validate_neuroml2(nml_filename) conc_mod_file = open('test/concentrationModel.txt','w') conc_mod_file.write(concentrationModels) conc_mod_file.close()
def create_GoC(runid): ### ---------- Load Params noPar = True pfile = Path('cellparams_file.pkl') keepFile = open('useParams_FI_14_25.pkl', 'rb') runid = pkl.load(keepFile)[runid] keepFile.close() print('Running morphology for parameter set = ', runid) if pfile.exists(): print('Reading parameters from file:') file = open('cellparams_file.pkl', 'rb') params_list = pkl.load(file) if len(params_list) > runid: p = params_list[runid] file.close() if noPar: p = icp.get_channel_params(runid) # Creating document for cell gocID = 'Golgi_040408_C1_' + format(runid, '05d') goc = nml.Cell(id=gocID) #--------simid cell_doc = nml.NeuroMLDocument(id=gocID) cell_doc.cells.append(goc) ### Load morphology morpho_fname = 'Golgi_040408_C1.cell.nml' morpho_file = pynml.read_neuroml2_file(morpho_fname) morpho = morpho_file.cells[0].morphology cell_doc.includes.append(nml.IncludeType(href=morpho_fname)) goc.morphology = morpho ### ---------- Channels na_fname = 'Golgi_Na.channel.nml' cell_doc.includes.append(nml.IncludeType(href=na_fname)) nar_fname = 'Golgi_NaR.channel.nml' cell_doc.includes.append(nml.IncludeType(href=nar_fname)) nap_fname = 'Golgi_NaP.channel.nml' cell_doc.includes.append(nml.IncludeType(href=nap_fname)) ka_fname = 'Golgi_KA.channel.nml' cell_doc.includes.append(nml.IncludeType(href=ka_fname)) sk2_fname = 'Golgi_SK2.channel.nml' cell_doc.includes.append(nml.IncludeType(href=sk2_fname)) km_fname = 'Golgi_KM.channel.nml' cell_doc.includes.append(nml.IncludeType(href=km_fname)) kv_fname = 'Golgi_KV.channel.nml' cell_doc.includes.append(nml.IncludeType(href=kv_fname)) bk_fname = 'Golgi_BK.channel.nml' cell_doc.includes.append(nml.IncludeType(href=bk_fname)) cahva_fname = 'Golgi_CaHVA.channel.nml' cell_doc.includes.append(nml.IncludeType(href=cahva_fname)) calva_fname = 'Golgi_CaLVA.channel.nml' cell_doc.includes.append(nml.IncludeType(href=calva_fname)) hcn1f_fname = 'Golgi_HCN1f.channel.nml' cell_doc.includes.append(nml.IncludeType(href=hcn1f_fname)) hcn1s_fname = 'Golgi_HCN1s.channel.nml' cell_doc.includes.append(nml.IncludeType(href=hcn1s_fname)) hcn2f_fname = 'Golgi_HCN2f.channel.nml' cell_doc.includes.append(nml.IncludeType(href=hcn2f_fname)) hcn2s_fname = 'Golgi_HCN2s.channel.nml' cell_doc.includes.append(nml.IncludeType(href=hcn2s_fname)) leak_fname = 'Golgi_lkg.channel.nml' #leak_ref = nml.IncludeType( href=leak_fname) cell_doc.includes.append(nml.IncludeType(href=leak_fname)) calc_fname = 'Golgi_CALC.nml' cell_doc.includes.append(nml.IncludeType(href=calc_fname)) calc = pynml.read_neuroml2_file( calc_fname).decaying_pool_concentration_models[0] calc2_fname = 'Golgi_CALC2.nml' cell_doc.includes.append(nml.IncludeType(href=calc2_fname)) goc_2pools_fname = 'GoC_2Pools.cell.nml' ### ------Biophysical Properties biophys = nml.BiophysicalProperties(id='biophys_' + gocID) goc.biophysical_properties = biophys # Inproperties ''' res = nml.Resistivity( p["ra"] ) # --------- "0.1 kohm_cm" ca_species = nml.Species( id="ca", ion="ca", concentration_model=calc.id, initial_concentration ="5e-5 mM", initial_ext_concentration="2 mM" ) ca2_species = nml.Species( id="ca2", ion="ca2", concentration_model="Golgi_CALC2", initial_concentration ="5e-5 mM", initial_ext_concentration="2 mM" ) intracellular = nml.IntracellularProperties( ) intracellular.resistivities.append( res ) intracellular.species.append( ca_species ) ''' intracellular = pynml.read_neuroml2_file(goc_2pools_fname).cells[ 0].biophysical_properties.intracellular_properties biophys.intracellular_properties = intracellular # Membrane properties ------- cond memb = nml.MembraneProperties() biophys.membrane_properties = memb #pynml.read_neuroml2_file(leak_fname).ion_channel[0].id -> can't read ion channel passive chan_leak = nml.ChannelDensity(ion_channel="LeakConductance", cond_density=p["leak_cond"], erev="-55 mV", ion="non_specific", id="Leak") memb.channel_densities.append(chan_leak) chan_na = nml.ChannelDensity( ion_channel=pynml.read_neuroml2_file(na_fname).ion_channel[0].id, cond_density=p["na_cond"], erev="87.39 mV", ion="na", id="Golgi_Na_soma_group", segment_groups="soma_group") memb.channel_densities.append(chan_na) chan_nap = nml.ChannelDensity( ion_channel=pynml.read_neuroml2_file(nap_fname).ion_channel[0].id, cond_density=p["nap_cond"], erev="87.39 mV", ion="na", id="Golgi_NaP_soma_group", segment_groups="soma_group") memb.channel_densities.append(chan_nap) chan_nar = nml.ChannelDensity( ion_channel=pynml.read_neuroml2_file(nar_fname).ion_channel[0].id, cond_density=p["nar_cond"], erev="87.39 mV", ion="na", id="Golgi_NaR_soma_group", segment_groups="soma_group") memb.channel_densities.append(chan_nar) chan_ka = nml.ChannelDensity( ion_channel=pynml.read_neuroml2_file(ka_fname).ion_channel[0].id, cond_density=p["ka_cond"], erev="-84.69 mV", ion="k", id="Golgi_KA_soma_group", segment_groups="soma_group") memb.channel_densities.append(chan_ka) chan_sk = nml.ChannelDensity( ion_channel=pynml.read_neuroml2_file(sk2_fname).ion_channel_kses[0].id, cond_density=p["sk2_cond"], erev="-84.69 mV", ion="k", id="Golgi_KAHP_soma_group", segment_groups="soma_group") memb.channel_densities.append(chan_sk) chan_kv = nml.ChannelDensity( ion_channel=pynml.read_neuroml2_file(kv_fname).ion_channel[0].id, cond_density=p["kv_cond"], erev="-84.69 mV", ion="k", id="Golgi_KV_soma_group", segment_groups="soma_group") memb.channel_densities.append(chan_kv) chan_km = nml.ChannelDensity( ion_channel=pynml.read_neuroml2_file(km_fname).ion_channel[0].id, cond_density=p["km_cond"], erev="-84.69 mV", ion="k", id="Golgi_KM_soma_group", segment_groups="soma_group") memb.channel_densities.append(chan_km) chan_bk = nml.ChannelDensity( ion_channel=pynml.read_neuroml2_file(bk_fname).ion_channel[0].id, cond_density=p["bk_cond"], erev="-84.69 mV", ion="k", id="Golgi_BK_soma_group", segment_groups="soma_group") memb.channel_densities.append(chan_bk) chan_h1f = nml.ChannelDensity( ion_channel=pynml.read_neuroml2_file(hcn1f_fname).ion_channel[0].id, cond_density=p["hcn1f_cond"], erev="-20 mV", ion="h", id="Golgi_hcn1f_soma_group", segment_groups="soma_group") memb.channel_densities.append(chan_h1f) chan_h1s = nml.ChannelDensity( ion_channel=pynml.read_neuroml2_file(hcn1s_fname).ion_channel[0].id, cond_density=p["hcn1s_cond"], erev="-20 mV", ion="h", id="Golgi_hcn1s_soma_group", segment_groups="soma_group") memb.channel_densities.append(chan_h1s) chan_h2f = nml.ChannelDensity( ion_channel=pynml.read_neuroml2_file(hcn2f_fname).ion_channel[0].id, cond_density=p["hcn2f_cond"], erev="-20 mV", ion="h", id="Golgi_hcn2f_soma_group", segment_groups="soma_group") memb.channel_densities.append(chan_h2f) chan_h2s = nml.ChannelDensity( ion_channel=pynml.read_neuroml2_file(hcn2s_fname).ion_channel[0].id, cond_density=p["hcn2s_cond"], erev="-20 mV", ion="h", id="Golgi_hcn2s_soma_group", segment_groups="soma_group") memb.channel_densities.append(chan_h2s) chan_hva = nml.ChannelDensityNernst( ion_channel=pynml.read_neuroml2_file(cahva_fname).ion_channel[0].id, cond_density=p["cahva_cond"], ion="ca", id="Golgi_Ca_HVA_soma_group", segment_groups="soma_group") memb.channel_density_nernsts.append(chan_hva) chan_lva = nml.ChannelDensityNernst( ion_channel=pynml.read_neuroml2_file(calva_fname).ion_channel[0].id, cond_density=p["calva_cond"], ion="ca2", id="Golgi_Ca_LVA_soma_group", segment_groups="soma_group") memb.channel_density_nernsts.append(chan_lva) memb.spike_threshes.append(nml.SpikeThresh("0 mV")) memb.specific_capacitances.append( nml.SpecificCapacitance("1.0 uF_per_cm2")) memb.init_memb_potentials.append(nml.InitMembPotential("-60 mV")) goc_filename = '{}.cell.nml'.format(gocID) pynml.write_neuroml2_file(cell_doc, goc_filename) return True
cd_k = neuroml.ChannelDensity(id="k_chan", segment_groups="all", ion="k", ion_channel="K_BC", erev="-90 mV", cond_density="30 mS_per_cm2") channel_densities.append(cd_k) specific_capacitances = [] specific_capacitances.append( neuroml.SpecificCapacitance(value='1.0 uF_per_cm2', segment_groups='all')) init_memb_potentials = [ neuroml.InitMembPotential(value="-80 mV", segment_groups='all') ] membrane_properties = neuroml.MembraneProperties( channel_densities=channel_densities, channel_density_non_uniforms=channel_density_non_uniforms, specific_capacitances=specific_capacitances, init_memb_potentials=init_memb_potentials) # Intracellular Properties # resistivities = [] resistivities.append( neuroml.Resistivity(value="100 ohm_cm", segment_groups='all')) intracellular_properties = neuroml.IntracellularProperties(