def showGraph(self): """Generate graph buttom has been pressed""" print_v("Graph button was clicked.") self.update_net_sim() self.tabs.setCurrentWidget(self.all_tabs[self.GRAPH_TAB]) from neuromllite.GraphVizHandler import GraphVizHandler engine = str(self.graphTypeComboBox.currentText()).split(" - ")[1] level = int(self.graphLevelComboBox.currentText()) show_ext_inputs = self.graphShowExtInputs.isChecked() show_input_pops = self.graphShowInputPops.isChecked() format = "svg" format = "png" handler = GraphVizHandler( level, engine=engine, nl_network=self.network, output_format=format, view_on_render=False, include_ext_inputs=show_ext_inputs, include_input_pops=show_input_pops, ) from neuromllite.NetworkGenerator import generate_network generate_network(self.network, handler, always_include_props=True, base_dir=".") print_("Done with GraphViz...", self.verbose) if format == "svg": genFile = "%s.gv.svg" % self.network.id self.add_image(genFile, self.GRAPH_TAB) """ svgWidget = QSvgWidget(genFile) svgWidget.resize(svgWidget.sizeHint()) svgWidget.show() self.graphTabLayout.addWidget(svgWidget, 0, 0)""" elif format == "png": genFile = "%s.gv.png" % self.network.id self.add_image(genFile, self.GRAPH_TAB)
def generate_and_run(simulation, simulator, network=None, return_results=False, base_dir=None, target_dir=None, num_processors=1): """ Generates the network in the specified simulator and runs, if appropriate """ if network == None: network = load_network_json(simulation.network) print_v("Generating network %s and running in simulator: %s..." % (network.id, simulator)) if simulator == 'NEURON': _generate_neuron_files_from_neuroml(network, dir_for_mod_files=target_dir) from neuromllite.NeuronHandler import NeuronHandler nrn_handler = NeuronHandler() for c in network.cells: if c.neuroml2_source_file: src_dir = os.path.dirname( os.path.abspath(c.neuroml2_source_file)) nrn_handler.executeHoc('load_file("%s/%s.hoc")' % (src_dir, c.id)) generate_network(network, nrn_handler, generate_network, base_dir) if return_results: raise NotImplementedError( "Reloading results not supported in Neuron yet...") elif simulator.lower() == 'sonata': # Will not "run" obviously... from neuromllite.SonataHandler import SonataHandler sonata_handler = SonataHandler() generate_network(network, sonata_handler, always_include_props=True, base_dir=base_dir) print_v("Done with Sonata...") elif simulator.lower().startswith('graph'): # Will not "run" obviously... from neuromllite.GraphVizHandler import GraphVizHandler, engines try: if simulator[-1].isalpha(): engine = engines[simulator[-1]] level = int(simulator[5:-1]) else: engine = 'dot' level = int(simulator[5:]) except Exception as e: print_v("Error parsing: %s: %s" % (simulator, e)) print_v( "Graphs of the network structure can be generated at many levels of detail (1-6, required) and laid out using GraphViz engines (d - dot (default); c - circo; n - neato; f - fdp), so use: -graph3c, -graph2, -graph4f etc." ) return handler = GraphVizHandler(level, engine=engine, nl_network=network) generate_network(network, handler, always_include_props=True, base_dir=base_dir) print_v("Done with GraphViz...") elif simulator.lower().startswith('matrix'): # Will not "run" obviously... from neuromllite.MatrixHandler import MatrixHandler try: level = int(simulator[6:]) except: print_v("Error parsing: %s" % simulator) print_v( "Matrices of the network structure can be generated at many levels of detail (1-n, required), so use: -matrix1, -matrix2, etc." ) return handler = MatrixHandler(level, nl_network=network) generate_network(network, handler, always_include_props=True, base_dir=base_dir) print_v("Done with MatrixHandler...") elif simulator.startswith('PyNN'): #_generate_neuron_files_from_neuroml(network) simulator_name = simulator.split('_')[1].lower() from neuromllite.PyNNHandler import PyNNHandler pynn_handler = PyNNHandler(simulator_name, simulation.dt, network.id) syn_cell_params = {} for proj in network.projections: synapse = network.get_child(proj.synapse, 'synapses') post_pop = network.get_child(proj.postsynaptic, 'populations') if not post_pop.component in syn_cell_params: syn_cell_params[post_pop.component] = {} for p in synapse.parameters: post = '' if synapse.pynn_receptor_type == "excitatory": post = '_E' elif synapse.pynn_receptor_type == "inhibitory": post = '_I' syn_cell_params[post_pop.component][ '%s%s' % (p, post)] = synapse.parameters[p] cells = {} for c in network.cells: if c.pynn_cell: cell_params = {} if c.parameters: for p in c.parameters: cell_params[p] = evaluate(c.parameters[p], network.parameters) dont_set_here = [ 'tau_syn_E', 'e_rev_E', 'tau_syn_I', 'e_rev_I' ] for d in dont_set_here: if d in c.parameters: raise Exception( 'Synaptic parameters like %s should be set ' + 'in individual synapses, not in the list of parameters associated with the cell' % d) if c.id in syn_cell_params: cell_params.update(syn_cell_params[c.id]) print_v("Creating cell with params: %s" % cell_params) exec('cells["%s"] = pynn_handler.sim.%s(**cell_params)' % (c.id, c.pynn_cell)) if c.pynn_cell != 'SpikeSourcePoisson': exec( "cells['%s'].default_initial_values['v'] = cells['%s'].parameter_space['v_rest'].base_value" % (c.id, c.id)) pynn_handler.set_cells(cells) receptor_types = {} for s in network.synapses: if s.pynn_receptor_type: receptor_types[s.id] = s.pynn_receptor_type pynn_handler.set_receptor_types(receptor_types) for input_source in network.input_sources: if input_source.pynn_input: pynn_handler.add_input_source(input_source) generate_network(network, pynn_handler, always_include_props=True, base_dir=base_dir) for pid in pynn_handler.populations: pop = pynn_handler.populations[pid] if 'all' in simulation.recordTraces or pop.label in simulation.recordTraces: if pop.can_record('v'): pop.record('v') pynn_handler.sim.run(simulation.duration) pynn_handler.sim.end() traces = {} events = {} if not 'NeuroML' in simulator: from neo.io import PyNNTextIO for pid in pynn_handler.populations: pop = pynn_handler.populations[pid] if 'all' in simulation.recordTraces or pop.label in simulation.recordTraces: filename = "%s.%s.v.dat" % (simulation.id, pop.label) all_columns = [] print_v("Writing data for %s to %s" % (pop.label, filename)) for i in range(len(pop)): if pop.can_record('v'): ref = '%s[%i]' % (pop.label, i) traces[ref] = [] data = pop.get_data('v', gather=False) for segment in data.segments: vm = segment.analogsignals[0].transpose()[i] if len(all_columns) == 0: tt = np.array([ t * simulation.dt / 1000. for t in range(len(vm)) ]) all_columns.append(tt) vm_si = [float(v / 1000.) for v in vm] traces[ref] = vm_si all_columns.append(vm_si) times_vm = np.array(all_columns).transpose() np.savetxt(filename, times_vm, delimiter='\t', fmt='%s') if return_results: _print_result_info(traces, events) return traces, events elif simulator == 'NetPyNE': if target_dir == None: target_dir = './' _generate_neuron_files_from_neuroml(network, dir_for_mod_files=target_dir) from netpyne import specs from netpyne import sim # Note NetPyNE from this branch is required: https://github.com/Neurosim-lab/netpyne/tree/neuroml_updates from netpyne.conversion.neuromlFormat import NetPyNEBuilder import pprint pp = pprint.PrettyPrinter(depth=6) netParams = specs.NetParams() simConfig = specs.SimConfig() netpyne_handler = NetPyNEBuilder(netParams, simConfig=simConfig, verbose=True) generate_network(network, netpyne_handler, base_dir=base_dir) netpyne_handler.finalise() simConfig = specs.SimConfig() simConfig.tstop = simulation.duration simConfig.duration = simulation.duration simConfig.dt = simulation.dt simConfig.seed = simulation.seed simConfig.recordStep = simulation.dt simConfig.recordCells = ['all'] simConfig.recordTraces = {} for pop in netpyne_handler.popParams.values(): if 'all' in simulation.recordTraces or pop.id in simulation.recordTraces: for i in pop['cellsList']: id = pop['pop'] index = i['cellLabel'] simConfig.recordTraces['v_%s_%s' % (id, index)] = { 'sec': 'soma', 'loc': 0.5, 'var': 'v', 'conds': { 'pop': id, 'cellLabel': index } } simConfig.saveDat = True print_v("NetPyNE netParams: ") pp.pprint(netParams.todict()) #print_v("NetPyNE simConfig: ") #pp.pprint(simConfig.todict()) sim.initialize( netParams, simConfig) # create network object and set cfg and net params sim.net.createPops() cells = sim.net.createCells( ) # instantiate network cells based on defined populations for proj_id in netpyne_handler.projection_infos.keys(): projName, prePop, postPop, synapse, ptype = netpyne_handler.projection_infos[ proj_id] print_v("Creating connections for %s (%s): %s->%s via %s" % (projName, ptype, prePop, postPop, synapse)) preComp = netpyne_handler.pop_ids_vs_components[prePop] for conn in netpyne_handler.connections[projName]: pre_id, pre_seg, pre_fract, post_id, post_seg, post_fract, delay, weight = conn #connParam = {'delay':delay,'weight':weight,'synsPerConn':1, 'sec':post_seg, 'loc':post_fract, 'threshold':threshold} connParam = { 'delay': delay, 'weight': weight, 'synsPerConn': 1, 'sec': post_seg, 'loc': post_fract } if ptype == 'electricalProjection': if weight != 1: raise Exception( 'Cannot yet support inputs where weight !=1!') connParam = { 'synsPerConn': 1, 'sec': post_seg, 'loc': post_fract, 'gapJunction': True, 'weight': weight } else: connParam = { 'delay': delay, 'weight': weight, 'synsPerConn': 1, 'sec': post_seg, 'loc': post_fract } #'threshold': threshold} connParam['synMech'] = synapse if post_id in sim.net.gid2lid: # check if postsyn is in this node's list of gids sim.net._addCellConn(connParam, pre_id, post_id) stims = sim.net.addStims( ) # add external stimulation to cells (IClamps etc) simData = sim.setupRecording( ) # setup variables to record for each cell (spikes, V traces, etc) sim.runSim() # run parallel Neuron simulation sim.gatherData() # gather spiking data and cell info from each node sim.saveData( ) # save params, cell info and sim output to file (pickle,mat,txt,etc) if return_results: raise NotImplementedError( "Reloading results not supported in NetPyNE yet...") elif simulator == 'jNeuroML' or simulator == 'jNeuroML_NEURON' or simulator == 'jNeuroML_NetPyNE': from pyneuroml.lems import generate_lems_file_for_neuroml from pyneuroml import pynml lems_file_name = 'LEMS_%s.xml' % simulation.id nml_file_name, nml_doc = generate_neuroml2_from_network( network, base_dir=base_dir, target_dir=target_dir) included_files = ['PyNN.xml'] for c in network.cells: if c.lems_source_file: included_files.append(c.lems_source_file) ''' if network.cells: for c in network.cells: included_files.append(c.neuroml2_source_file) ''' if network.synapses: for s in network.synapses: if s.lems_source_file: included_files.append(s.lems_source_file) print_v("Generating LEMS file prior to running in %s" % simulator) pops_plot_save = [] pops_spike_save = [] gen_plots_for_quantities = {} gen_saves_for_quantities = {} for p in network.populations: if simulation.recordTraces and ('all' in simulation.recordTraces or p.id in simulation.recordTraces): pops_plot_save.append(p.id) if simulation.recordSpikes and ('all' in simulation.recordSpikes or p.id in simulation.recordSpikes): pops_spike_save.append(p.id) if simulation.recordRates and ('all' in simulation.recordRates or p.id in simulation.recordRates): size = evaluate(p.size, network.parameters) for i in range(size): quantity = '%s/%i/%s/r' % (p.id, i, p.component) gen_plots_for_quantities['%s_%i_r' % (p.id, i)] = [quantity] gen_saves_for_quantities['%s_%i.r.dat' % (p.id, i)] = [quantity] if simulation.recordVariables: for var in simulation.recordVariables: to_rec = simulation.recordVariables[var] if ('all' in to_rec or p.id in to_rec): size = evaluate(p.size, network.parameters) for i in range(size): quantity = '%s/%i/%s/%s' % (p.id, i, p.component, var) gen_plots_for_quantities['%s_%i_%s' % (p.id, i, var)] = [ quantity ] gen_saves_for_quantities['%s_%i.%s.dat' % (p.id, i, var)] = [ quantity ] generate_lems_file_for_neuroml( simulation.id, nml_file_name, network.id, simulation.duration, simulation.dt, lems_file_name, target_dir=target_dir if target_dir else '.', nml_doc= nml_doc, # Use this if the nml doc has already been loaded (to avoid delay in reload) include_extra_files=included_files, gen_plots_for_all_v=False, plot_all_segments=False, gen_plots_for_quantities= gen_plots_for_quantities, # Dict with displays vs lists of quantity paths gen_plots_for_only_populations= pops_plot_save, # List of populations, all pops if = [] gen_saves_for_all_v=False, save_all_segments=False, gen_saves_for_only_populations= pops_plot_save, # List of populations, all pops if = [] gen_saves_for_quantities= gen_saves_for_quantities, # Dict with file names vs lists of quantity paths gen_spike_saves_for_all_somas=False, gen_spike_saves_for_only_populations= pops_spike_save, # List of populations, all pops if = [] gen_spike_saves_for_cells= {}, # Dict with file names vs lists of quantity paths spike_time_format='ID_TIME', copy_neuroml=True, lems_file_generate_seed=12345, report_file_name='report.%s.txt' % simulation.id, simulation_seed=simulation.seed if simulation.seed else 12345, verbose=True) lems_file_name = _locate_file(lems_file_name, target_dir) if simulator == 'jNeuroML': results = pynml.run_lems_with_jneuroml( lems_file_name, nogui=True, load_saved_data=return_results, reload_events=return_results) elif simulator == 'jNeuroML_NEURON': results = pynml.run_lems_with_jneuroml_neuron( lems_file_name, nogui=True, load_saved_data=return_results, reload_events=return_results) elif simulator == 'jNeuroML_NetPyNE': results = pynml.run_lems_with_jneuroml_netpyne( lems_file_name, nogui=True, verbose=True, load_saved_data=return_results, reload_events=return_results, num_processors=num_processors) print_v("Finished running LEMS file %s in %s (returning results: %s)" % (lems_file_name, simulator, return_results)) if return_results: traces, events = results _print_result_info(traces, events) return results # traces, events =
def evaluate_arguments(args): global DEFAULTS DEFAULTS['v'] = args.verbose pre_args = "" files = "" post_args = "" exit_on_fail = True files = args.lems_file if args.nogui: post_args = "-nogui" if args.sedml: post_args = "-sedml" elif args.neuron is not None: num_neuron_args = len(args.neuron) if num_neuron_args < 0 or num_neuron_args > 4: print_comment("ERROR: The \'-neuron\' option was given an invalid " "number of arguments: %d given, 0-4 required" % num_neuron_args) sys.exit(-1) post_args = "-neuron %s" % ' '.join(args.neuron[:-1]) elif args.svg: post_args = "-svg" elif args.png: post_args = "-png" elif args.dlems: post_args = "-dlems" elif args.vertex: post_args = "-vertex" elif args.xpp: post_args = "-xpp" elif args.dnsim: post_args = "-dnsim" elif args.brian: post_args = "-brian" elif args.sbml: post_args = "-sbml" elif args.matlab: post_args = "-matlab" elif args.cvode: post_args = "-cvode" elif args.nineml: post_args = "-nineml" elif args.spineml: post_args = "-spineml" elif args.sbml_import: pre_args = "-sbml-import" files = args.sbml_import[0] post_args = ' '.join(args.sbml_import[1:]) elif args.sbml_import_units: pre_args = "-smbl-import-units" files = args.sbml_import_units[0] post_args = ' '.join(args.sbml_import_units[1:]) elif args.vhdl: files = args.vhdl[1] post_args = "-vhdl %s" % args.vhdl[0] elif args.graph: from neuromllite.GraphVizHandler import GraphVizHandler, engines engine = 'dot' try: level = int(args.graph[0]) except: engine = engines[args.graph[0][-1:]] level = int(args.graph[0][:-1]) print_comment('Converting %s to graphical form, level %i, engine %s' % (args.lems_file, level, engine)) from neuroml.hdf5.NeuroMLXMLParser import NeuroMLXMLParser handler = GraphVizHandler(level=level, engine=engine, nl_network=None) currParser = NeuroMLXMLParser(handler) currParser.parse(args.lems_file) handler.finalise_document() print_comment("Done with GraphViz...") exit() elif args.validate: pre_args = "-validate" exit_on_fail = True elif args.validatev1: pre_args = "-validatev1" exit_on_fail = True run_jneuroml(pre_args, files, post_args, max_memory=args.java_max_memory, exit_on_fail=exit_on_fail)
import logging file_name = sys.argv[1] logging.basicConfig(level=logging.INFO, format="%(name)-19s %(levelname)-5s - %(message)s") from neuroml.hdf5.NeuroMLXMLParser import NeuroMLXMLParser ''' from neuroml.hdf5.DefaultNetworkHandler import DefaultNetworkHandler nmlHandler = DefaultNetworkHandler() #currParser = NeuroMLHdf5Parser(nmlHandler) currParser.parse(file_name)''' from neuromllite.GraphVizHandler import GraphVizHandler level = int(sys.argv[2]) handler = GraphVizHandler(level, None) currParser = NeuroMLXMLParser(handler) currParser.parse(file_name) handler.finalise_document() print("Done with GraphViz...")