Exemple #1
0
    def showGraph(self):
        """Generate graph buttom has been pressed"""

        print_v("Graph button was clicked.")

        self.update_net_sim()
        self.tabs.setCurrentWidget(self.all_tabs[self.GRAPH_TAB])

        from neuromllite.GraphVizHandler import GraphVizHandler

        engine = str(self.graphTypeComboBox.currentText()).split(" - ")[1]
        level = int(self.graphLevelComboBox.currentText())

        show_ext_inputs = self.graphShowExtInputs.isChecked()
        show_input_pops = self.graphShowInputPops.isChecked()

        format = "svg"
        format = "png"

        handler = GraphVizHandler(
            level,
            engine=engine,
            nl_network=self.network,
            output_format=format,
            view_on_render=False,
            include_ext_inputs=show_ext_inputs,
            include_input_pops=show_input_pops,
        )

        from neuromllite.NetworkGenerator import generate_network

        generate_network(self.network, handler, always_include_props=True, base_dir=".")

        print_("Done with GraphViz...", self.verbose)

        if format == "svg":
            genFile = "%s.gv.svg" % self.network.id

            self.add_image(genFile, self.GRAPH_TAB)
            """
            svgWidget = QSvgWidget(genFile)
            svgWidget.resize(svgWidget.sizeHint())
            svgWidget.show()
            self.graphTabLayout.addWidget(svgWidget, 0, 0)"""

        elif format == "png":
            genFile = "%s.gv.png" % self.network.id

            self.add_image(genFile, self.GRAPH_TAB)
Exemple #2
0
def generate_and_run(simulation,
                     simulator,
                     network=None,
                     return_results=False,
                     base_dir=None,
                     target_dir=None,
                     num_processors=1):
    """
    Generates the network in the specified simulator and runs, if appropriate
    """

    if network == None:
        network = load_network_json(simulation.network)

    print_v("Generating network %s and running in simulator: %s..." %
            (network.id, simulator))

    if simulator == 'NEURON':

        _generate_neuron_files_from_neuroml(network,
                                            dir_for_mod_files=target_dir)

        from neuromllite.NeuronHandler import NeuronHandler

        nrn_handler = NeuronHandler()

        for c in network.cells:
            if c.neuroml2_source_file:
                src_dir = os.path.dirname(
                    os.path.abspath(c.neuroml2_source_file))
                nrn_handler.executeHoc('load_file("%s/%s.hoc")' %
                                       (src_dir, c.id))

        generate_network(network, nrn_handler, generate_network, base_dir)
        if return_results:
            raise NotImplementedError(
                "Reloading results not supported in Neuron yet...")

    elif simulator.lower() == 'sonata':  # Will not "run" obviously...

        from neuromllite.SonataHandler import SonataHandler

        sonata_handler = SonataHandler()

        generate_network(network,
                         sonata_handler,
                         always_include_props=True,
                         base_dir=base_dir)

        print_v("Done with Sonata...")

    elif simulator.lower().startswith('graph'):  # Will not "run" obviously...

        from neuromllite.GraphVizHandler import GraphVizHandler, engines

        try:
            if simulator[-1].isalpha():
                engine = engines[simulator[-1]]
                level = int(simulator[5:-1])
            else:
                engine = 'dot'
                level = int(simulator[5:])

        except Exception as e:
            print_v("Error parsing: %s: %s" % (simulator, e))
            print_v(
                "Graphs of the network structure can be generated at many levels of detail (1-6, required) and laid out using GraphViz engines (d - dot (default); c - circo; n - neato; f - fdp), so use: -graph3c, -graph2, -graph4f etc."
            )
            return

        handler = GraphVizHandler(level, engine=engine, nl_network=network)

        generate_network(network,
                         handler,
                         always_include_props=True,
                         base_dir=base_dir)

        print_v("Done with GraphViz...")

    elif simulator.lower().startswith('matrix'):  # Will not "run" obviously...

        from neuromllite.MatrixHandler import MatrixHandler

        try:
            level = int(simulator[6:])
        except:
            print_v("Error parsing: %s" % simulator)
            print_v(
                "Matrices of the network structure can be generated at many levels of detail (1-n, required), so use: -matrix1, -matrix2, etc."
            )
            return

        handler = MatrixHandler(level, nl_network=network)

        generate_network(network,
                         handler,
                         always_include_props=True,
                         base_dir=base_dir)

        print_v("Done with MatrixHandler...")

    elif simulator.startswith('PyNN'):

        #_generate_neuron_files_from_neuroml(network)
        simulator_name = simulator.split('_')[1].lower()

        from neuromllite.PyNNHandler import PyNNHandler

        pynn_handler = PyNNHandler(simulator_name, simulation.dt, network.id)

        syn_cell_params = {}
        for proj in network.projections:

            synapse = network.get_child(proj.synapse, 'synapses')
            post_pop = network.get_child(proj.postsynaptic, 'populations')

            if not post_pop.component in syn_cell_params:
                syn_cell_params[post_pop.component] = {}
            for p in synapse.parameters:
                post = ''
                if synapse.pynn_receptor_type == "excitatory":
                    post = '_E'
                elif synapse.pynn_receptor_type == "inhibitory":
                    post = '_I'
                syn_cell_params[post_pop.component][
                    '%s%s' % (p, post)] = synapse.parameters[p]

        cells = {}
        for c in network.cells:
            if c.pynn_cell:
                cell_params = {}
                if c.parameters:
                    for p in c.parameters:
                        cell_params[p] = evaluate(c.parameters[p],
                                                  network.parameters)

                dont_set_here = [
                    'tau_syn_E', 'e_rev_E', 'tau_syn_I', 'e_rev_I'
                ]
                for d in dont_set_here:
                    if d in c.parameters:
                        raise Exception(
                            'Synaptic parameters like %s should be set ' +
                            'in individual synapses, not in the list of parameters associated with the cell'
                            % d)
                if c.id in syn_cell_params:
                    cell_params.update(syn_cell_params[c.id])
                print_v("Creating cell with params: %s" % cell_params)
                exec('cells["%s"] = pynn_handler.sim.%s(**cell_params)' %
                     (c.id, c.pynn_cell))

                if c.pynn_cell != 'SpikeSourcePoisson':
                    exec(
                        "cells['%s'].default_initial_values['v'] = cells['%s'].parameter_space['v_rest'].base_value"
                        % (c.id, c.id))

        pynn_handler.set_cells(cells)

        receptor_types = {}
        for s in network.synapses:
            if s.pynn_receptor_type:
                receptor_types[s.id] = s.pynn_receptor_type

        pynn_handler.set_receptor_types(receptor_types)

        for input_source in network.input_sources:
            if input_source.pynn_input:
                pynn_handler.add_input_source(input_source)

        generate_network(network,
                         pynn_handler,
                         always_include_props=True,
                         base_dir=base_dir)

        for pid in pynn_handler.populations:
            pop = pynn_handler.populations[pid]
            if 'all' in simulation.recordTraces or pop.label in simulation.recordTraces:
                if pop.can_record('v'):
                    pop.record('v')

        pynn_handler.sim.run(simulation.duration)
        pynn_handler.sim.end()

        traces = {}
        events = {}

        if not 'NeuroML' in simulator:
            from neo.io import PyNNTextIO

            for pid in pynn_handler.populations:
                pop = pynn_handler.populations[pid]

                if 'all' in simulation.recordTraces or pop.label in simulation.recordTraces:

                    filename = "%s.%s.v.dat" % (simulation.id, pop.label)
                    all_columns = []
                    print_v("Writing data for %s to %s" %
                            (pop.label, filename))
                    for i in range(len(pop)):
                        if pop.can_record('v'):
                            ref = '%s[%i]' % (pop.label, i)
                            traces[ref] = []
                            data = pop.get_data('v', gather=False)
                            for segment in data.segments:
                                vm = segment.analogsignals[0].transpose()[i]

                                if len(all_columns) == 0:
                                    tt = np.array([
                                        t * simulation.dt / 1000.
                                        for t in range(len(vm))
                                    ])
                                    all_columns.append(tt)
                                vm_si = [float(v / 1000.) for v in vm]
                                traces[ref] = vm_si
                                all_columns.append(vm_si)

                            times_vm = np.array(all_columns).transpose()

                    np.savetxt(filename, times_vm, delimiter='\t', fmt='%s')

        if return_results:
            _print_result_info(traces, events)
            return traces, events

    elif simulator == 'NetPyNE':

        if target_dir == None:
            target_dir = './'

        _generate_neuron_files_from_neuroml(network,
                                            dir_for_mod_files=target_dir)

        from netpyne import specs
        from netpyne import sim
        # Note NetPyNE from this branch is required: https://github.com/Neurosim-lab/netpyne/tree/neuroml_updates
        from netpyne.conversion.neuromlFormat import NetPyNEBuilder

        import pprint
        pp = pprint.PrettyPrinter(depth=6)

        netParams = specs.NetParams()
        simConfig = specs.SimConfig()
        netpyne_handler = NetPyNEBuilder(netParams,
                                         simConfig=simConfig,
                                         verbose=True)

        generate_network(network, netpyne_handler, base_dir=base_dir)

        netpyne_handler.finalise()

        simConfig = specs.SimConfig()
        simConfig.tstop = simulation.duration
        simConfig.duration = simulation.duration
        simConfig.dt = simulation.dt
        simConfig.seed = simulation.seed
        simConfig.recordStep = simulation.dt

        simConfig.recordCells = ['all']
        simConfig.recordTraces = {}

        for pop in netpyne_handler.popParams.values():
            if 'all' in simulation.recordTraces or pop.id in simulation.recordTraces:
                for i in pop['cellsList']:
                    id = pop['pop']
                    index = i['cellLabel']
                    simConfig.recordTraces['v_%s_%s' % (id, index)] = {
                        'sec': 'soma',
                        'loc': 0.5,
                        'var': 'v',
                        'conds': {
                            'pop': id,
                            'cellLabel': index
                        }
                    }

        simConfig.saveDat = True

        print_v("NetPyNE netParams: ")
        pp.pprint(netParams.todict())
        #print_v("NetPyNE simConfig: ")
        #pp.pprint(simConfig.todict())

        sim.initialize(
            netParams,
            simConfig)  # create network object and set cfg and net params

        sim.net.createPops()
        cells = sim.net.createCells(
        )  # instantiate network cells based on defined populations

        for proj_id in netpyne_handler.projection_infos.keys():
            projName, prePop, postPop, synapse, ptype = netpyne_handler.projection_infos[
                proj_id]
            print_v("Creating connections for %s (%s): %s->%s via %s" %
                    (projName, ptype, prePop, postPop, synapse))

            preComp = netpyne_handler.pop_ids_vs_components[prePop]

            for conn in netpyne_handler.connections[projName]:

                pre_id, pre_seg, pre_fract, post_id, post_seg, post_fract, delay, weight = conn

                #connParam = {'delay':delay,'weight':weight,'synsPerConn':1, 'sec':post_seg, 'loc':post_fract, 'threshold':threshold}
                connParam = {
                    'delay': delay,
                    'weight': weight,
                    'synsPerConn': 1,
                    'sec': post_seg,
                    'loc': post_fract
                }

                if ptype == 'electricalProjection':

                    if weight != 1:
                        raise Exception(
                            'Cannot yet support inputs where weight !=1!')
                    connParam = {
                        'synsPerConn': 1,
                        'sec': post_seg,
                        'loc': post_fract,
                        'gapJunction': True,
                        'weight': weight
                    }
                else:
                    connParam = {
                        'delay': delay,
                        'weight': weight,
                        'synsPerConn': 1,
                        'sec': post_seg,
                        'loc': post_fract
                    }
                    #'threshold': threshold}

                connParam['synMech'] = synapse

                if post_id in sim.net.gid2lid:  # check if postsyn is in this node's list of gids
                    sim.net._addCellConn(connParam, pre_id, post_id)

        stims = sim.net.addStims(
        )  # add external stimulation to cells (IClamps etc)
        simData = sim.setupRecording(
        )  # setup variables to record for each cell (spikes, V traces, etc)
        sim.runSim()  # run parallel Neuron simulation
        sim.gatherData()  # gather spiking data and cell info from each node
        sim.saveData(
        )  # save params, cell info and sim output to file (pickle,mat,txt,etc)

        if return_results:
            raise NotImplementedError(
                "Reloading results not supported in NetPyNE yet...")

    elif simulator == 'jNeuroML' or simulator == 'jNeuroML_NEURON' or simulator == 'jNeuroML_NetPyNE':

        from pyneuroml.lems import generate_lems_file_for_neuroml
        from pyneuroml import pynml

        lems_file_name = 'LEMS_%s.xml' % simulation.id

        nml_file_name, nml_doc = generate_neuroml2_from_network(
            network, base_dir=base_dir, target_dir=target_dir)
        included_files = ['PyNN.xml']

        for c in network.cells:
            if c.lems_source_file:
                included_files.append(c.lems_source_file)
        '''
        if network.cells:
            for c in network.cells:
                included_files.append(c.neuroml2_source_file)
        '''
        if network.synapses:
            for s in network.synapses:
                if s.lems_source_file:
                    included_files.append(s.lems_source_file)

        print_v("Generating LEMS file prior to running in %s" % simulator)

        pops_plot_save = []
        pops_spike_save = []
        gen_plots_for_quantities = {}
        gen_saves_for_quantities = {}

        for p in network.populations:

            if simulation.recordTraces and ('all' in simulation.recordTraces or
                                            p.id in simulation.recordTraces):
                pops_plot_save.append(p.id)

            if simulation.recordSpikes and ('all' in simulation.recordSpikes or
                                            p.id in simulation.recordSpikes):
                pops_spike_save.append(p.id)

            if simulation.recordRates and ('all' in simulation.recordRates
                                           or p.id in simulation.recordRates):
                size = evaluate(p.size, network.parameters)
                for i in range(size):
                    quantity = '%s/%i/%s/r' % (p.id, i, p.component)
                    gen_plots_for_quantities['%s_%i_r' %
                                             (p.id, i)] = [quantity]
                    gen_saves_for_quantities['%s_%i.r.dat' %
                                             (p.id, i)] = [quantity]

            if simulation.recordVariables:
                for var in simulation.recordVariables:
                    to_rec = simulation.recordVariables[var]
                    if ('all' in to_rec or p.id in to_rec):
                        size = evaluate(p.size, network.parameters)
                        for i in range(size):
                            quantity = '%s/%i/%s/%s' % (p.id, i, p.component,
                                                        var)
                            gen_plots_for_quantities['%s_%i_%s' %
                                                     (p.id, i, var)] = [
                                                         quantity
                                                     ]
                            gen_saves_for_quantities['%s_%i.%s.dat' %
                                                     (p.id, i, var)] = [
                                                         quantity
                                                     ]

        generate_lems_file_for_neuroml(
            simulation.id,
            nml_file_name,
            network.id,
            simulation.duration,
            simulation.dt,
            lems_file_name,
            target_dir=target_dir if target_dir else '.',
            nml_doc=
            nml_doc,  # Use this if the nml doc has already been loaded (to avoid delay in reload)
            include_extra_files=included_files,
            gen_plots_for_all_v=False,
            plot_all_segments=False,
            gen_plots_for_quantities=
            gen_plots_for_quantities,  # Dict with displays vs lists of quantity paths
            gen_plots_for_only_populations=
            pops_plot_save,  # List of populations, all pops if = []
            gen_saves_for_all_v=False,
            save_all_segments=False,
            gen_saves_for_only_populations=
            pops_plot_save,  # List of populations, all pops if = []
            gen_saves_for_quantities=
            gen_saves_for_quantities,  # Dict with file names vs lists of quantity paths
            gen_spike_saves_for_all_somas=False,
            gen_spike_saves_for_only_populations=
            pops_spike_save,  # List of populations, all pops if = []
            gen_spike_saves_for_cells=
            {},  # Dict with file names vs lists of quantity paths
            spike_time_format='ID_TIME',
            copy_neuroml=True,
            lems_file_generate_seed=12345,
            report_file_name='report.%s.txt' % simulation.id,
            simulation_seed=simulation.seed if simulation.seed else 12345,
            verbose=True)

        lems_file_name = _locate_file(lems_file_name, target_dir)

        if simulator == 'jNeuroML':
            results = pynml.run_lems_with_jneuroml(
                lems_file_name,
                nogui=True,
                load_saved_data=return_results,
                reload_events=return_results)
        elif simulator == 'jNeuroML_NEURON':
            results = pynml.run_lems_with_jneuroml_neuron(
                lems_file_name,
                nogui=True,
                load_saved_data=return_results,
                reload_events=return_results)
        elif simulator == 'jNeuroML_NetPyNE':
            results = pynml.run_lems_with_jneuroml_netpyne(
                lems_file_name,
                nogui=True,
                verbose=True,
                load_saved_data=return_results,
                reload_events=return_results,
                num_processors=num_processors)

        print_v("Finished running LEMS file %s in %s (returning results: %s)" %
                (lems_file_name, simulator, return_results))

        if return_results:
            traces, events = results
            _print_result_info(traces, events)
            return results  # traces, events =
Exemple #3
0
def evaluate_arguments(args):

    global DEFAULTS
    DEFAULTS['v'] = args.verbose

    pre_args = ""
    files = ""
    post_args = ""
    exit_on_fail = True

    files = args.lems_file

    if args.nogui:
        post_args = "-nogui"

    if args.sedml:
        post_args = "-sedml"
    elif args.neuron is not None:
        num_neuron_args = len(args.neuron)
        if num_neuron_args < 0 or num_neuron_args > 4:
            print_comment("ERROR: The \'-neuron\' option was given an invalid "
                          "number of arguments: %d given, 0-4 required" %
                          num_neuron_args)
            sys.exit(-1)
        post_args = "-neuron %s" % ' '.join(args.neuron[:-1])
    elif args.svg:
        post_args = "-svg"
    elif args.png:
        post_args = "-png"
    elif args.dlems:
        post_args = "-dlems"
    elif args.vertex:
        post_args = "-vertex"
    elif args.xpp:
        post_args = "-xpp"
    elif args.dnsim:
        post_args = "-dnsim"
    elif args.brian:
        post_args = "-brian"
    elif args.sbml:
        post_args = "-sbml"
    elif args.matlab:
        post_args = "-matlab"
    elif args.cvode:
        post_args = "-cvode"
    elif args.nineml:
        post_args = "-nineml"
    elif args.spineml:
        post_args = "-spineml"
    elif args.sbml_import:
        pre_args = "-sbml-import"
        files = args.sbml_import[0]
        post_args = ' '.join(args.sbml_import[1:])
    elif args.sbml_import_units:
        pre_args = "-smbl-import-units"
        files = args.sbml_import_units[0]
        post_args = ' '.join(args.sbml_import_units[1:])
    elif args.vhdl:
        files = args.vhdl[1]
        post_args = "-vhdl %s" % args.vhdl[0]

    elif args.graph:

        from neuromllite.GraphVizHandler import GraphVizHandler, engines
        engine = 'dot'
        try:
            level = int(args.graph[0])
        except:
            engine = engines[args.graph[0][-1:]]
            level = int(args.graph[0][:-1])

        print_comment('Converting %s to graphical form, level %i, engine %s' %
                      (args.lems_file, level, engine))

        from neuroml.hdf5.NeuroMLXMLParser import NeuroMLXMLParser

        handler = GraphVizHandler(level=level, engine=engine, nl_network=None)

        currParser = NeuroMLXMLParser(handler)

        currParser.parse(args.lems_file)

        handler.finalise_document()

        print_comment("Done with GraphViz...")

        exit()

    elif args.validate:
        pre_args = "-validate"
        exit_on_fail = True
    elif args.validatev1:
        pre_args = "-validatev1"
        exit_on_fail = True

    run_jneuroml(pre_args,
                 files,
                 post_args,
                 max_memory=args.java_max_memory,
                 exit_on_fail=exit_on_fail)
import logging

file_name = sys.argv[1]

logging.basicConfig(level=logging.INFO,
                    format="%(name)-19s %(levelname)-5s - %(message)s")

from neuroml.hdf5.NeuroMLXMLParser import NeuroMLXMLParser
'''
from neuroml.hdf5.DefaultNetworkHandler import DefaultNetworkHandler
nmlHandler = DefaultNetworkHandler()   

#currParser = NeuroMLHdf5Parser(nmlHandler) 

currParser.parse(file_name)'''

from neuromllite.GraphVizHandler import GraphVizHandler

level = int(sys.argv[2])

handler = GraphVizHandler(level, None)

currParser = NeuroMLXMLParser(handler)

currParser.parse(file_name)

handler.finalise_document()

print("Done with GraphViz...")