def synapses(self):
   s = h.ExpSyn(self.dend(0.8)) # E0
   s.tau = 2
   self.synlist.append(s)
   s = h.ExpSyn(self.dend(0.1)) # I1
   s.tau = 5
   s.e = -80
   self.synlist.append(s)
Exemple #2
0
 def createSynapses(self):
     """Add an exponentially decaying synapse """
     synsoma = h.ExpSyn(self.soma(0.5))
     synsoma.tau = 2
     synsoma.e = 0
     syndend = h.ExpSyn(self.dend(0.5))
     syndend.tau = 2
     syndend.e = 0
     self.synlist.append(synsoma)  # synlist is defined in Cell
     self.synlist.append(syndend)  # synlist is defined in Cell
Exemple #3
0
    def make_synapses(self):
        self.synlist = list()
        syn = h.ExpSyn(0.5, sec=self.soma)
        syn.tau = 5
        self.synlist.append(syn)

        syn = h.ExpSyn(0.5, sec=self.soma)
        syn.tau = 10
        syn.e = -80
        self.synlist.append(syn)
Exemple #4
0
 def construct(self):
     #Create soma and two dendrites
     self.soma = h.Section()
     #Set soma parameters
     self.soma.nseg = 1
     self.soma.diam = 18.8
     self.soma.L = 18.8
     self.soma.Ra = 123.0
     self.soma.insert('hh')
     self.soma.gnabar_hh = 0.25
     self.soma.gl_hh = .0001666
     self.soma.el_hh = -60.0
     #Create dendrite model
     self.dend1 = h.Section()
     self.dend1.nseg = 5
     self.dend1.diam = 3.18
     self.dend1.L = 701.9
     self.dend1.Ra = 123
     self.dend1.insert('pas')
     self.dend1.g_pas = .0001666
     self.dend1.e_pas = -60.0
     #Create dendrite model
     self.dend2 = h.Section()
     self.dend2.nseg = 5
     self.dend2.diam = 2.0
     self.dend2.L = 549.1
     self.dend2.Ra = 123
     self.dend2.insert('pas')
     self.dend2.g_pas = .0001666
     self.dend2.e_pas = -60.0
     #Create axon model
     self.axon = h.Section()
     self.axon.nseg = 10
     self.axon.diam = 2
     self.axon.L = 5000
     self.axon.Ra = 10000
     self.axon.insert('pas')
     self.axon.g_pas = .0001666
     self.axon.e_pas = -60.0
     #Connect two dendrites to soma, as well as axon
     self.dend1.connect(self.soma, 0, 1)
     self.dend2.connect(self.soma, 1, 0)
     self.axon.connect(self.soma, 0.5, 0)
     #Add on our synapses! Two on each dendrite, and one on the axon, and one on the soma.
     self.syn1 = h.ExpSyn(0.5, sec=self.soma)
     self.syn2 = h.ExpSyn(0, sec=self.dend1)
     self.syn3 = h.ExpSyn(1, sec=self.dend2)
     self.syn4 = h.ExpSyn(1, sec=self.axon)
Exemple #5
0
    def add_exp_syn(self, secname, pos=0.5, **kw):
        p = combine(default_model_parameters, kw)

        syn = h.ExpSyn(self.sections[secname](pos))
        syn.tau = p['tau']
        self.synapses.append(syn)
        return len(self.synapses)-1
Exemple #6
0
 def create_synapses(self):
     """Add an exponentially decaying synapse in the middle
     of the dendrite. Set its tau to 2ms, and append this
     synapse to the synlist of the cell."""
     syn = h.ExpSyn(self.dend(0.5))
     syn.tau = 2
     self.synlist.append(syn)  # synlist is defined in Cell
Exemple #7
0
    def connect_axon(self, axon):

        # configure ExpSyn synapse
        synapse = h.ExpSyn(1e-3, axon.allseclist)  #1e-3
        synapse.e = 10
        synapse.i = 0.2
        synapse.tau = 0.1

        # get spike train
        spikeTrain = self.spikeTrains[self.axonIndex]
        self.axonIndex += 1

        # configure input to synapse
        vecStim = h.VecStim()
        spikeVec = h.Vector(spikeTrain)
        # axon.spikeVec = h.Vector([1,2,3])
        vecStim.play(spikeVec)

        # connect synapse and VecStim input
        netCon = h.NetCon(vecStim, synapse)
        netCon.weight[0] = 1

        # add the variables to the axon instance in order to keep them alive
        # delete after simulation
        excitationMechanismVars = [
            synapse, vecStim, spikeVec, spikeTrain, netCon
        ]
        axon.append_ex_mech_vars(excitationMechanismVars)
Exemple #8
0
    def create_synapses(self):
        """
        """
        self.syn_I = h.ExpSyn(self.dend(0.4))
        self.syn_I.tau = 17
        self.syn_I.e = 0
        self.synlist.append(self.syn_I)

        self.syn_I_inh = h.ExpSyn(self.dend(0.4))
        self.syn_I_inh.tau = 5
        self.syn_I_inh.e = -70
        self.synlist.append(self.syn_I_inh)

        self.syn_II = h.ExpSyn(self.dend(0.8))
        self.syn_II.tau = 18
        self.syn_II.e = 0
        self.synlist.append(self.syn_II)  # synlist is defined in Cell
 def insert_synapse(self):
     """
         This method inserts an exponential synapse at the midpoint of the 
         cell dendrite.
     """
     syn = h.ExpSyn(self.dend(0.5))
     syn.tau = 2
     return syn
Exemple #10
0
 def create_synapses(self, n=1):
     """Add an exponentially decaying synapse in the middle
     of the dendrite. Set its tau to 2ms, and append this
     synapse to the synlist of the cell."""
     for i in xrange(n):
         syn = h.ExpSyn(self.dend(0.5))
         # syn = h.ExpSyn(self.dend(round(np.random.rand(), 2)))
         syn.tau = 2
         self.synlist.append(syn)  # synlist is defined in Cell
Exemple #11
0
def makeStimulus(soma, simTime):
    stimNc = h.NetStim()
    stimNc.noise = 1
    stimNc.start = 0
    stimNc.number = simTime
    stimNc.interval = 10
    syn = h.ExpSyn(0.5, sec=soma)
    nc = h.NetCon(stimNc, syn)
    nc.weight[0] = 20
    return (stimNc, syn, nc)
Exemple #12
0
def makeStimulus( soma, simTime,NCstrengthStim ):
	interval = 25
	stimNc = h.NetStim()
	stimNc.noise = 1		
	stimNc.start = 0		
	stimNc.number = simTime
	stimNc.interval = interval
	syn = h.ExpSyn (0.5, sec = soma)		
	nc = h.NetCon(stimNc, syn)
	nc.weight[0] = NCstrengthStim
	return (stimNc, syn, nc)
Exemple #13
0
def makeStimulus( soma, simTime ):
	interval = 25
	stimNc = h.NetStim()
	stimNc.noise = 1		
	stimNc.start = ceil(25*rand(1,1))		
	stimNc.number = simTime
	stimNc.interval = interval
	syn = h.ExpSyn (0.5, sec = soma)		
	nc = h.NetCon(stimNc, syn)
	nc.weight[0] = 20
	return (stimNc, syn, nc)
Exemple #14
0
def main(var):
    global nc_w, nc_d
    setting = {'geometry': celldim(soma_d=12.6157, soma_l=12.6157, dend_d=1, dend_l=100, dend_seg=101),
                'biophysics': cellbiophy(Ra=100, Cm=1, soma_hh_gnabar=0.12, soma_hh_gkbar=0.036, soma_hh_gl=0.0003, soma_hh_el=-54.3, dend_g=0.001, dend_e=-65)}
    N=3
    var = np.float(var)
    deviation = lambda r: np.random.standard_normal(N)*r
    cell_settings = []
    for i in range(N):
        set = {}
        set['geometry'] = celldim(soma_d=12.6157, soma_l=12.6157, dend_d=1, dend_l=100, dend_seg=101)
        set['biophysics'] = cellbiophy(Ra=100, Cm=1, soma_hh_gnabar=0.12 + 0.12*deviation(var)[i],
                            soma_hh_gkbar=0.036 + 0.036*deviation(var)[i], soma_hh_gl= 0.0003 + 0.0003*deviation(var)[i],
                            soma_hh_el=-54.3, dend_g=0.001, dend_e=-65)
        cell_settings.append(set)

    cells = [BallAndStick(settings) for settings in cell_settings]

    nclist = []
    esyns = []
    # Connect neuron in ring.
    for i in range(N):
        src = cells[i]
        tgt = cells[(i+1)%N]
        syn = h.ExpSyn(tgt.dend(0.5))
        esyns.append(syn)
        nc = h.NetCon(src.soma(0.5)._ref_v, syn, sec=src.soma)
        nc.weight[0] = nc_w
        nc.delay = nc_d
        nclist.append(nc)

    # Create AlphaSynapse for init network
    syn = h.AlphaSynapse(cells[0].dend(0.5))
    syn.gmax = 0.1
    syn.tau = 1
    syn.onset = 20
    syn.e = 0

    # Create output tables
    t_vec = h.Vector()
    soma1_vec = h.Vector()
    soma2_vec = h.Vector()
    soma3_vec = h.Vector()
    t_vec.record(h._ref_t)
    soma1_vec.record(cells[0].soma(0.5)._ref_v)
    soma2_vec.record(cells[1].soma(0.5)._ref_v)
    soma3_vec.record(cells[2].soma(0.5)._ref_v)

    # Run simulation
    h.tstop = 50
    h.run()

    # plot results
    plt.plot(t_vec, soma1_vec, t_vec, soma2_vec, t_vec, soma3_vec)
    def define_biophysics(self, syn_loc):
        """Assign the membrane properties across the cell."""
        for sec in self.all:  # 'all' exists in parent object.
            sec.Ra = 70  # Axial resistance in Ohm * cm
            sec.cm = 1  # Membrane capacitance in micro Farads / cm^2
        # Insert active Hodgkin-Huxley current in the soma

        self.dap_syn_ = h.Exp2Syn(self.soma(0.5))
        self.dap_syn_.tau1 = 2
        self.dap_syn_.tau2 = 5
        self.dap_syn_.e = 50

        self.dap_nc_ = h.NetCon(self.soma(0.5)._ref_v,\
            self.dap_syn_, sec=self.soma)
        self.dap_nc_.delay = 0
        self.dap_nc_.threshold = 10

        self.dend_syn = h.Exp2Syn(self.dend(syn_loc))
        #self.dend_syn.tau1 = 1
        #self.dend_syn.tau2 = 17
        self.dend_syn = h.ExpSyn(self.dend(syn_loc))
        self.dend_syn.tau = .5
        self.dend_syn.e = 0

        self.soma.insert('clarke')
        # FINAL VERSIONS
        self.soma.gl_clarke = 0.003
        self.soma.tau_n_bar_clarke = 7
        self.dap_nc_.weight[0] = 7.5e-3
        self.soma.gkrect_clarke = 0.6

        # SWEEP VALUES
        #self.soma.gcaN_clarke      = 0
        #self.soma.gcaL_clarke      = 0
        #self.soma.gcak_clarke      = 0
        #self.soma.gnapbar_clarke   = 0
        #self.soma.tau_mc_clarke    = 0
        #self.soma.tau_hc_clarke    = 0
        #self.soma.tau_n_bar_clarke = 0
        #self.dap_nc_.weight[0]     = 0
        #self.soma.gkrect_clarke    = 0
        #self.soma.gnabar_clarke    = 0

        #self.soma.insert('pas')
        #self.soma.g_pas = 1e-3       # Passive conductance in S/cm2
        #self.soma.e_pas = -64         # Leak reversal potential mV

        #self.soma.insert('extracellular')

        # Insert passive current in the dendrite
        self.dend.insert('pas')
        self.dend.g_pas = 0.001  # Passive conductance in S/cm2
        self.dend.e_pas = -54.3  # Leak reversal potential mV
    def create_synapse(self, type):
        """ Create and return a synapse that links motoneuron state variables to external events.

		The created synapse is also appended to a list containg all synapses the this motoneuron has.

		Keyword arguments:
		type -- type of synapse to be created. This could be:
		1) "excitatory" to create an excitatory synapse positioned on the dendritic tree
		2) "inhibitory" to create an inhibitory synapse positioned on the soma
		3) "ees" to create a synapse that mimic the recruitmend induced by electrical
		stimulation; in this case the synapse is positioned on the axon.
		"""

        if type == "excitatory":
            # from Iaf to Mn we usually have 5 boutons for synapse
            nBoutonsXsyn = 5
            n = 0
            for i in range(nBoutonsXsyn):
                n += np.random.poisson(4)
            n = round(n / nBoutonsXsyn) - 2  # mean and shift to 0
            if n < 0: n = 0
            elif n > self._nDendrites: n = self._nDendrites - 1
            x = rnd.random()
            syn = h.ExpSyn(self.dendrite[int(n)](x))
            syn.tau = 0.5
            syn.e = 0
            self.synapses.append(syn)
        elif type == "inhibitory":
            syn = h.Exp2Syn(self.soma(0.5))
            syn.tau1 = 1.5
            syn.tau2 = 2
            syn.e = -75
            self.synapses.append(syn)
        elif type == "ees":
            syn = h.ExpSyn(self.node[3](0.5))
            syn.tau = 0.1
            syn.e = 50
            self.synapses.append(syn)

        return syn
Exemple #17
0
 def activate_hoc_syn(self,
                      source,
                      targetCell,
                      threshold=10.0,
                      delay=0.0,
                      weight=0.0):
     x = targetCell.sections[self.secID].relPts[self.ptID]
     hocSec = targetCell.sections[self.secID]
     self.syn = h.ExpSyn(x, hocSec)
     self.syn.tau = 1.7
     self.syn.e = 0.0
     self.netcon = h.NetCon(source, self.syn, threshold, delay, weight)
     self._active = True
    def create_synapses(self):
        """Add an exponentially decaying synapse in the middle
        of the dendrite. Set its tau to 2ms, and append this
        synapse to the synlist of the cell."""
        syn = h.ExpSyn(self.dend[0](0.1))
        syn.tau = 3
        self.synlist.append(syn)  # synlist is defined in Cell

        syn = h.ExpSyn(self.dend[5](0.1))
        syn.tau = 3
        self.synlist.append(syn)  # synlist is defined in Cell

        syn = h.Exp2Syn(self.soma(0.3))
        syn.tau1 = 3
        syn.tau2 = 10
        syn.e = -85
        self.synlist.append(syn)  # synlist is defined in Cell

        syn = h.Exp2Syn(self.soma(0.5))
        syn.tau1 = 3
        syn.tau2 = 10
        syn.e = -85
        self.synlist.append(syn)  # synlist is defined in Cell
Exemple #19
0
 def __init__(self, romans=0, judeans=1):
     self.source_section = h.Section()
     self.source = self.source_section(0.5)._ref_v
     #self.synapse = h.tmgsyn(self.source_section(0.5))
     self.record = Mock()
     self.record_v = Mock()
     self.record_gsyn = Mock()
     self.memb_init = Mock()
     self.excitatory = h.ExpSyn(self.source_section(0.5))
     self.inhibitory = None
     self.romans = romans
     self.judeans = judeans
     self.foo_init = -99.9
     self.traces = {}
Exemple #20
0
    def __init__(self, id, nsec):
        r = h.Random()
        r.Random123(id, 0, 0)
        nsec += int(r.discunif(0, 4))  # for nontrivial cell_permute=1

        self.id = id
        self.secs = [
            h.Section(name="d" + str(i), cell=self) for i in range(nsec)
        ]

        # somewhat random tree, d[0] plays role of soma with connections to
        # d[0](0.5) and all others to 1.0
        for i in range(1, nsec):
            iparent = int(r.discunif(0, i - 1))
            x = 0.5 if iparent == 0 else 1.0
            self.secs[i].connect(self.secs[iparent](x))

        # uniform L and diam but somewhat random passive g and e
        for i, sec in enumerate(self.secs):
            sec.L = 10 if i > 0 else 5
            sec.diam = 1 if i > 0 else 5
            sec.insert("pas")
            sec.g_pas = 0.0001 * r.uniform(1.0, 1.1)
            sec.e_pas = -65 * r.uniform(1.0, 1.1)

        # IClamp and ExpSyn at every location (even duplicates) with random
        # parameters (would rather use a Shunt, but ...)
        self.ics = []
        self.syns = []
        self.netcons = []
        self.netstim = h.NetStim()
        self.netstim.number = 1
        self.netstim.start = 0.0
        for sec in self.secs:
            for seg in sec.allseg():
                ic = h.IClamp(seg)
                ic.delay = 0.1
                ic.dur = 1.0
                ic.amp = 0.001 * r.uniform(1.0, 1.1)
                self.ics.append(ic)

                syn = h.ExpSyn(seg)
                syn.e = -65 * r.uniform(1.0, 1.1)
                syn.tau = r.uniform(0.1, 1.0)
                self.syns.append(syn)

                nc = h.NetCon(self.netstim, syn)
                nc.delay = 0.2
                nc.weight[0] = 0.001 * r.uniform(1.0, 1.1)
                self.netcons.append(nc)
Exemple #21
0
    def synapses(self):
        '''
    Adds synapses
    '''
        for i in range(10):
            for sec in self.dend:
                s = h.ExpSyn(sec(0.5))  # Excitatory
                s.tau = 0.1
                s.e = 50
                self.synlistex.append(s)
                s = h.ExpSyn(sec(0.5))  # Inhibitory
                s.tau = 0.5
                s.e = -80
                self.synlistinh.append(s)

            s = h.ExpSyn(self.soma(0.1))  # Excitatory
            s.tau = 0.35
            s.e = 50
            self.synlistex.append(s)
            s = h.Exp2Syn(self.soma(0.5))  # Inhibitory
            s.tau1 = 0.5
            s.tau2 = 3.5
            s.e = -80
            self.synlistinh.append(s)
Exemple #22
0
def makeStimulus( Neurons, simTime, stimInterval ):
	interval = stimInterval
	stimNc = h.NetStim()
	stimNc.noise = 1		
	stimNc.start = 0		
	stimNc.number = simTime/interval
	stimNc.interval = interval
	syn = h.ExpSyn (0.5, sec = Neurons.soma[0])		
	nc = h.NetCon(stimNc, syn)
	nc.weight[0] = 1
	#For recording events...
	tvec = h.Vector() #time
	idvec = h.Vector() #cell number
	nc.record(tvec, idvec)
	return (stimNc, syn, nc, tvec, idvec)
Exemple #23
0
def makeStimulus(soma, simTime):
    interval = 50
    stimNc = h.NetStim()
    stimNc.noise = 1
    stimNc.start = 0
    stimNc.number = simTime
    stimNc.interval = interval
    syn = h.ExpSyn(0.5, sec=soma)
    nc = h.NetCon(stimNc, syn)
    nc.weight[0] = 100
    #For recording events...
    tvec = h.Vector()  #time
    idvec = h.Vector()  #cell number
    nc.record(tvec, idvec)
    return (stimNc, syn, nc, tvec, idvec)
Exemple #24
0
 def __init__(self, n):
     self.ncell = [1, n, 1]
     self.nlayer = len(self.ncell)
     self.cells = {}
     # make cells
     for ilayer in range(self.nlayer):
         for icell in range(self.ncell[ilayer]):
             gid = self.info2gid(ilayer, icell)
             if (gid % pc.nhost()) == pc.id():
                 cell = BallAndStick(gid, float(icell), float(ilayer), 0.0,
                                     0.0)
                 self.cells[gid] = cell
                 cell.ilayer = ilayer
                 cell.icell = icell
                 pc.set_gid2node(gid, pc.id())
                 pc.cell(gid, self.cells[gid]._spike_detector)
     # make connections (all to all from layer i-1 to layer i)
     self.nclist = {}
     for gid, cell in self.cells.items():
         if cell.ilayer > 0:
             src_ilayer = cell.ilayer - 1
             for src_icell in range(self.ncell[src_ilayer]):
                 srcgid = self.info2gid(src_ilayer, src_icell)
                 nc = pc.gid_connect(srcgid, cell.syn)
                 nc.weight[0] = 0.01
                 nc.delay = 20
                 self.nclist[(srcgid, gid)] = nc
     # stimulate gid 0 with NetStim
     if 0 in self.cells:
         self.ns = h.NetStim()
         self.ncstim = h.NetCon(self.ns, self.cells[0].syn)
         ns = self.ns
         ns.start = 6
         ns.interval = 10
         ns.number = 100
         nc = self.ncstim
         nc.delay = 2
         nc.weight[0] = 0.01
     # For some extra coverage of BBSaveState::node01
     if 100 in self.cells:
         cell = self.cells[100]
         self.xsyns = [h.ExpSyn(seg) for seg in cell.dend.allseg()]
         self.xnc = []
         for syn in self.xsyns:
             nc = pc.gid_connect(0, syn)
             nc.delay = 20
             nc.weight[0] = 0.0001
             self.xnc.append(nc)
    def add_ExpSyn(self, section='soma', position=0.5, name='default', tstim=[50], w=.001):
        """
        Create/replace an Expsyn synapse on a given section which is active at the time in tstim

        Comments
        --------
        The sort command is here to make sure that tstim are in the right order. This method
        requires the pre-compiling of vecstim.mod by NEURON.

        """
        self.syn[name] = h.ExpSyn(self.cell.__getattribute__(section)(position))
        self.stim[name] = h.Vector(np.sort(tstim)) # Converting tstim into a NEURON vector (to play in NEURON)
        self.vplay[name] = h.VecStim() # Creating play vectors to interface with NEURON
        self.vplay[name].play(self.stim[name])  # Connecting vector to VecStim object to play them
        self.netcon[name] = h.NetCon(self.vplay[name], self.syn[name]) # Building the netcon object to connect the stims and the synapses
        self.netcon[name].weight[0] = w # Setting the individual weights
Exemple #26
0
def model():
    pc.gid_clear()
    for s in h.allsec():
        h.delete_section(sec=s)
    s = h.Section()
    s.L = 10
    s.diam = 10
    s.insert("hh")
    ic = h.IClamp(s(0.5))
    ic.delay = 0.1
    ic.dur = 0.1
    ic.amp = 0.5 * 0
    syn = h.ExpSyn(s(0.5))
    nc = h.NetCon(None, syn)
    nc.weight[0] = 0.001
    return {"s": s, "ic": ic, "syn": syn, "nc": nc}
Exemple #27
0
def constructConnections2( connections, numNeurons, Neurons, inhibInd, delay, strength ):
	"""
		This definition will a connectivity matrix and make the appropriate CHEMICAL JUNCTIONS.
	"""
	SYN = []
	NC  = []
	for i in range(0, numNeurons):
		count = 0
 		for j in range(0, numNeurons):
			if abs(float(connections[i][j])) > 0:
				syn = h.ExpSyn (0.5, sec = Neurons[j].soma[0]) #Target
				Neurons[i].soma[0].push()
				nc = h.NetCon( Neurons[i].soma[0](0.5)._ref_v, syn ) #Source
				w = float(connections[i][j])
				mu, sigma = 1, 0.1 # mean and standard deviation
				#s = numpy.random.normal(mu, sigma, 1)
				#s = strength
				s1 = 20
				s2 = 1
				#Determine weight from particular type of connection
				if i < inhibInd: #This means the source is EXCITATORY
					if j < inhibInd:
						#E -> E
						#nc.weight[0] = s*w*0.5
						nc.weight[0] = 0.05*s1
					else:
						#E -> I
						#nc.weight[0] = s*w*0.1
						nc.weight[0] = 0.2*s1
				else:   	 #This means the source is INHIBITORY
					if j < inhibInd:
						#I -> E
						#nc.weight[0] = -s*w*0.1
						nc.weight[0] = -0.05*s2
					else:
						#I -> I
						#nc.weight[0] = -s*w*0.5
						nc.weight[0] = -0.1*s2
				#nc.threshold = 1
				#Determine delay from intersomatic distance
				if float(delay[i][j]) > 155:	# Long range speed
					nc.delay  = float(delay[i][j])/300
				else:				# Short range speed
					nc.delay  = float(delay[i][j])/150
				NC.append(nc)
				SYN.append(syn)
	return (SYN,NC)		
Exemple #28
0
    def __init__(self, gid):
        s = {i: h.Section(name=i, cell=self) for i in ["soma", "dend", "axon"]}
        s["dend"].connect(s["soma"](0))
        s["axon"].connect(s["soma"](1))
        self.soma = s["soma"]
        a = s["axon"]
        self.sections = s
        for s in self.sections.values():
            s.L = 10
            s.diam = 10 if "soma" in s.name() else 1
            s.insert("hh")

        self.syn = h.ExpSyn(self.sections["dend"](0.5))
        self.syn.e = 0
        self.gid = gid
        pc.set_gid2node(gid, pc.id())
        pc.cell(gid, h.NetCon(a(1)._ref_v, None, sec=a))
Exemple #29
0
def constructConnections2(connections, numNeurons, Neurons):
    """
		This definition will a connectivity matrix and make the appropriate synaptic connections.
	"""
    SYN = []
    NC = []
    for i in range(0, numNeurons):
        count = 0
        for j in range(0, numNeurons):
            if connections[i][j] == 1:
                syn = h.ExpSyn(0.5, sec=Neurons[j])
                Neurons[i].push()
                nc = h.NetCon(Neurons[i](0.5)._ref_v, syn)
                nc.weight[0] = 1
                SYN.append(syn)
                NC.append(nc)
    return (SYN, NC)
Exemple #30
0
def constructConnections( connections, dendrites, numNeurons, Soma, Axon, Dendrites, strength ):
	"""
		This definition will a connectivity matrix and make the appropriate synaptic connections.
	"""
	SYN = []
	NC  = []
	for i in range(0, numNeurons):
		count = 0
 		for j in range(0, numNeurons):
			if int(connections[i][j]) == 1:
				syn = h.ExpSyn (0.5, sec = Axon[j])
				Dendrites[i][count].push()
				nc = h.NetCon( Dendrites[i][count](0.5)._ref_v, syn )
				nc.weight[0] = strength
				SYN.append(syn)
				NC.append(nc)
				count = count + 1
	return (SYN,NC)