def stackptr(model_path, model_name, test_path, punct_set, use_gpu, logger, args): alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) word_alphabet, char_alphabet, pos_alphabet, \ type_alphabet = conllx_stacked_data.create_alphabets(alphabet_path, None, data_paths=[None, None], max_vocabulary_size=50000, embedd_dict=None) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) beam = args.beam ordered = args.ordered display_inst = args.display def load_model_arguments_from_json(): arguments = json.load(open(arg_path, 'r')) return arguments['args'], arguments['kwargs'] arg_path = model_name + '.arg.json' args, kwargs = load_model_arguments_from_json() prior_order = kwargs['prior_order'] logger.info('use gpu: %s, beam: %d, order: %s (%s)' % (use_gpu, beam, prior_order, ordered)) data_test = conllx_stacked_data.read_stacked_data_to_tensor( test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=True, prior_order=prior_order) pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) logger.info('model: %s' % model_name) network = StackPtrNet(*args, **kwargs) network.load_state_dict(torch.load(model_name)) if use_gpu: network.cuda() else: network.cpu() network.eval() test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_total = 0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_total_nopunc = 0 test_total_inst = 0 test_root_correct = 0.0 test_total_root = 0 test_ucorrect_stack_leaf = 0.0 test_ucorrect_stack_non_leaf = 0.0 test_lcorrect_stack_leaf = 0.0 test_lcorrect_stack_non_leaf = 0.0 test_leaf = 0 test_non_leaf = 0 pred_writer.start('tmp/analyze_pred_%s' % str(uid)) gold_writer.start('tmp/analyze_gold_%s' % str(uid)) sent = 0 start_time = time.time() for batch in conllx_stacked_data.iterate_batch_stacked_variable( data_test, 1): sys.stdout.write('%d, ' % sent) sys.stdout.flush() sent += 1 input_encoder, input_decoder = batch word, char, pos, heads, types, masks, lengths = input_encoder stacked_heads, children, siblings, stacked_types, skip_connect, mask_d, lengths_d = input_decoder heads_pred, types_pred, children_pred, stacked_types_pred = network.decode( word, char, pos, mask=masks, length=lengths, beam=beam, ordered=ordered, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) stacked_heads = stacked_heads.data children = children.data stacked_types = stacked_types.data children_pred = torch.from_numpy(children_pred).long() stacked_types_pred = torch.from_numpy(stacked_types_pred).long() if use_gpu: children_pred = children_pred.cuda() stacked_types_pred = stacked_types_pred.cuda() mask_d = mask_d.data mask_leaf = torch.eq(children, stacked_heads).float() mask_non_leaf = (1.0 - mask_leaf) mask_leaf = mask_leaf * mask_d mask_non_leaf = mask_non_leaf * mask_d num_leaf = mask_leaf.sum() num_non_leaf = mask_non_leaf.sum() ucorr_stack = torch.eq(children_pred, children).float() lcorr_stack = ucorr_stack * torch.eq(stacked_types_pred, stacked_types).float() ucorr_stack_leaf = (ucorr_stack * mask_leaf).sum() ucorr_stack_non_leaf = (ucorr_stack * mask_non_leaf).sum() lcorr_stack_leaf = (lcorr_stack * mask_leaf).sum() lcorr_stack_non_leaf = (lcorr_stack * mask_non_leaf).sum() test_ucorrect_stack_leaf += ucorr_stack_leaf test_ucorrect_stack_non_leaf += ucorr_stack_non_leaf test_lcorrect_stack_leaf += lcorr_stack_leaf test_lcorrect_stack_non_leaf += lcorr_stack_non_leaf test_leaf += num_leaf test_non_leaf += num_non_leaf # ------------------------------------------------------------------------------------------------ word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root test_ucorrect += ucorr test_lcorrect += lcorr test_total += total test_ucomlpete_match += ucm test_lcomplete_match += lcm test_ucorrect_nopunc += ucorr_nopunc test_lcorrect_nopunc += lcorr_nopunc test_total_nopunc += total_nopunc test_ucomlpete_match_nopunc += ucm_nopunc test_lcomplete_match_nopunc += lcm_nopunc test_root_correct += corr_root test_total_root += total_root test_total_inst += num_inst pred_writer.close() gold_writer.close() print('\ntime: %.2fs' % (time.time() - start_time)) print( 'test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total, test_ucomlpete_match * 100 / test_total_inst, test_lcomplete_match * 100 / test_total_inst)) print( 'test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc, test_ucomlpete_match_nopunc * 100 / test_total_inst, test_lcomplete_match_nopunc * 100 / test_total_inst)) print('test Root: corr: %d, total: %d, acc: %.2f%%' % (test_root_correct, test_total_root, test_root_correct * 100 / test_total_root)) print( '============================================================================================================================' ) print( 'Stack leaf: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%' % (test_ucorrect_stack_leaf, test_lcorrect_stack_leaf, test_leaf, test_ucorrect_stack_leaf * 100 / test_leaf, test_lcorrect_stack_leaf * 100 / test_leaf)) print( 'Stack non_leaf: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%' % (test_ucorrect_stack_non_leaf, test_lcorrect_stack_non_leaf, test_non_leaf, test_ucorrect_stack_non_leaf * 100 / test_non_leaf, test_lcorrect_stack_non_leaf * 100 / test_non_leaf)) print( '============================================================================================================================' ) def analyze(): np.set_printoptions(linewidth=100000) pred_path = 'tmp/analyze_pred_%s' % str(uid) data_gold = conllx_stacked_data.read_stacked_data_to_tensor( test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=True, prior_order=prior_order) data_pred = conllx_stacked_data.read_stacked_data_to_tensor( pred_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=True, prior_order=prior_order) gold_iter = conllx_stacked_data.iterate_batch_stacked_variable( data_gold, 1) test_iter = conllx_stacked_data.iterate_batch_stacked_variable( data_pred, 1) model_err = 0 search_err = 0 type_err = 0 for gold, pred in zip(gold_iter, test_iter): gold_encoder, gold_decoder = gold word, char, pos, gold_heads, gold_types, masks, lengths = gold_encoder gold_stacked_heads, gold_children, gold_siblings, gold_stacked_types, gold_skip_connect, gold_mask_d, gold_lengths_d = gold_decoder pred_encoder, pred_decoder = pred _, _, _, pred_heads, pred_types, _, _ = pred_encoder pred_stacked_heads, pred_children, pred_siblings, pred_stacked_types, pred_skip_connect, pred_mask_d, pred_lengths_d = pred_decoder assert gold_heads.size() == pred_heads.size( ), 'sentence dis-match.' ucorr_stack = torch.eq(pred_children, gold_children).float() lcorr_stack = ucorr_stack * torch.eq(pred_stacked_types, gold_stacked_types).float() ucorr_stack = (ucorr_stack * gold_mask_d).data.sum() lcorr_stack = (lcorr_stack * gold_mask_d).data.sum() num_stack = gold_mask_d.data.sum() if lcorr_stack < num_stack: loss_pred, loss_pred_arc, loss_pred_type = calc_loss( network, word, char, pos, pred_heads, pred_stacked_heads, pred_children, pred_siblings, pred_stacked_types, pred_skip_connect, masks, lengths, pred_mask_d, pred_lengths_d) loss_gold, loss_gold_arc, loss_gold_type = calc_loss( network, word, char, pos, gold_heads, gold_stacked_heads, gold_children, gold_siblings, gold_stacked_types, gold_skip_connect, masks, lengths, gold_mask_d, gold_lengths_d) if display_inst: print('%d, %d, %d' % (ucorr_stack, lcorr_stack, num_stack)) print( 'pred(arc, type): %.4f (%.4f, %.4f), gold(arc, type): %.4f (%.4f, %.4f)' % (loss_pred, loss_pred_arc, loss_pred_type, loss_gold, loss_gold_arc, loss_gold_type)) word = word[0].data.cpu().numpy() pos = pos[0].data.cpu().numpy() head_gold = gold_heads[0].data.cpu().numpy() type_gold = gold_types[0].data.cpu().numpy() head_pred = pred_heads[0].data.cpu().numpy() type_pred = pred_types[0].data.cpu().numpy() display(word, pos, head_gold, type_gold, head_pred, type_pred, lengths[0], word_alphabet, pos_alphabet, type_alphabet) length_dec = gold_lengths_d[0] gold_display = np.empty([3, length_dec]) gold_display[0] = gold_stacked_types.data[0].cpu().numpy( )[:length_dec] gold_display[1] = gold_children.data[0].cpu().numpy( )[:length_dec] gold_display[2] = gold_stacked_heads.data[0].cpu().numpy( )[:length_dec] print(gold_display) print( '--------------------------------------------------------' ) pred_display = np.empty([3, pred_lengths_d[0]])[:length_dec] pred_display[0] = pred_stacked_types.data[0].cpu().numpy( )[:length_dec] pred_display[1] = pred_children.data[0].cpu().numpy( )[:length_dec] pred_display[2] = pred_stacked_heads.data[0].cpu().numpy( )[:length_dec] print(pred_display) print( '========================================================' ) raw_input() if ucorr_stack == num_stack: type_err += 1 elif loss_pred < loss_gold: model_err += 1 else: search_err += 1 print('type errors: %d' % type_err) print('model errors: %d' % model_err) print('search errors: %d' % search_err) analyze()
def stackptr(model_path, model_name, test_path, punct_set, use_gpu, logger, args): pos_embedding = args.pos_embedding alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) word_alphabet, char_alphabet, pos_alphabet, \ type_alphabet = conllx_stacked_data.create_alphabets(alphabet_path, None, pos_embedding,data_paths=[None, None], max_vocabulary_size=50000, embedd_dict=None) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) beam = args.beam ordered = args.ordered display_inst = args.display def load_model_arguments_from_json(): arguments = json.load(open(arg_path, 'r')) return arguments['args'], arguments['kwargs'] arg_path = model_name + '.arg.json' args, kwargs = load_model_arguments_from_json() prior_order = kwargs['prior_order'] logger.info('use gpu: %s, beam: %d, order: %s (%s)' % (use_gpu, beam, prior_order, ordered)) data_test = conllx_stacked_data.read_stacked_data_to_variable( test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, pos_embedding, use_gpu=use_gpu, volatile=True, prior_order=prior_order, is_test=True) pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet, pos_embedding) #gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) logger.info('model: %s' % model_name) network = StackPtrNet(*args, **kwargs) network.load_state_dict(torch.load(model_name)) if use_gpu: network.cuda() else: network.cpu() network.eval() pred_writer.start(model_path + 'tmp/analyze_pred') sent = 0 start_time = time.time() for batch in conllx_stacked_data.iterate_batch_stacked_variable( data_test, 1): sys.stdout.write('%d, ' % sent) sys.stdout.flush() sent += 1 input_encoder, input_decoder = batch word, char, pos, heads, types, masks, lengths = input_encoder stacked_heads, children, siblings, stacked_types, skip_connect, mask_d, lengths_d = input_decoder heads_pred, types_pred, children_pred, stacked_types_pred = network.decode( word, char, pos, mask=masks, length=lengths, beam=beam, ordered=ordered, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) stacked_heads = stacked_heads.data children = children.data stacked_types = stacked_types.data children_pred = torch.from_numpy(children_pred).long() stacked_types_pred = torch.from_numpy(stacked_types_pred).long() if use_gpu: children_pred = children_pred.cuda() stacked_types_pred = stacked_types_pred.cuda() mask_d = mask_d.data mask_leaf = torch.eq(children, stacked_heads).float() mask_non_leaf = (1.0 - mask_leaf) mask_leaf = mask_leaf * mask_d mask_non_leaf = mask_non_leaf * mask_d num_leaf = mask_leaf.sum() num_non_leaf = mask_non_leaf.sum() # ------------------------------------------------------------------------------------------------ word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) pred_writer.close()
def main(): args_parser = argparse.ArgumentParser(description='Tuning with graph-based parsing') args_parser.add_argument('--test_phase', action='store_true', help='Load trained model and run testing phase.') args_parser.add_argument('--mode', choices=['RNN', 'LSTM', 'GRU', 'FastLSTM'], help='architecture of rnn', required=True) args_parser.add_argument('--cuda', action='store_true', help='using GPU') args_parser.add_argument('--num_epochs', type=int, default=200, help='Number of training epochs') args_parser.add_argument('--batch_size', type=int, default=64, help='Number of sentences in each batch') args_parser.add_argument('--hidden_size', type=int, default=256, help='Number of hidden units in RNN') args_parser.add_argument('--arc_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--type_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--num_layers', type=int, default=1, help='Number of layers of RNN') args_parser.add_argument('--num_filters', type=int, default=50, help='Number of filters in CNN') args_parser.add_argument('--pos', action='store_true', help='use part-of-speech embedding.') args_parser.add_argument('--char', action='store_true', help='use character embedding and CNN.') args_parser.add_argument('--pos_dim', type=int, default=50, help='Dimension of POS embeddings') args_parser.add_argument('--char_dim', type=int, default=50, help='Dimension of Character embeddings') args_parser.add_argument('--opt', choices=['adam', 'sgd', 'adamax'], help='optimization algorithm') args_parser.add_argument('--objective', choices=['cross_entropy', 'crf'], default='cross_entropy', help='objective function of training procedure.') args_parser.add_argument('--decode', choices=['mst', 'greedy'], help='decoding algorithm', required=True) args_parser.add_argument('--learning_rate', type=float, default=0.01, help='Learning rate') args_parser.add_argument('--decay_rate', type=float, default=0.05, help='Decay rate of learning rate') args_parser.add_argument('--clip', type=float, default=5.0, help='gradient clipping') args_parser.add_argument('--gamma', type=float, default=0.0, help='weight for regularization') args_parser.add_argument('--epsilon', type=float, default=1e-8, help='epsilon for adam or adamax') args_parser.add_argument('--p_rnn', nargs=2, type=float, required=True, help='dropout rate for RNN') args_parser.add_argument('--p_in', type=float, default=0.33, help='dropout rate for input embeddings') args_parser.add_argument('--p_out', type=float, default=0.33, help='dropout rate for output layer') args_parser.add_argument('--schedule', type=int, help='schedule for learning rate decay') args_parser.add_argument('--unk_replace', type=float, default=0., help='The rate to replace a singleton word with UNK') args_parser.add_argument('--punctuation', nargs='+', type=str, help='List of punctuations') args_parser.add_argument('--word_embedding', choices=['glove', 'senna', 'sskip', 'polyglot'], help='Embedding for words', required=True) args_parser.add_argument('--word_path', help='path for word embedding dict') args_parser.add_argument('--freeze', action='store_true', help='frozen the word embedding (disable fine-tuning).') args_parser.add_argument('--char_embedding', choices=['random', 'polyglot'], help='Embedding for characters', required=True) args_parser.add_argument('--char_path', help='path for character embedding dict') args_parser.add_argument('--train') # "data/POS-penn/wsj/split1/wsj1.train.original" args_parser.add_argument('--dev') # "data/POS-penn/wsj/split1/wsj1.dev.original" args_parser.add_argument('--test') # "data/POS-penn/wsj/split1/wsj1.test.original" args_parser.add_argument('--model_path', help='path for saving model file.', required=True) args_parser.add_argument('--model_name', help='name for saving model file.', required=True) args = args_parser.parse_args() logger = get_logger("GraphParser") mode = args.mode obj = args.objective decoding = args.decode train_path = args.train dev_path = args.dev test_path = args.test model_path = args.model_path model_name = args.model_name num_epochs = args.num_epochs batch_size = args.batch_size hidden_size = args.hidden_size arc_space = args.arc_space type_space = args.type_space num_layers = args.num_layers num_filters = args.num_filters learning_rate = args.learning_rate opt = args.opt momentum = 0.9 betas = (0.9, 0.9) eps = args.epsilon decay_rate = args.decay_rate clip = args.clip gamma = args.gamma schedule = args.schedule p_rnn = tuple(args.p_rnn) p_in = args.p_in p_out = args.p_out unk_replace = args.unk_replace punctuation = args.punctuation freeze = args.freeze word_embedding = args.word_embedding word_path = args.word_path use_char = args.char char_embedding = args.char_embedding char_path = args.char_path use_pos = args.pos pos_dim = args.pos_dim word_dict, word_dim = utils.load_embedding_dict(word_embedding, word_path) char_dict = None char_dim = args.char_dim if char_embedding != 'random': char_dict, char_dim = utils.load_embedding_dict(char_embedding, char_path) logger.info("Creating Alphabets") alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) word_alphabet, char_alphabet, pos_alphabet, type_alphabet = conllx_data.create_alphabets(alphabet_path, train_path, data_paths=[dev_path, test_path], max_vocabulary_size=100000, embedd_dict=word_dict) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) logger.info("Reading Data") device = torch.device('cuda') if args.cuda else torch.device('cpu') data_train = conllx_data.read_data_to_tensor(train_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, symbolic_root=True, device=device) # data_train = conllx_data.read_data(train_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet) # num_data = sum([len(bucket) for bucket in data_train]) num_data = sum(data_train[1]) data_dev = conllx_data.read_data_to_tensor(dev_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, symbolic_root=True, device=device) data_test = conllx_data.read_data_to_tensor(test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, symbolic_root=True, device=device) punct_set = None if punctuation is not None: punct_set = set(punctuation) logger.info("punctuations(%d): %s" % (len(punct_set), ' '.join(punct_set))) def construct_word_embedding_table(): scale = np.sqrt(3.0 / word_dim) table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32) table[conllx_data.UNK_ID, :] = np.zeros([1, word_dim]).astype(np.float32) if freeze else np.random.uniform(-scale, scale, [1, word_dim]).astype(np.float32) oov = 0 for word, index in word_alphabet.items(): if word in word_dict: embedding = word_dict[word] elif word.lower() in word_dict: embedding = word_dict[word.lower()] else: embedding = np.zeros([1, word_dim]).astype(np.float32) if freeze else np.random.uniform(-scale, scale, [1, word_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('word OOV: %d' % oov) return torch.from_numpy(table) def construct_char_embedding_table(): if char_dict is None: return None scale = np.sqrt(3.0 / char_dim) table = np.empty([num_chars, char_dim], dtype=np.float32) table[conllx_data.UNK_ID, :] = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) oov = 0 for char, index, in char_alphabet.items(): if char in char_dict: embedding = char_dict[char] else: embedding = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('character OOV: %d' % oov) return torch.from_numpy(table) word_table = construct_word_embedding_table() char_table = construct_char_embedding_table() window = 3 if obj == 'cross_entropy': network = BiRecurrentConvBiAffine(word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, hidden_size, num_layers, num_types, arc_space, type_space, embedd_word=word_table, embedd_char=char_table, p_in=p_in, p_out=p_out, p_rnn=p_rnn, biaffine=True, pos=use_pos, char=use_char) elif obj == 'crf': raise NotImplementedError else: raise RuntimeError('Unknown objective: %s' % obj) def save_args(): arg_path = model_name + '.arg.json' arguments = [word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, hidden_size, num_layers, num_types, arc_space, type_space] kwargs = {'p_in': p_in, 'p_out': p_out, 'p_rnn': p_rnn, 'biaffine': True, 'pos': use_pos, 'char': use_char} json.dump({'args': arguments, 'kwargs': kwargs}, open(arg_path, 'w'), indent=4) if freeze: freeze_embedding(network.word_embedd) network = network.to(device) save_args() pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) def generate_optimizer(opt, lr, params): params = filter(lambda param: param.requires_grad, params) if opt == 'adam': return Adam(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps) elif opt == 'sgd': return SGD(params, lr=lr, momentum=momentum, weight_decay=gamma, nesterov=True) elif opt == 'adamax': return Adamax(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps) else: raise ValueError('Unknown optimization algorithm: %s' % opt) lr = learning_rate optim = generate_optimizer(opt, lr, network.parameters()) opt_info = 'opt: %s, ' % opt if opt == 'adam': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) elif opt == 'sgd': opt_info += 'momentum=%.2f' % momentum elif opt == 'adamax': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) word_status = 'frozen' if freeze else 'fine tune' char_status = 'enabled' if use_char else 'disabled' pos_status = 'enabled' if use_pos else 'disabled' logger.info("Embedding dim: word=%d (%s), char=%d (%s), pos=%d (%s)" % (word_dim, word_status, char_dim, char_status, pos_dim, pos_status)) logger.info("CNN: filter=%d, kernel=%d" % (num_filters, window)) logger.info("RNN: %s, num_layer=%d, hidden=%d, arc_space=%d, type_space=%d" % (mode, num_layers, hidden_size, arc_space, type_space)) logger.info("train: obj: %s, l2: %f, (#data: %d, batch: %d, clip: %.2f, unk replace: %.2f)" % (obj, gamma, num_data, batch_size, clip, unk_replace)) logger.info("dropout(in, out, rnn): (%.2f, %.2f, %s)" % (p_in, p_out, p_rnn)) logger.info("decoding algorithm: %s" % decoding) logger.info(opt_info) num_batches = num_data / batch_size + 1 dev_ucorrect = 0.0 dev_lcorrect = 0.0 dev_ucomlpete_match = 0.0 dev_lcomplete_match = 0.0 dev_ucorrect_nopunc = 0.0 dev_lcorrect_nopunc = 0.0 dev_ucomlpete_match_nopunc = 0.0 dev_lcomplete_match_nopunc = 0.0 dev_root_correct = 0.0 best_epoch = 0 test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_root_correct = 0.0 test_total = 0 test_total_nopunc = 0 test_total_inst = 0 test_total_root = 0 if decoding == 'greedy': decode = network.decode elif decoding == 'mst': decode = network.decode_mst else: raise ValueError('Unknown decoding algorithm: %s' % decoding) patient = 0 decay = 0 max_decay = 9 double_schedule_decay = 5 for epoch in range(1, num_epochs + 1): print('Epoch %d (%s, optim: %s, learning rate=%.6f, eps=%.1e, decay rate=%.2f (schedule=%d, patient=%d, decay=%d)): ' % (epoch, mode, opt, lr, eps, decay_rate, schedule, patient, decay)) train_err = 0. train_err_arc = 0. train_err_type = 0. train_total = 0. start_time = time.time() num_back = 0 network.train() for batch in range(1, num_batches + 1): word, char, pos, heads, types, masks, lengths = conllx_data.get_batch_tensor(data_train, batch_size, unk_replace=unk_replace) optim.zero_grad() loss_arc, loss_type = network.loss(word, char, pos, heads, types, mask=masks, length=lengths) loss = loss_arc + loss_type loss.backward() clip_grad_norm_(network.parameters(), clip) optim.step() with torch.no_grad(): num_inst = word.size(0) if obj == 'crf' else masks.sum() - word.size(0) train_err += loss * num_inst train_err_arc += loss_arc * num_inst train_err_type += loss_type * num_inst train_total += num_inst time_ave = (time.time() - start_time) / batch time_left = (num_batches - batch) * time_ave # update log if batch % 10 == 0: sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) log_info = 'train: %d/%d loss: %.4f, arc: %.4f, type: %.4f, time left: %.2fs' % (batch, num_batches, train_err / train_total, train_err_arc / train_total, train_err_type / train_total, time_left) sys.stdout.write(log_info) sys.stdout.flush() num_back = len(log_info) sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) print('train: %d loss: %.4f, arc: %.4f, type: %.4f, time: %.2fs' % (num_batches, train_err / train_total, train_err_arc / train_total, train_err_type / train_total, time.time() - start_time)) # evaluate performance on dev data with torch.no_grad(): network.eval() pred_filename = 'tmp/%spred_dev%d' % (str(uid), epoch) pred_writer.start(pred_filename) gold_filename = 'tmp/%sgold_dev%d' % (str(uid), epoch) gold_writer.start(gold_filename) dev_ucorr = 0.0 dev_lcorr = 0.0 dev_total = 0 dev_ucomlpete = 0.0 dev_lcomplete = 0.0 dev_ucorr_nopunc = 0.0 dev_lcorr_nopunc = 0.0 dev_total_nopunc = 0 dev_ucomlpete_nopunc = 0.0 dev_lcomplete_nopunc = 0.0 dev_root_corr = 0.0 dev_total_root = 0.0 dev_total_inst = 0.0 for batch in conllx_data.iterate_batch_tensor(data_dev, batch_size): word, char, pos, heads, types, masks, lengths = batch heads_pred, types_pred = decode(word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS) word = word.cpu().numpy() pos = pos.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.cpu().numpy() types = types.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval(word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root dev_ucorr += ucorr dev_lcorr += lcorr dev_total += total dev_ucomlpete += ucm dev_lcomplete += lcm dev_ucorr_nopunc += ucorr_nopunc dev_lcorr_nopunc += lcorr_nopunc dev_total_nopunc += total_nopunc dev_ucomlpete_nopunc += ucm_nopunc dev_lcomplete_nopunc += lcm_nopunc dev_root_corr += corr_root dev_total_root += total_root dev_total_inst += num_inst pred_writer.close() gold_writer.close() print('W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % ( dev_ucorr, dev_lcorr, dev_total, dev_ucorr * 100 / dev_total, dev_lcorr * 100 / dev_total, dev_ucomlpete * 100 / dev_total_inst, dev_lcomplete * 100 / dev_total_inst)) print('Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % ( dev_ucorr_nopunc, dev_lcorr_nopunc, dev_total_nopunc, dev_ucorr_nopunc * 100 / dev_total_nopunc, dev_lcorr_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_nopunc * 100 / dev_total_inst, dev_lcomplete_nopunc * 100 / dev_total_inst)) print('Root: corr: %d, total: %d, acc: %.2f%%' %(dev_root_corr, dev_total_root, dev_root_corr * 100 / dev_total_root)) if dev_lcorrect_nopunc < dev_lcorr_nopunc or (dev_lcorrect_nopunc == dev_lcorr_nopunc and dev_ucorrect_nopunc < dev_ucorr_nopunc): dev_ucorrect_nopunc = dev_ucorr_nopunc dev_lcorrect_nopunc = dev_lcorr_nopunc dev_ucomlpete_match_nopunc = dev_ucomlpete_nopunc dev_lcomplete_match_nopunc = dev_lcomplete_nopunc dev_ucorrect = dev_ucorr dev_lcorrect = dev_lcorr dev_ucomlpete_match = dev_ucomlpete dev_lcomplete_match = dev_lcomplete dev_root_correct = dev_root_corr best_epoch = epoch patient = 0 # torch.save(network, model_name) torch.save(network.state_dict(), model_name) pred_filename = 'tmp/%spred_test%d' % (str(uid), epoch) pred_writer.start(pred_filename) gold_filename = 'tmp/%sgold_test%d' % (str(uid), epoch) gold_writer.start(gold_filename) test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_total = 0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_total_nopunc = 0 test_total_inst = 0 test_root_correct = 0.0 test_total_root = 0 for batch in conllx_data.iterate_batch_tensor(data_test, batch_size): word, char, pos, heads, types, masks, lengths = batch heads_pred, types_pred = decode(word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS) word = word.cpu().numpy() pos = pos.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.cpu().numpy() types = types.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval(word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root test_ucorrect += ucorr test_lcorrect += lcorr test_total += total test_ucomlpete_match += ucm test_lcomplete_match += lcm test_ucorrect_nopunc += ucorr_nopunc test_lcorrect_nopunc += lcorr_nopunc test_total_nopunc += total_nopunc test_ucomlpete_match_nopunc += ucm_nopunc test_lcomplete_match_nopunc += lcm_nopunc test_root_correct += corr_root test_total_root += total_root test_total_inst += num_inst pred_writer.close() gold_writer.close() else: if dev_ucorr_nopunc * 100 / dev_total_nopunc < dev_ucorrect_nopunc * 100 / dev_total_nopunc - 5 or patient >= schedule: # network = torch.load(model_name) network.load_state_dict(torch.load(model_name)) lr = lr * decay_rate optim = generate_optimizer(opt, lr, network.parameters()) if decoding == 'greedy': decode = network.decode elif decoding == 'mst': decode = network.decode_mst else: raise ValueError('Unknown decoding algorithm: %s' % decoding) patient = 0 decay += 1 if decay % double_schedule_decay == 0: schedule *= 2 else: patient += 1 print('----------------------------------------------------------------------------------------------------------------------------') print('best dev W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( dev_ucorrect, dev_lcorrect, dev_total, dev_ucorrect * 100 / dev_total, dev_lcorrect * 100 / dev_total, dev_ucomlpete_match * 100 / dev_total_inst, dev_lcomplete_match * 100 / dev_total_inst, best_epoch)) print('best dev Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( dev_ucorrect_nopunc, dev_lcorrect_nopunc, dev_total_nopunc, dev_ucorrect_nopunc * 100 / dev_total_nopunc, dev_lcorrect_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_match_nopunc * 100 / dev_total_inst, dev_lcomplete_match_nopunc * 100 / dev_total_inst, best_epoch)) print('best dev Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % ( dev_root_correct, dev_total_root, dev_root_correct * 100 / dev_total_root, best_epoch)) print('----------------------------------------------------------------------------------------------------------------------------') print('best test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total, test_ucomlpete_match * 100 / test_total_inst, test_lcomplete_match * 100 / test_total_inst, best_epoch)) print('best test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc, test_ucomlpete_match_nopunc * 100 / test_total_inst, test_lcomplete_match_nopunc * 100 / test_total_inst, best_epoch)) print('best test Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % ( test_root_correct, test_total_root, test_root_correct * 100 / test_total_root, best_epoch)) print('============================================================================================================================') if decay == max_decay: break
def train(args): logger = get_logger("Parsing") args.cuda = torch.cuda.is_available() device = torch.device('cuda', 0) if args.cuda else torch.device('cpu') train_path = args.train dev_path = args.dev test_path = args.test num_epochs = args.num_epochs batch_size = args.batch_size optim = args.optim learning_rate = args.learning_rate lr_decay = args.lr_decay amsgrad = args.amsgrad eps = args.eps betas = (args.beta1, args.beta2) warmup_steps = args.warmup_steps weight_decay = args.weight_decay grad_clip = args.grad_clip loss_ty_token = args.loss_type == 'token' unk_replace = args.unk_replace freeze = args.freeze model_path = args.model_path model_name = os.path.join(model_path, 'model.pt') punctuation = args.punctuation word_embedding = args.word_embedding word_path = args.word_path char_embedding = args.char_embedding char_path = args.char_path print(args) word_dict, word_dim = utils.load_embedding_dict(word_embedding, word_path) char_dict = None if char_embedding != 'random': char_dict, char_dim = utils.load_embedding_dict( char_embedding, char_path) else: char_dict = None char_dim = None logger.info("Creating Alphabets") alphabet_path = os.path.join(model_path, 'alphabets') word_alphabet, char_alphabet, pos_alphabet, type_alphabet = conllx_data.create_alphabets( alphabet_path, train_path, data_paths=[dev_path, test_path], embedd_dict=word_dict, max_vocabulary_size=200000) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) result_path = os.path.join(model_path, 'tmp') if not os.path.exists(result_path): os.makedirs(result_path) punct_set = None if punctuation is not None: punct_set = set(punctuation) logger.info("punctuations(%d): %s" % (len(punct_set), ' '.join(punct_set))) def construct_word_embedding_table(): scale = np.sqrt(3.0 / word_dim) table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32) table[conllx_data.UNK_ID, :] = np.zeros([1, word_dim]).astype( np.float32) if freeze else np.random.uniform( -scale, scale, [1, word_dim]).astype(np.float32) oov = 0 for word, index in word_alphabet.items(): if word in word_dict: embedding = word_dict[word] elif word.lower() in word_dict: embedding = word_dict[word.lower()] else: embedding = np.zeros([1, word_dim]).astype( np.float32) if freeze else np.random.uniform( -scale, scale, [1, word_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('word OOV: %d' % oov) return torch.from_numpy(table) def construct_char_embedding_table(): if char_dict is None: return None scale = np.sqrt(3.0 / char_dim) table = np.empty([num_chars, char_dim], dtype=np.float32) table[conllx_data.UNK_ID, :] = np.random.uniform( -scale, scale, [1, char_dim]).astype(np.float32) oov = 0 for char, index, in char_alphabet.items(): if char in char_dict: embedding = char_dict[char] else: embedding = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('character OOV: %d' % oov) return torch.from_numpy(table) word_table = construct_word_embedding_table() char_table = construct_char_embedding_table() logger.info("constructing network...") hyps = json.load(open(args.config, 'r')) json.dump(hyps, open(os.path.join(model_path, 'config.json'), 'w'), indent=2) model_type = hyps['model'] assert model_type in ['DeepBiAffine', 'NeuroMST', 'StackPtr'] assert word_dim == hyps['word_dim'] if char_dim is not None: assert char_dim == hyps['char_dim'] else: char_dim = hyps['char_dim'] use_pos = hyps['pos'] pos_dim = hyps['pos_dim'] mode = hyps['rnn_mode'] hidden_size = hyps['hidden_size'] arc_space = hyps['arc_space'] type_space = hyps['type_space'] p_in = hyps['p_in'] p_out = hyps['p_out'] p_rnn = hyps['p_rnn'] activation = hyps['activation'] prior_order = None alg = 'transition' if model_type == 'StackPtr' else 'graph' if model_type == 'DeepBiAffine': num_layers = hyps['num_layers'] network = DeepBiAffine(word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, mode, hidden_size, num_layers, num_types, arc_space, type_space, embedd_word=word_table, embedd_char=char_table, p_in=p_in, p_out=p_out, p_rnn=p_rnn, pos=use_pos, activation=activation) elif model_type == 'NeuroMST': num_layers = hyps['num_layers'] network = NeuroMST(word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, mode, hidden_size, num_layers, num_types, arc_space, type_space, embedd_word=word_table, embedd_char=char_table, p_in=p_in, p_out=p_out, p_rnn=p_rnn, pos=use_pos, activation=activation) elif model_type == 'StackPtr': encoder_layers = hyps['encoder_layers'] decoder_layers = hyps['decoder_layers'] num_layers = (encoder_layers, decoder_layers) prior_order = hyps['prior_order'] grandPar = hyps['grandPar'] sibling = hyps['sibling'] network = StackPtrNet(word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, mode, hidden_size, encoder_layers, decoder_layers, num_types, arc_space, type_space, embedd_word=word_table, embedd_char=char_table, prior_order=prior_order, activation=activation, p_in=p_in, p_out=p_out, p_rnn=p_rnn, pos=use_pos, grandPar=grandPar, sibling=sibling) else: raise RuntimeError('Unknown model type: %s' % model_type) if freeze: freeze_embedding(network.word_embed) network = network.to(device) model = "{}-{}".format(model_type, mode) logger.info("Network: %s, num_layer=%s, hidden=%d, act=%s" % (model, num_layers, hidden_size, activation)) logger.info("dropout(in, out, rnn): %s(%.2f, %.2f, %s)" % ('variational', p_in, p_out, p_rnn)) logger.info('# of Parameters: %d' % (sum([param.numel() for param in network.parameters()]))) logger.info("Reading Data") if alg == 'graph': data_train = conllx_data.read_bucketed_data(train_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, symbolic_root=True) data_dev = conllx_data.read_data(dev_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, symbolic_root=True) data_test = conllx_data.read_data(test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, symbolic_root=True) else: data_train = conllx_stacked_data.read_bucketed_data( train_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, prior_order=prior_order) data_dev = conllx_stacked_data.read_data(dev_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, prior_order=prior_order) data_test = conllx_stacked_data.read_data(test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, prior_order=prior_order) num_data = sum(data_train[1]) logger.info("training: #training data: %d, batch: %d, unk replace: %.2f" % (num_data, batch_size, unk_replace)) pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) optimizer, scheduler = get_optimizer(network.parameters(), optim, learning_rate, lr_decay, betas, eps, amsgrad, weight_decay, warmup_steps) best_ucorrect = 0.0 best_lcorrect = 0.0 best_ucomlpete = 0.0 best_lcomplete = 0.0 best_ucorrect_nopunc = 0.0 best_lcorrect_nopunc = 0.0 best_ucomlpete_nopunc = 0.0 best_lcomplete_nopunc = 0.0 best_root_correct = 0.0 best_total = 0 best_total_nopunc = 0 best_total_inst = 0 best_total_root = 0 best_epoch = 0 test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete = 0.0 test_lcomplete = 0.0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_nopunc = 0.0 test_lcomplete_nopunc = 0.0 test_root_correct = 0.0 test_total = 0 test_total_nopunc = 0 test_total_inst = 0 test_total_root = 0 patient = 0 beam = args.beam reset = args.reset num_batches = num_data // batch_size + 1 if optim == 'adam': opt_info = 'adam, betas=(%.1f, %.3f), eps=%.1e, amsgrad=%s' % ( betas[0], betas[1], eps, amsgrad) else: opt_info = 'sgd, momentum=0.9, nesterov=True' for epoch in range(1, num_epochs + 1): start_time = time.time() train_loss = 0. train_arc_loss = 0. train_type_loss = 0. num_insts = 0 num_words = 0 num_back = 0 num_nans = 0 network.train() lr = scheduler.get_lr()[0] print( 'Epoch %d (%s, lr=%.6f, lr decay=%.6f, grad clip=%.1f, l2=%.1e): ' % (epoch, opt_info, lr, lr_decay, grad_clip, weight_decay)) if args.cuda: torch.cuda.empty_cache() gc.collect() with torch.autograd.set_detect_anomaly(True): for step, data in enumerate( iterate_data(data_train, batch_size, bucketed=True, unk_replace=unk_replace, shuffle=True)): optimizer.zero_grad() bert_words = data["BERT_WORD"].to(device) sub_word_idx = data["SUB_IDX"].to(device) words = data['WORD'].to(device) chars = data['CHAR'].to(device) postags = data['POS'].to(device) heads = data['HEAD'].to(device) nbatch = words.size(0) if alg == 'graph': types = data['TYPE'].to(device) masks = data['MASK'].to(device) nwords = masks.sum() - nbatch BERT = True if BERT: loss_arc, loss_type = network.loss(bert_words, sub_word_idx, words, chars, postags, heads, types, mask=masks) else: loss_arc, loss_type = network.loss(words, chars, postags, heads, types, mask=masks) else: masks_enc = data['MASK_ENC'].to(device) masks_dec = data['MASK_DEC'].to(device) stacked_heads = data['STACK_HEAD'].to(device) children = data['CHILD'].to(device) siblings = data['SIBLING'].to(device) stacked_types = data['STACK_TYPE'].to(device) nwords = masks_enc.sum() - nbatch loss_arc, loss_type = network.loss(words, chars, postags, heads, stacked_heads, children, siblings, stacked_types, mask_e=masks_enc, mask_d=masks_dec) loss_arc = loss_arc.sum() loss_type = loss_type.sum() loss_total = loss_arc + loss_type # print("loss", loss_arc, loss_type, loss_total) if loss_ty_token: loss = loss_total.div(nwords) else: loss = loss_total.div(nbatch) loss.backward() if grad_clip > 0: grad_norm = clip_grad_norm_(network.parameters(), grad_clip) else: grad_norm = total_grad_norm(network.parameters()) if math.isnan(grad_norm): num_nans += 1 else: optimizer.step() scheduler.step() with torch.no_grad(): num_insts += nbatch num_words += nwords train_loss += loss_total.item() train_arc_loss += loss_arc.item() train_type_loss += loss_type.item() # update log if step % 100 == 0: torch.cuda.empty_cache() sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) curr_lr = scheduler.get_lr()[0] num_insts = max(num_insts, 1) num_words = max(num_words, 1) log_info = '[%d/%d (%.0f%%) lr=%.6f (%d)] loss: %.4f (%.4f), arc: %.4f (%.4f), type: %.4f (%.4f)' % ( step, num_batches, 100. * step / num_batches, curr_lr, num_nans, train_loss / num_insts, train_loss / num_words, train_arc_loss / num_insts, train_arc_loss / num_words, train_type_loss / num_insts, train_type_loss / num_words) sys.stdout.write(log_info) sys.stdout.flush() num_back = len(log_info) sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) print( 'total: %d (%d), loss: %.4f (%.4f), arc: %.4f (%.4f), type: %.4f (%.4f), time: %.2fs' % (num_insts, num_words, train_loss / num_insts, train_loss / num_words, train_arc_loss / num_insts, train_arc_loss / num_words, train_type_loss / num_insts, train_type_loss / num_words, time.time() - start_time)) print('-' * 125) # evaluate performance on dev data with torch.no_grad(): pred_filename = os.path.join(result_path, 'pred_dev%d' % epoch) pred_writer.start(pred_filename) gold_filename = os.path.join(result_path, 'gold_dev%d' % epoch) gold_writer.start(gold_filename) print('Evaluating dev:') dev_stats, dev_stats_nopunct, dev_stats_root = eval( alg, data_dev, network, pred_writer, gold_writer, punct_set, word_alphabet, pos_alphabet, device, beam=beam) pred_writer.close() gold_writer.close() dev_ucorr, dev_lcorr, dev_ucomlpete, dev_lcomplete, dev_total = dev_stats dev_ucorr_nopunc, dev_lcorr_nopunc, dev_ucomlpete_nopunc, dev_lcomplete_nopunc, dev_total_nopunc = dev_stats_nopunct dev_root_corr, dev_total_root, dev_total_inst = dev_stats_root if best_ucorrect_nopunc + best_lcorrect_nopunc < dev_ucorr_nopunc + dev_lcorr_nopunc: best_ucorrect_nopunc = dev_ucorr_nopunc best_lcorrect_nopunc = dev_lcorr_nopunc best_ucomlpete_nopunc = dev_ucomlpete_nopunc best_lcomplete_nopunc = dev_lcomplete_nopunc best_ucorrect = dev_ucorr best_lcorrect = dev_lcorr best_ucomlpete = dev_ucomlpete best_lcomplete = dev_lcomplete best_root_correct = dev_root_corr best_total = dev_total best_total_nopunc = dev_total_nopunc best_total_root = dev_total_root best_total_inst = dev_total_inst best_epoch = epoch patient = 0 torch.save(network.state_dict(), model_name) pred_filename = os.path.join(result_path, 'pred_test%d' % epoch) pred_writer.start(pred_filename) gold_filename = os.path.join(result_path, 'gold_test%d' % epoch) gold_writer.start(gold_filename) print('Evaluating test:') test_stats, test_stats_nopunct, test_stats_root = eval( alg, data_test, network, pred_writer, gold_writer, punct_set, word_alphabet, pos_alphabet, device, beam=beam) test_ucorrect, test_lcorrect, test_ucomlpete, test_lcomplete, test_total = test_stats test_ucorrect_nopunc, test_lcorrect_nopunc, test_ucomlpete_nopunc, test_lcomplete_nopunc, test_total_nopunc = test_stats_nopunct test_root_correct, test_total_root, test_total_inst = test_stats_root pred_writer.close() gold_writer.close() else: patient += 1 print('-' * 125) print( 'best dev W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (best_ucorrect, best_lcorrect, best_total, best_ucorrect * 100 / best_total, best_lcorrect * 100 / best_total, best_ucomlpete * 100 / dev_total_inst, best_lcomplete * 100 / dev_total_inst, best_epoch)) print( 'best dev Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (best_ucorrect_nopunc, best_lcorrect_nopunc, best_total_nopunc, best_ucorrect_nopunc * 100 / best_total_nopunc, best_lcorrect_nopunc * 100 / best_total_nopunc, best_ucomlpete_nopunc * 100 / best_total_inst, best_lcomplete_nopunc * 100 / best_total_inst, best_epoch)) print( 'best dev Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (best_root_correct, best_total_root, best_root_correct * 100 / best_total_root, best_epoch)) print('-' * 125) print( 'best test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total, test_ucomlpete * 100 / test_total_inst, test_lcomplete * 100 / test_total_inst, best_epoch)) print( 'best test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc, test_ucomlpete_nopunc * 100 / test_total_inst, test_lcomplete_nopunc * 100 / test_total_inst, best_epoch)) print( 'best test Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (test_root_correct, test_total_root, test_root_correct * 100 / test_total_root, best_epoch)) print('=' * 125) if patient >= reset: logger.info('reset optimizer momentums') network.load_state_dict( torch.load(model_name, map_location=device)) scheduler.reset_state() patient = 0
def parse(args): logger = get_logger("Parsing") args.cuda = torch.cuda.is_available() device = torch.device('cuda', 0) if args.cuda else torch.device('cpu') test_path = args.test model_path = args.model_path model_name = os.path.join(model_path, 'model.pt') punctuation = args.punctuation print(args) logger.info("Creating Alphabets") alphabet_path = os.path.join(model_path, 'alphabets') assert os.path.exists(alphabet_path) word_alphabet, char_alphabet, pos_alphabet, type_alphabet = conllx_data.create_alphabets( alphabet_path, None) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) result_path = os.path.join(model_path, 'tmp') if not os.path.exists(result_path): os.makedirs(result_path) punct_set = None if punctuation is not None: punct_set = set(punctuation) logger.info("punctuations(%d): %s" % (len(punct_set), ' '.join(punct_set))) logger.info("loading network...") hyps = json.load(open(os.path.join(model_path, 'config.json'), 'r')) model_type = hyps['model'] assert model_type in ['DeepBiAffine', 'NeuroMST', 'StackPtr'] word_dim = hyps['word_dim'] char_dim = hyps['char_dim'] use_pos = hyps['pos'] pos_dim = hyps['pos_dim'] mode = hyps['rnn_mode'] hidden_size = hyps['hidden_size'] arc_space = hyps['arc_space'] type_space = hyps['type_space'] p_in = hyps['p_in'] p_out = hyps['p_out'] p_rnn = hyps['p_rnn'] activation = hyps['activation'] prior_order = None alg = 'transition' if model_type == 'StackPtr' else 'graph' if model_type == 'DeepBiAffine': num_layers = hyps['num_layers'] network = DeepBiAffine(word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, mode, hidden_size, num_layers, num_types, arc_space, type_space, p_in=p_in, p_out=p_out, p_rnn=p_rnn, pos=use_pos, activation=activation) elif model_type == 'NeuroMST': num_layers = hyps['num_layers'] network = NeuroMST(word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, mode, hidden_size, num_layers, num_types, arc_space, type_space, p_in=p_in, p_out=p_out, p_rnn=p_rnn, pos=use_pos, activation=activation) elif model_type == 'StackPtr': encoder_layers = hyps['encoder_layers'] decoder_layers = hyps['decoder_layers'] num_layers = (encoder_layers, decoder_layers) prior_order = hyps['prior_order'] grandPar = hyps['grandPar'] sibling = hyps['sibling'] network = StackPtrNet(word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, mode, hidden_size, encoder_layers, decoder_layers, num_types, arc_space, type_space, prior_order=prior_order, activation=activation, p_in=p_in, p_out=p_out, p_rnn=p_rnn, pos=use_pos, grandPar=grandPar, sibling=sibling) else: raise RuntimeError('Unknown model type: %s' % model_type) network = network.to(device) network.load_state_dict(torch.load(model_name, map_location=device)) model = "{}-{}".format(model_type, mode) logger.info("Network: %s, num_layer=%s, hidden=%d, act=%s" % (model, num_layers, hidden_size, activation)) logger.info("Reading Data") if alg == 'graph': data_test = conllx_data.read_data(test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, symbolic_root=True) else: data_test = conllx_stacked_data.read_data(test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, prior_order=prior_order) beam = args.beam pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) pred_filename = os.path.join(result_path, 'pred.txt') pred_writer.start(pred_filename) gold_filename = os.path.join(result_path, 'gold.txt') gold_writer.start(gold_filename) with torch.no_grad(): print('Parsing...') start_time = time.time() eval(alg, data_test, network, pred_writer, gold_writer, punct_set, word_alphabet, pos_alphabet, device, beam, batch_size=args.test_batch_size) print('Time: %.2fs' % (time.time() - start_time)) pred_writer.close() gold_writer.close()
def main(): args_parser = argparse.ArgumentParser(description='Tuning with graph-based parsing') args_parser.add_argument('--mode', choices=['RNN', 'LSTM', 'GRU', 'FastLSTM'], help='architecture of rnn', required=True) args_parser.add_argument('--num_epochs', type=int, default=200, help='Number of training epochs') args_parser.add_argument('--batch_size', type=int, default=64, help='Number of sentences in each batch') args_parser.add_argument('--hidden_size', type=int, default=256, help='Number of hidden units in RNN') args_parser.add_argument('--arc_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--type_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--num_layers', type=int, default=1, help='Number of layers of RNN') args_parser.add_argument('--num_filters', type=int, default=50, help='Number of filters in CNN') args_parser.add_argument('--pos', action='store_true', help='use part-of-speech embedding.') args_parser.add_argument('--pos_dim', type=int, default=50, help='Dimension of POS embeddings') args_parser.add_argument('--char_dim', type=int, default=50, help='Dimension of Character embeddings') args_parser.add_argument('--objective', choices=['cross_entropy', 'crf'], default='cross_entropy', help='objective function of training procedure.') args_parser.add_argument('--decode', choices=['mst', 'greedy'], help='decoding algorithm', required=True) args_parser.add_argument('--learning_rate', type=float, default=0.01, help='Learning rate') args_parser.add_argument('--decay_rate', type=float, default=0.05, help='Decay rate of learning rate') args_parser.add_argument('--gamma', type=float, default=0.0, help='weight for regularization') args_parser.add_argument('--p_rnn', nargs=2, type=float, required=True, help='dropout rate for RNN') args_parser.add_argument('--p_in', type=float, default=0.33, help='dropout rate for input embeddings') args_parser.add_argument('--p_out', type=float, default=0.33, help='dropout rate for output layer') args_parser.add_argument('--schedule', type=int, help='schedule for learning rate decay') args_parser.add_argument('--unk_replace', type=float, default=0., help='The rate to replace a singleton word with UNK') args_parser.add_argument('--punctuation', nargs='+', type=str, help='List of punctuations') args_parser.add_argument('--word_embedding', choices=['glove', 'senna', 'sskip', 'polyglot'], help='Embedding for words', required=True) args_parser.add_argument('--word_path', help='path for word embedding dict') args_parser.add_argument('--char_embedding', choices=['random', 'polyglot'], help='Embedding for characters', required=True) args_parser.add_argument('--char_path', help='path for character embedding dict') args_parser.add_argument('--train') # "data/POS-penn/wsj/split1/wsj1.train.original" args_parser.add_argument('--dev') # "data/POS-penn/wsj/split1/wsj1.dev.original" args_parser.add_argument('--test') # "data/POS-penn/wsj/split1/wsj1.test.original" args_parser.add_argument('--model_path', help='path for saving model file.', required=True) args = args_parser.parse_args() print("*** Model UID: %s ***" % uid) logger = get_logger("GraphParser") mode = args.mode obj = args.objective decoding = args.decode train_path = args.train dev_path = args.dev test_path = args.test model_path = args.model_path num_epochs = args.num_epochs batch_size = args.batch_size hidden_size = args.hidden_size arc_space = args.arc_space type_space = args.type_space num_layers = args.num_layers num_filters = args.num_filters learning_rate = args.learning_rate momentum = 0.9 betas = (0.9, 0.9) decay_rate = args.decay_rate gamma = args.gamma schedule = args.schedule p_rnn = tuple(args.p_rnn) p_in = args.p_in p_out = args.p_out unk_replace = args.unk_replace punctuation = args.punctuation word_embedding = args.word_embedding word_path = args.word_path char_embedding = args.char_embedding char_path = args.char_path use_pos = args.pos pos_dim = args.pos_dim word_dict, word_dim = utils.load_embedding_dict(word_embedding, word_path) char_dict = None char_dim = args.char_dim if char_embedding != 'random': char_dict, char_dim = utils.load_embedding_dict(char_embedding, char_path) logger.info("Creating Alphabets") alphabet_path = os.path.join(model_path, 'alphabets/') word_alphabet, char_alphabet, pos_alphabet, type_alphabet = conllx_data.create_alphabets(alphabet_path, train_path, data_paths=[dev_path, test_path], max_vocabulary_size=50000, embedd_dict=word_dict) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) logger.info("Reading Data") use_gpu = torch.cuda.is_available() data_train = conllx_data.read_data_to_variable(train_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, symbolic_root=True) # data_train = conllx_data.read_data(train_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet) # num_data = sum([len(bucket) for bucket in data_train]) num_data = sum(data_train[1]) data_dev = conllx_data.read_data_to_variable(dev_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=True, symbolic_root=True) data_test = conllx_data.read_data_to_variable(test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=True, symbolic_root=True) punct_set = None if punctuation is not None: punct_set = set(punctuation) logger.info("punctuations(%d): %s" % (len(punct_set), ' '.join(punct_set))) def construct_word_embedding_table(): scale = np.sqrt(3.0 / word_dim) table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32) table[conllx_data.UNK_ID, :] = np.random.uniform(-scale, scale, [1, word_dim]).astype(np.float32) oov = 0 for word, index in word_alphabet.items(): if word in word_dict: embedding = word_dict[word] elif word.lower() in word_dict: embedding = word_dict[word.lower()] else: embedding = np.random.uniform(-scale, scale, [1, word_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('word OOV: %d' % oov) return torch.from_numpy(table) def construct_char_embedding_table(): if char_dict is None: return None scale = np.sqrt(3.0 / char_dim) table = np.empty([num_chars, char_dim], dtype=np.float32) table[conllx_data.UNK_ID, :] = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) oov = 0 for char, index, in char_alphabet.items(): if char in char_dict: embedding = char_dict[char] else: embedding = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('character OOV: %d' % oov) return torch.from_numpy(table) word_table = construct_word_embedding_table() char_table = construct_char_embedding_table() window = 3 if obj == 'cross_entropy': network = BiRecurrentConvBiAffine(word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, hidden_size, num_layers, num_types, arc_space, type_space, embedd_word=word_table, embedd_char=char_table, p_in=p_in, p_out=p_out, p_rnn=p_rnn, biaffine=True, pos=use_pos) elif obj == 'crf': raise NotImplementedError else: raise RuntimeError('Unknown objective: %s' % obj) if use_gpu: network.cuda() pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) adam_epochs = 50 adam_rate = 0.001 if adam_epochs > 0: lr = adam_rate opt = 'adam' optim = Adam(network.parameters(), lr=adam_rate, betas=betas, weight_decay=gamma) else: opt = 'sgd' lr = learning_rate optim = SGD(network.parameters(), lr=lr, momentum=momentum, weight_decay=gamma, nesterov=True) logger.info("Embedding dim: word=%d, char=%d, pos=%d (%s)" % (word_dim, char_dim, pos_dim, use_pos)) logger.info("Network: %s, num_layer=%d, hidden=%d, filter=%d, arc_space=%d, type_space=%d" % ( mode, num_layers, hidden_size, num_filters, arc_space, type_space)) logger.info("train: obj: %s, l2: %f, (#data: %d, batch: %d, dropout(in, out, rnn): (%.2f, %.2f, %s), unk replace: %.2f)" % ( obj, gamma, num_data, batch_size, p_in, p_out, p_rnn, unk_replace)) logger.info("decoding algorithm: %s" % decoding) num_batches = num_data / batch_size + 1 dev_ucorrect = 0.0 dev_lcorrect = 0.0 dev_ucomlpete_match = 0.0 dev_lcomplete_match = 0.0 dev_ucorrect_nopunc = 0.0 dev_lcorrect_nopunc = 0.0 dev_ucomlpete_match_nopunc = 0.0 dev_lcomplete_match_nopunc = 0.0 dev_root_correct = 0.0 best_epoch = 0 test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_root_correct = 0.0 test_total = 0 test_total_nopunc = 0 test_total_inst = 0 test_total_root = 0 if decoding == 'greedy': decode = network.decode elif decoding == 'mst': decode = network.decode_mst else: raise ValueError('Unknown decoding algorithm: %s' % decoding) for epoch in range(1, num_epochs + 1): print('Epoch %d (%s, optim: %s, learning rate=%.4f, decay rate=%.4f (schedule=%d)): ' % ( epoch, mode, opt, lr, decay_rate, schedule)) train_err = 0. train_err_arc = 0. train_err_type = 0. train_total = 0. start_time = time.time() num_back = 0 network.train() for batch in range(1, num_batches + 1): word, char, pos, heads, types, masks, lengths = conllx_data.get_batch_variable(data_train, batch_size, unk_replace=unk_replace) optim.zero_grad() loss_arc, loss_type = network.loss(word, char, pos, heads, types, mask=masks, length=lengths) loss = loss_arc + loss_type loss.backward() optim.step() num_inst = word.size(0) if obj == 'crf' else masks.data.sum() - word.size(0) train_err += loss.data[0] * num_inst train_err_arc += loss_arc.data[0] * num_inst train_err_type += loss_type.data[0] * num_inst train_total += num_inst time_ave = (time.time() - start_time) / batch time_left = (num_batches - batch) * time_ave # update log if batch % 10 == 0: sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) log_info = 'train: %d/%d loss: %.4f, arc: %.4f, type: %.4f, time left (estimated): %.2fs' % ( batch, num_batches, train_err / train_total, train_err_arc / train_total, train_err_type / train_total, time_left) sys.stdout.write(log_info) sys.stdout.flush() num_back = len(log_info) sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) print('train: %d loss: %.4f, arc: %.4f, type: %.4f, time: %.2fs' % ( num_batches, train_err / train_total, train_err_arc / train_total, train_err_type / train_total, time.time() - start_time)) # evaluate performance on dev data network.eval() pred_filename = 'tmp/%spred_dev%d' % (str(uid), epoch) pred_writer.start(pred_filename) gold_filename = 'tmp/%sgold_dev%d' % (str(uid), epoch) gold_writer.start(gold_filename) print('[%s] Epoch %d complete' % (time.strftime("%Y-%m-%d %H:%M:%S"), epoch)) dev_ucorr = 0.0 dev_lcorr = 0.0 dev_total = 0 dev_ucomlpete = 0.0 dev_lcomplete = 0.0 dev_ucorr_nopunc = 0.0 dev_lcorr_nopunc = 0.0 dev_total_nopunc = 0 dev_ucomlpete_nopunc = 0.0 dev_lcomplete_nopunc = 0.0 dev_root_corr = 0.0 dev_total_root = 0.0 dev_total_inst = 0.0 for batch in conllx_data.iterate_batch_variable(data_dev, batch_size): word, char, pos, heads, types, masks, lengths = batch heads_pred, types_pred = decode(word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval(word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root dev_ucorr += ucorr dev_lcorr += lcorr dev_total += total dev_ucomlpete += ucm dev_lcomplete += lcm dev_ucorr_nopunc += ucorr_nopunc dev_lcorr_nopunc += lcorr_nopunc dev_total_nopunc += total_nopunc dev_ucomlpete_nopunc += ucm_nopunc dev_lcomplete_nopunc += lcm_nopunc dev_root_corr += corr_root dev_total_root += total_root dev_total_inst += num_inst pred_writer.close() gold_writer.close() print('W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % ( dev_ucorr, dev_lcorr, dev_total, dev_ucorr * 100 / dev_total, dev_lcorr * 100 / dev_total, dev_ucomlpete * 100 / dev_total_inst, dev_lcomplete * 100 / dev_total_inst)) print('Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % ( dev_ucorr_nopunc, dev_lcorr_nopunc, dev_total_nopunc, dev_ucorr_nopunc * 100 / dev_total_nopunc, dev_lcorr_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_nopunc * 100 / dev_total_inst, dev_lcomplete_nopunc * 100 / dev_total_inst)) print('Root: corr: %d, total: %d, acc: %.2f%%' %( dev_root_corr, dev_total_root, dev_root_corr * 100 / dev_total_root)) if dev_ucorrect_nopunc <= dev_ucorr_nopunc: dev_ucorrect_nopunc = dev_ucorr_nopunc dev_lcorrect_nopunc = dev_lcorr_nopunc dev_ucomlpete_match_nopunc = dev_ucomlpete_nopunc dev_lcomplete_match_nopunc = dev_lcomplete_nopunc dev_ucorrect = dev_ucorr dev_lcorrect = dev_lcorr dev_ucomlpete_match = dev_ucomlpete dev_lcomplete_match = dev_lcomplete dev_root_correct = dev_root_corr best_epoch = epoch pred_filename = 'tmp/%spred_test%d' % (str(uid), epoch) pred_writer.start(pred_filename) gold_filename = 'tmp/%sgold_test%d' % (str(uid), epoch) gold_writer.start(gold_filename) test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_total = 0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_total_nopunc = 0 test_total_inst = 0 test_root_correct = 0.0 test_total_root = 0 for batch in conllx_data.iterate_batch_variable(data_test, batch_size): word, char, pos, heads, types, masks, lengths = batch heads_pred, types_pred = decode(word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval(word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root test_ucorrect += ucorr test_lcorrect += lcorr test_total += total test_ucomlpete_match += ucm test_lcomplete_match += lcm test_ucorrect_nopunc += ucorr_nopunc test_lcorrect_nopunc += lcorr_nopunc test_total_nopunc += total_nopunc test_ucomlpete_match_nopunc += ucm_nopunc test_lcomplete_match_nopunc += lcm_nopunc test_root_correct += corr_root test_total_root += total_root test_total_inst += num_inst pred_writer.close() gold_writer.close() print('----------------------------------------------------------------------------------------------------------------------------') print('best dev W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( dev_ucorrect, dev_lcorrect, dev_total, dev_ucorrect * 100 / dev_total, dev_lcorrect * 100 / dev_total, dev_ucomlpete_match * 100 / dev_total_inst, dev_lcomplete_match * 100 / dev_total_inst, best_epoch)) print('best dev Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( dev_ucorrect_nopunc, dev_lcorrect_nopunc, dev_total_nopunc, dev_ucorrect_nopunc * 100 / dev_total_nopunc, dev_lcorrect_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_match_nopunc * 100 / dev_total_inst, dev_lcomplete_match_nopunc * 100 / dev_total_inst, best_epoch)) print('best dev Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % ( dev_root_correct, dev_total_root, dev_root_correct * 100 / dev_total_root, best_epoch)) print('----------------------------------------------------------------------------------------------------------------------------') print('best test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total, test_ucomlpete_match * 100 / test_total_inst, test_lcomplete_match * 100 / test_total_inst, best_epoch)) print('best test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc, test_ucomlpete_match_nopunc * 100 / test_total_inst, test_lcomplete_match_nopunc * 100 / test_total_inst, best_epoch)) print('best test Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % ( test_root_correct, test_total_root, test_root_correct * 100 / test_total_root, best_epoch)) print('============================================================================================================================') if epoch % schedule == 0: # lr = lr * decay_rate if epoch < adam_epochs: opt = 'adam' lr = adam_rate / (1.0 + epoch * decay_rate) optim = Adam(network.parameters(), lr=lr, betas=betas, weight_decay=gamma) else: opt = 'sgd' lr = learning_rate / (1.0 + (epoch - adam_epochs) * decay_rate) optim = SGD(network.parameters(), lr=lr, momentum=momentum, weight_decay=gamma, nesterov=True)
def main(): args_parser = argparse.ArgumentParser( description='Tuning with graph-based parsing') args_parser.add_argument('--seed', type=int, default=1234, help='random seed for reproducibility') args_parser.add_argument('--mode', choices=['RNN', 'LSTM', 'GRU', 'FastLSTM'], help='architecture of rnn', required=True) args_parser.add_argument('--num_epochs', type=int, default=1000, help='Number of training epochs') args_parser.add_argument('--batch_size', type=int, default=64, help='Number of sentences in each batch') args_parser.add_argument('--hidden_size', type=int, default=256, help='Number of hidden units in RNN') args_parser.add_argument('--arc_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--type_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--num_layers', type=int, default=1, help='Number of layers of encoder.') args_parser.add_argument('--num_filters', type=int, default=50, help='Number of filters in CNN') args_parser.add_argument('--pos', action='store_true', help='use part-of-speech embedding.') args_parser.add_argument('--char', action='store_true', help='use character embedding and CNN.') args_parser.add_argument('--pos_dim', type=int, default=50, help='Dimension of POS embeddings') args_parser.add_argument('--char_dim', type=int, default=50, help='Dimension of Character embeddings') args_parser.add_argument('--opt', choices=['adam', 'sgd', 'adamax'], help='optimization algorithm') args_parser.add_argument('--objective', choices=['cross_entropy', 'crf'], default='cross_entropy', help='objective function of training procedure.') args_parser.add_argument('--decode', choices=['mst', 'greedy'], default='mst', help='decoding algorithm') args_parser.add_argument('--learning_rate', type=float, default=0.01, help='Learning rate') # args_parser.add_argument('--decay_rate', type=float, default=0.05, help='Decay rate of learning rate') args_parser.add_argument('--clip', type=float, default=5.0, help='gradient clipping') args_parser.add_argument('--gamma', type=float, default=0.0, help='weight for regularization') args_parser.add_argument('--epsilon', type=float, default=1e-8, help='epsilon for adam or adamax') args_parser.add_argument('--p_rnn', nargs='+', type=float, required=True, help='dropout rate for RNN') args_parser.add_argument('--p_in', type=float, default=0.33, help='dropout rate for input embeddings') args_parser.add_argument('--p_out', type=float, default=0.33, help='dropout rate for output layer') # args_parser.add_argument('--schedule', type=int, help='schedule for learning rate decay') args_parser.add_argument( '--unk_replace', type=float, default=0., help='The rate to replace a singleton word with UNK') args_parser.add_argument('--punctuation', nargs='+', type=str, help='List of punctuations') args_parser.add_argument( '--word_embedding', choices=['word2vec', 'glove', 'senna', 'sskip', 'polyglot'], help='Embedding for words', required=True) args_parser.add_argument('--word_path', help='path for word embedding dict') args_parser.add_argument( '--freeze', action='store_true', help='frozen the word embedding (disable fine-tuning).') args_parser.add_argument('--char_embedding', choices=['random', 'polyglot'], help='Embedding for characters', required=True) args_parser.add_argument('--char_path', help='path for character embedding dict') args_parser.add_argument( '--train') # "data/POS-penn/wsj/split1/wsj1.train.original" args_parser.add_argument( '--dev') # "data/POS-penn/wsj/split1/wsj1.dev.original" args_parser.add_argument( '--test') # "data/POS-penn/wsj/split1/wsj1.test.original" args_parser.add_argument('--vocab_path', help='path for prebuilt alphabets.', default=None) args_parser.add_argument('--model_path', help='path for saving model file.', required=True) args_parser.add_argument('--model_name', help='name for saving model file.', required=True) # args_parser.add_argument('--no_word', action='store_true', help='do not use word embedding.') # # lrate schedule with warmup in the first iter. args_parser.add_argument('--use_warmup_schedule', action='store_true', help="Use warmup lrate schedule.") args_parser.add_argument('--decay_rate', type=float, default=0.75, help='Decay rate of learning rate') args_parser.add_argument('--max_decay', type=int, default=9, help='Number of decays before stop') args_parser.add_argument('--schedule', type=int, help='schedule for learning rate decay') args_parser.add_argument('--double_schedule_decay', type=int, default=5, help='Number of decays to double schedule') args_parser.add_argument( '--check_dev', type=int, default=5, help='Check development performance in every n\'th iteration') # Tansformer encoder args_parser.add_argument('--no_CoRNN', action='store_true', help='do not use context RNN.') args_parser.add_argument( '--trans_hid_size', type=int, default=1024, help='#hidden units in point-wise feed-forward in transformer') args_parser.add_argument( '--d_k', type=int, default=64, help='d_k for multi-head-attention in transformer encoder') args_parser.add_argument( '--d_v', type=int, default=64, help='d_v for multi-head-attention in transformer encoder') args_parser.add_argument('--multi_head_attn', action='store_true', help='use multi-head-attention.') args_parser.add_argument('--num_head', type=int, default=8, help='Value of h in multi-head attention') # - positional args_parser.add_argument( '--enc_use_neg_dist', action='store_true', help="Use negative distance for enc's relational-distance embedding.") args_parser.add_argument( '--enc_clip_dist', type=int, default=0, help="The clipping distance for relative position features.") args_parser.add_argument('--position_dim', type=int, default=50, help='Dimension of Position embeddings.') args_parser.add_argument( '--position_embed_num', type=int, default=200, help= 'Minimum value of position embedding num, which usually is max-sent-length.' ) args_parser.add_argument('--train_position', action='store_true', help='train positional encoding for transformer.') # args_parser.add_argument( '--train_len_thresh', type=int, default=100, help='In training, discard sentences longer than this.') # args = args_parser.parse_args() # fix data-prepare seed random.seed(1234) np.random.seed(1234) # model's seed torch.manual_seed(args.seed) logger = get_logger("GraphParser") mode = args.mode obj = args.objective decoding = args.decode train_path = args.train dev_path = args.dev test_path = args.test model_path = args.model_path model_name = args.model_name num_epochs = args.num_epochs batch_size = args.batch_size hidden_size = args.hidden_size arc_space = args.arc_space type_space = args.type_space num_layers = args.num_layers num_filters = args.num_filters learning_rate = args.learning_rate opt = args.opt momentum = 0.9 betas = (0.9, 0.9) eps = args.epsilon decay_rate = args.decay_rate clip = args.clip gamma = args.gamma schedule = args.schedule p_rnn = tuple(args.p_rnn) p_in = args.p_in p_out = args.p_out unk_replace = args.unk_replace punctuation = args.punctuation freeze = args.freeze word_embedding = args.word_embedding word_path = args.word_path use_char = args.char char_embedding = args.char_embedding char_path = args.char_path use_pos = args.pos pos_dim = args.pos_dim word_dict, word_dim = utils.load_embedding_dict(word_embedding, word_path) char_dict = None char_dim = args.char_dim if char_embedding != 'random': char_dict, char_dim = utils.load_embedding_dict( char_embedding, char_path) # vocab_path = args.vocab_path if args.vocab_path is not None else args.model_path logger.info("Creating Alphabets") alphabet_path = os.path.join(vocab_path, 'alphabets/') model_name = os.path.join(model_path, model_name) # todo(warn): exactly same for loading vocabs word_alphabet, char_alphabet, pos_alphabet, type_alphabet, max_sent_length = conllx_data.create_alphabets( alphabet_path, train_path, data_paths=[dev_path, test_path], max_vocabulary_size=50000, embedd_dict=word_dict) max_sent_length = max(max_sent_length, args.position_embed_num) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) logger.info("Reading Data") use_gpu = torch.cuda.is_available() # ===== the reading def _read_one(path, is_train): lang_id = guess_language_id(path) logger.info("Reading: guess that the language of file %s is %s." % (path, lang_id)) one_data = conllx_data.read_data_to_variable( path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=(not is_train), symbolic_root=True, lang_id=lang_id, len_thresh=(args.train_len_thresh if is_train else 100000)) return one_data data_train = _read_one(train_path, True) num_data = sum(data_train[1]) data_dev = _read_one(dev_path, False) data_test = _read_one(test_path, False) # ===== punct_set = None if punctuation is not None: punct_set = set(punctuation) logger.info("punctuations(%d): %s" % (len(punct_set), ' '.join(punct_set))) def construct_word_embedding_table(): scale = np.sqrt(3.0 / word_dim) table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32) table[conllx_data.UNK_ID, :] = np.zeros([1, word_dim]).astype( np.float32) if freeze else np.random.uniform( -scale, scale, [1, word_dim]).astype(np.float32) oov = 0 for word, index in word_alphabet.items(): if word in word_dict: embedding = word_dict[word] elif word.lower() in word_dict: embedding = word_dict[word.lower()] else: embedding = np.zeros([1, word_dim]).astype( np.float32) if freeze else np.random.uniform( -scale, scale, [1, word_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('word OOV: %d' % oov) return torch.from_numpy(table) def construct_char_embedding_table(): if char_dict is None: return None scale = np.sqrt(3.0 / char_dim) table = np.empty([num_chars, char_dim], dtype=np.float32) table[conllx_data.UNK_ID, :] = np.random.uniform( -scale, scale, [1, char_dim]).astype(np.float32) oov = 0 for char, index, in char_alphabet.items(): if char in char_dict: embedding = char_dict[char] else: embedding = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('character OOV: %d' % oov) return torch.from_numpy(table) word_table = construct_word_embedding_table() char_table = construct_char_embedding_table() window = 3 if obj == 'cross_entropy': network = BiRecurrentConvBiAffine( word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, hidden_size, num_layers, num_types, arc_space, type_space, embedd_word=word_table, embedd_char=char_table, p_in=p_in, p_out=p_out, p_rnn=p_rnn, biaffine=True, pos=use_pos, char=use_char, train_position=args.train_position, use_con_rnn=(not args.no_CoRNN), trans_hid_size=args.trans_hid_size, d_k=args.d_k, d_v=args.d_v, multi_head_attn=args.multi_head_attn, num_head=args.num_head, enc_use_neg_dist=args.enc_use_neg_dist, enc_clip_dist=args.enc_clip_dist, position_dim=args.position_dim, max_sent_length=max_sent_length, use_gpu=use_gpu, no_word=args.no_word) elif obj == 'crf': raise NotImplementedError else: raise RuntimeError('Unknown objective: %s' % obj) def save_args(): arg_path = model_name + '.arg.json' arguments = [ word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, hidden_size, num_layers, num_types, arc_space, type_space ] kwargs = { 'p_in': p_in, 'p_out': p_out, 'p_rnn': p_rnn, 'biaffine': True, 'pos': use_pos, 'char': use_char, 'train_position': args.train_position, 'use_con_rnn': (not args.no_CoRNN), 'trans_hid_size': args.trans_hid_size, 'd_k': args.d_k, 'd_v': args.d_v, 'multi_head_attn': args.multi_head_attn, 'num_head': args.num_head, 'enc_use_neg_dist': args.enc_use_neg_dist, 'enc_clip_dist': args.enc_clip_dist, 'position_dim': args.position_dim, 'max_sent_length': max_sent_length, 'no_word': args.no_word } json.dump({ 'args': arguments, 'kwargs': kwargs }, open(arg_path, 'w'), indent=4) if freeze: network.word_embedd.freeze() if use_gpu: network.cuda() save_args() pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) def generate_optimizer(opt, lr, params): params = filter(lambda param: param.requires_grad, params) if opt == 'adam': return Adam(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps) elif opt == 'sgd': return SGD(params, lr=lr, momentum=momentum, weight_decay=gamma, nesterov=True) elif opt == 'adamax': return Adamax(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps) else: raise ValueError('Unknown optimization algorithm: %s' % opt) lr = learning_rate optim = generate_optimizer(opt, lr, network.parameters()) opt_info = 'opt: %s, ' % opt if opt == 'adam': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) elif opt == 'sgd': opt_info += 'momentum=%.2f' % momentum elif opt == 'adamax': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) word_status = 'frozen' if freeze else 'fine tune' char_status = 'enabled' if use_char else 'disabled' pos_status = 'enabled' if use_pos else 'disabled' logger.info( "Embedding dim: word=%d (%s), char=%d (%s), pos=%d (%s)" % (word_dim, word_status, char_dim, char_status, pos_dim, pos_status)) logger.info("CNN: filter=%d, kernel=%d" % (num_filters, window)) logger.info( "RNN: %s, num_layer=%d, hidden=%d, arc_space=%d, type_space=%d" % (mode, num_layers, hidden_size, arc_space, type_space)) logger.info( "train: obj: %s, l2: %f, (#data: %d, batch: %d, clip: %.2f, unk replace: %.2f)" % (obj, gamma, num_data, batch_size, clip, unk_replace)) logger.info("dropout(in, out, rnn): (%.2f, %.2f, %s)" % (p_in, p_out, p_rnn)) logger.info("decoding algorithm: %s" % decoding) logger.info(opt_info) num_batches = num_data / batch_size + 1 dev_ucorrect = 0.0 dev_lcorrect = 0.0 dev_ucomlpete_match = 0.0 dev_lcomplete_match = 0.0 dev_ucorrect_nopunc = 0.0 dev_lcorrect_nopunc = 0.0 dev_ucomlpete_match_nopunc = 0.0 dev_lcomplete_match_nopunc = 0.0 dev_root_correct = 0.0 best_epoch = 0 test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_root_correct = 0.0 test_total = 0 test_total_nopunc = 0 test_total_inst = 0 test_total_root = 0 if decoding == 'greedy': decode = network.decode elif decoding == 'mst': decode = network.decode_mst else: raise ValueError('Unknown decoding algorithm: %s' % decoding) patient = 0 decay = 0 max_decay = args.max_decay double_schedule_decay = args.double_schedule_decay # lrate schedule step_num = 0 use_warmup_schedule = args.use_warmup_schedule warmup_factor = (lr + 0.) / num_batches if use_warmup_schedule: logger.info("Use warmup lrate for the first epoch, from 0 up to %s." % (lr, )) # for epoch in range(1, num_epochs + 1): print( 'Epoch %d (%s, optim: %s, learning rate=%.6f, eps=%.1e, decay rate=%.2f (schedule=%d, patient=%d, decay=%d)): ' % (epoch, mode, opt, lr, eps, decay_rate, schedule, patient, decay)) train_err = 0. train_err_arc = 0. train_err_type = 0. train_total = 0. start_time = time.time() num_back = 0 network.train() for batch in range(1, num_batches + 1): # lrate schedule (before each step) step_num += 1 if use_warmup_schedule and epoch <= 1: cur_lrate = warmup_factor * step_num # set lr for param_group in optim.param_groups: param_group['lr'] = cur_lrate # word, char, pos, heads, types, masks, lengths = conllx_data.get_batch_variable( data_train, batch_size, unk_replace=unk_replace) optim.zero_grad() loss_arc, loss_type = network.loss(word, char, pos, heads, types, mask=masks, length=lengths) loss = loss_arc + loss_type loss.backward() clip_grad_norm(network.parameters(), clip) optim.step() num_inst = word.size( 0) if obj == 'crf' else masks.data.sum() - word.size(0) train_err += loss.data[0] * num_inst train_err_arc += loss_arc.data[0] * num_inst train_err_type += loss_type.data[0] * num_inst train_total += num_inst time_ave = (time.time() - start_time) / batch time_left = (num_batches - batch) * time_ave # update log if batch % 10 == 0: sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) log_info = 'train: %d/%d loss: %.4f, arc: %.4f, type: %.4f, time left: %.2fs' % ( batch, num_batches, train_err / train_total, train_err_arc / train_total, train_err_type / train_total, time_left) sys.stdout.write(log_info) sys.stdout.flush() num_back = len(log_info) sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) print( 'train: %d loss: %.4f, arc: %.4f, type: %.4f, time: %.2fs' % (num_batches, train_err / train_total, train_err_arc / train_total, train_err_type / train_total, time.time() - start_time)) ################################################################################################ if epoch % args.check_dev != 0: continue # evaluate performance on dev data network.eval() pred_filename = 'tmp/%spred_dev%d' % (str(uid), epoch) pred_writer.start(pred_filename) gold_filename = 'tmp/%sgold_dev%d' % (str(uid), epoch) gold_writer.start(gold_filename) dev_ucorr = 0.0 dev_lcorr = 0.0 dev_total = 0 dev_ucomlpete = 0.0 dev_lcomplete = 0.0 dev_ucorr_nopunc = 0.0 dev_lcorr_nopunc = 0.0 dev_total_nopunc = 0 dev_ucomlpete_nopunc = 0.0 dev_lcomplete_nopunc = 0.0 dev_root_corr = 0.0 dev_total_root = 0.0 dev_total_inst = 0.0 for batch in conllx_data.iterate_batch_variable(data_dev, batch_size): word, char, pos, heads, types, masks, lengths = batch heads_pred, types_pred = decode( word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root dev_ucorr += ucorr dev_lcorr += lcorr dev_total += total dev_ucomlpete += ucm dev_lcomplete += lcm dev_ucorr_nopunc += ucorr_nopunc dev_lcorr_nopunc += lcorr_nopunc dev_total_nopunc += total_nopunc dev_ucomlpete_nopunc += ucm_nopunc dev_lcomplete_nopunc += lcm_nopunc dev_root_corr += corr_root dev_total_root += total_root dev_total_inst += num_inst pred_writer.close() gold_writer.close() print( 'W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (dev_ucorr, dev_lcorr, dev_total, dev_ucorr * 100 / dev_total, dev_lcorr * 100 / dev_total, dev_ucomlpete * 100 / dev_total_inst, dev_lcomplete * 100 / dev_total_inst)) print( 'Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (dev_ucorr_nopunc, dev_lcorr_nopunc, dev_total_nopunc, dev_ucorr_nopunc * 100 / dev_total_nopunc, dev_lcorr_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_nopunc * 100 / dev_total_inst, dev_lcomplete_nopunc * 100 / dev_total_inst)) print('Root: corr: %d, total: %d, acc: %.2f%%' % (dev_root_corr, dev_total_root, dev_root_corr * 100 / dev_total_root)) if dev_lcorrect_nopunc < dev_lcorr_nopunc or ( dev_lcorrect_nopunc == dev_lcorr_nopunc and dev_ucorrect_nopunc < dev_ucorr_nopunc): dev_ucorrect_nopunc = dev_ucorr_nopunc dev_lcorrect_nopunc = dev_lcorr_nopunc dev_ucomlpete_match_nopunc = dev_ucomlpete_nopunc dev_lcomplete_match_nopunc = dev_lcomplete_nopunc dev_ucorrect = dev_ucorr dev_lcorrect = dev_lcorr dev_ucomlpete_match = dev_ucomlpete dev_lcomplete_match = dev_lcomplete dev_root_correct = dev_root_corr best_epoch = epoch patient = 0 # torch.save(network, model_name) torch.save(network.state_dict(), model_name) pred_filename = 'tmp/%spred_test%d' % (str(uid), epoch) pred_writer.start(pred_filename) gold_filename = 'tmp/%sgold_test%d' % (str(uid), epoch) gold_writer.start(gold_filename) test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_total = 0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_total_nopunc = 0 test_total_inst = 0 test_root_correct = 0.0 test_total_root = 0 for batch in conllx_data.iterate_batch_variable( data_test, batch_size): word, char, pos, heads, types, masks, lengths = batch heads_pred, types_pred = decode( word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root test_ucorrect += ucorr test_lcorrect += lcorr test_total += total test_ucomlpete_match += ucm test_lcomplete_match += lcm test_ucorrect_nopunc += ucorr_nopunc test_lcorrect_nopunc += lcorr_nopunc test_total_nopunc += total_nopunc test_ucomlpete_match_nopunc += ucm_nopunc test_lcomplete_match_nopunc += lcm_nopunc test_root_correct += corr_root test_total_root += total_root test_total_inst += num_inst pred_writer.close() gold_writer.close() else: if dev_ucorr_nopunc * 100 / dev_total_nopunc < dev_ucorrect_nopunc * 100 / dev_total_nopunc - 5 or patient >= schedule: # network = torch.load(model_name) network.load_state_dict(torch.load(model_name)) lr = lr * decay_rate optim = generate_optimizer(opt, lr, network.parameters()) if decoding == 'greedy': decode = network.decode elif decoding == 'mst': decode = network.decode_mst else: raise ValueError('Unknown decoding algorithm: %s' % decoding) patient = 0 decay += 1 if decay % double_schedule_decay == 0: schedule *= 2 else: patient += 1 print( '----------------------------------------------------------------------------------------------------------------------------' ) print( 'best dev W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (dev_ucorrect, dev_lcorrect, dev_total, dev_ucorrect * 100 / dev_total, dev_lcorrect * 100 / dev_total, dev_ucomlpete_match * 100 / dev_total_inst, dev_lcomplete_match * 100 / dev_total_inst, best_epoch)) print( 'best dev Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (dev_ucorrect_nopunc, dev_lcorrect_nopunc, dev_total_nopunc, dev_ucorrect_nopunc * 100 / dev_total_nopunc, dev_lcorrect_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_match_nopunc * 100 / dev_total_inst, dev_lcomplete_match_nopunc * 100 / dev_total_inst, best_epoch)) print('best dev Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (dev_root_correct, dev_total_root, dev_root_correct * 100 / dev_total_root, best_epoch)) print( '----------------------------------------------------------------------------------------------------------------------------' ) print( 'best test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total, test_ucomlpete_match * 100 / test_total_inst, test_lcomplete_match * 100 / test_total_inst, best_epoch)) print( 'best test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc, test_ucomlpete_match_nopunc * 100 / test_total_inst, test_lcomplete_match_nopunc * 100 / test_total_inst, best_epoch)) print('best test Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (test_root_correct, test_total_root, test_root_correct * 100 / test_total_root, best_epoch)) print( '============================================================================================================================' ) if decay == max_decay: break
def biaffine(model_path, model_name, test_path, punct_set, use_gpu, logger, args): alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) word_alphabet, char_alphabet, pos_alphabet, type_alphabet, max_sent_length = conllx_data.create_alphabets(alphabet_path, None, data_paths=[None, None], max_vocabulary_size=50000, embedd_dict=None) # word_alphabet, char_alphabet, pos_alphabet, type_alphabet = create_alphabets(alphabet_path, # None, data_paths=[None, None], max_vocabulary_size=50000, embedd_dict=None) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) decoding = args.decode out_filename = args.out_filename constraints_method = args.constraints_method constraintFile = args.constraint_file ratioFile = args.ratio_file tolerance = args.tolerance gamma = args.gamma the_language = args.mt_log[9:11] mt_log = open(args.mt_log, 'a') summary_log = open(args.summary_log, 'a') logger.info('use gpu: %s, decoding: %s' % (use_gpu, decoding)) # extra_embeds_arr = augment_with_extra_embedding(word_alphabet, args.extra_embed, args.extra_embed_src, test_path, logger) # ===== the reading def _read_one(path, is_train): lang_id = guess_language_id(path) logger.info("Reading: guess that the language of file %s is %s." % (path, lang_id)) one_data = conllx_data.read_data_to_variable(path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=(not is_train), symbolic_root=True, lang_id=lang_id) return one_data data_test = _read_one(test_path, False) # data_test = conllx_data.read_data_to_variable(test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, # use_gpu=use_gpu, volatile=True, symbolic_root=True) pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) logger.info('model: %s' % model_name) def load_model_arguments_from_json(): arguments = json.load(open(arg_path, 'r')) return arguments['args'], arguments['kwargs'] arg_path = model_name + '.arg.json' args, kwargs = load_model_arguments_from_json() network = BiRecurrentConvBiAffine(use_gpu=use_gpu, *args, **kwargs) network.load_state_dict(torch.load(model_name)) # augment_network_embed(word_alphabet.size(), network, extra_embeds_arr) if use_gpu: network.cuda() else: network.cpu() network.eval() if decoding == 'greedy': decode = network.decode elif decoding == 'mst': decode = network.decode_mst elif decoding == 'proj': decode = network.decode_proj else: raise ValueError('Unknown decoding algorithm: %s' % decoding) # pred_writer.start('tmp/analyze_pred_%s' % str(uid)) # gold_writer.start('tmp/analyze_gold_%s' % str(uid)) # pred_writer.start(model_path + out_filename + '_pred') # gold_writer.start(model_path + out_filename + '_gold') pred_writer.start(out_filename + '_pred') gold_writer.start(out_filename + '_gold') sent = 0 start_time = time.time() constraints = [] mt_log.write("=====================%s, Ablation 2================\n"%(constraints_method)) summary_log.write("==========================%s, Ablation 2=============\n"%(constraints_method)) if ratioFile == 'WALS': import pickle as pk cFile = open(constraintFile, 'rb') WALS_data = pk.load(cFile) for idx in ['85A', '87A', '89A']: constraint = Constraint(0,0,0) extra_const = constraint.load_WALS(idx, WALS_data[the_language][idx], pos_alphabet, method=constraints_method) constraints.append(constraint) if extra_const: constraints.append(extra_const) constraint = Constraint(0,0,0) extra_const = constraint.load_WALS_unary(WALS_data[the_language], pos_alphabet, method=constraints_method) if extra_const: constraints.append(extra_const) constraints.append(constraint) elif ratioFile == 'None': summary_log.write("=================No it is baseline================\n") mt_log.write("==================No it is baseline==============\n") else: cFile = open(constraintFile, 'r') for line in cFile: if len(line.strip()) < 2: break pos1, pos2 = line.strip().split('\t') constraint = Constraint(0,0,0) constraint.load(pos1, pos2, ratioFile, pos_alphabet) constraints.append(constraint) test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_total = 0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_total_nopunc = 0 test_total_inst = 0 test_root_correct = 0.0 test_total_root = 0 arc_list = [] type_list = [] length_list = [] pos_list = [] for batch in conllx_data.iterate_batch_variable(data_test, 1): word, char, pos, heads, types, masks, lengths = batch out_arc, out_type, length = network.pretrain_constraint(word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS) arc_list += list(out_arc) type_list += list(out_type) length_list += list(length) pos_list += list(pos) if constraints_method == 'binary': train_constraints = network.binary_constraints if constraints_method == 'Lagrange': train_constraints = network.Lagrange_constraints if constraints_method == 'PR': train_constraints = network.PR_constraints train_constraints(arc_list, type_list, length_list, pos_list, constraints, tolerance, mt_log, gamma=gamma) for batch in conllx_data.iterate_batch_variable(data_test, 1): #sys.stdout.write('%d, ' % sent) #sys.stdout.flush() sent += 1 word, char, pos, heads, types, masks, lengths = batch heads_pred, types_pred = decode(word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS, constraints=constraints, method=constraints_method, gamma=gamma) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval(word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root test_ucorrect += ucorr test_lcorrect += lcorr test_total += total test_ucomlpete_match += ucm test_lcomplete_match += lcm test_ucorrect_nopunc += ucorr_nopunc test_lcorrect_nopunc += lcorr_nopunc test_total_nopunc += total_nopunc test_ucomlpete_match_nopunc += ucm_nopunc test_lcomplete_match_nopunc += lcm_nopunc test_root_correct += corr_root test_total_root += total_root test_total_inst += num_inst print('\ntime: %.2fs' % (time.time() - start_time)) print('test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % ( test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total, test_ucomlpete_match * 100 / test_total_inst, test_lcomplete_match * 100 / test_total_inst)) print('test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % ( test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc, test_ucomlpete_match_nopunc * 100 / test_total_inst, test_lcomplete_match_nopunc * 100 / test_total_inst)) print('test Root: corr: %d, total: %d, acc: %.2f%%' % ( test_root_correct, test_total_root, test_root_correct * 100 / test_total_root)) mt_log.write('uas: %.2f, las: %.2f\n'%(test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc)) summary_log.write('%s: %.2f %.2f\n'%(the_language, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc)) pred_writer.close() gold_writer.close()
def parser(): try: params = request.json if params is None: return http_sender.send_error_response( http_response_message.ResponseCode.JSON_SYNTAX_ERROR) if 'sentence' in params: query = params['sentence'].strip() logging.info("Input: " + query) # check query null if query.strip() == "": return http_sender.send_error_response( http_response_message.ResponseCode.EMPTY_REQUEST) result_segment = '' words, postags = word_segmentation(query) for index, (word, pos) in enumerate(zip(words, postags)): word = word.replace("_", " ") if pos == 'CH': pos = 'PUNCT' elif pos == 'L': pos = 'DET' elif pos == 'A': pos = 'ADJ' elif pos == 'R': pos = 'ADV' elif pos == 'Np': pos = 'NNP' elif pos == 'M': pos = 'NUM' elif pos == 'E': pos = 'PRE' elif pos == 'P': pos = 'PRO' elif pos == 'Cc': pos = 'CC' elif pos == 'T': pos = 'PART' elif pos == 'Y': pos = 'NNP' elif pos == 'Cb': pos = 'CC' elif pos == 'Eb': pos = 'FW' elif pos == 'Ni': pos = 'Ny' elif pos == 'B': pos = 'NNP' elif pos == 'L': pos = 'DET' elif pos == 'Aux': pos = 'AUX' elif pos == 'NN': pos = 'N' result_segment += str(index + 1) + '\t' + word + '\t' + word.lower() + '\t' + pos + '\t' + pos + '\t' \ + '_' + '\t' + '_' + '\t' + '_' + '\t' + '_' + '\t' + '_' + '\n' result_segment = result_segment.strip() # split data for test test_folder = 'tmp' if not os.path.exists(test_folder): os.mkdir(test_folder) else: for file in os.listdir(test_folder): os.remove(test_folder + '/' + file) output_path = test_folder + '/test.txt' fout = open(output_path, 'w') fout.write(result_segment + '\n') fout.close() alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, 'network.pt') word_alphabet, char_alphabet, pos_alphabet, \ type_alphabet, max_sent_length = conllx_data.create_alphabets(alphabet_path, None, data_paths=[None, None], max_vocabulary_size=50000, embedd_dict=None) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) tokenizer = AutoTokenizer.from_pretrained(phobert_path) model_bert = AutoModel.from_pretrained(phobert_path) processor = DPProcessor() test_path = 'tmp/test.txt' feature_bert_path = 'tmp/phobert_features.pth' train_examples = processor.get_train_examples(test_path) all_lengths = [] for t in train_examples: all_lengths.append(len(t.text_a)) max_seq_len = max(all_lengths) + 1 if max_seq_len > 512: max_seq_len = 512 logger.info("Max sequence length reset to 512") device = torch.device("cuda") model_bert.to(device) train_features = convert_examples_to_features( train_examples, max_seq_len, tokenizer) all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) all_input_mask = torch.tensor( [f.input_mask for f in train_features], dtype=torch.long) all_segment_ids = torch.tensor( [f.token_type_ids for f in train_features], dtype=torch.long) train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids) train_sampler = SequentialSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=32) model_bert.eval() to_save = {} # for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")): for step, batch in enumerate(train_dataloader): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, token_type_ids = batch with torch.no_grad(): all_encoder_layers = model_bert( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) output_ = all_encoder_layers[0] for j in range(len(input_ids)): sent_id = j + step * 32 layer_output = output_[j, :input_mask[j].to('cpu').sum()] to_save[sent_id] = layer_output.detach().cpu().numpy() torch.save(to_save, feature_bert_path) data_test = conllx_data.read_data_to_tensor(test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, feature_bert_path, elmo_path, symbolic_root=True, device=device, use_elmo=False, use_bert=False, use_elmo_bert=True, use_test=True) pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) logger.info('model: %s' % model_name) def load_model_arguments_from_json(): arguments = json.load(open(arg_path, 'r')) return arguments['args'], arguments['kwargs'] arg_path = model_name[0:-1] + '.arg.json' if not os.path.isfile(arg_path): arg_path = model_name + '.arg.json' args_, kwargs = load_model_arguments_from_json() network = DeepBiAffineTransform(*args_, **kwargs, use_elmo=False, use_bert=False, use_elmo_bert=True) network.load_state_dict(torch.load(model_name)) if use_gpu: network.cuda() else: network.cpu() network.eval() decode = network.decode_mst out_filename = 'tmp/test' pred_writer.start(out_filename + '_pred.conll') for batch in conllx_data.iterate_batch_tensor(data_test, 1, use_elmo=False, use_bert=False, use_elmo_bert=True): sys.stdout.flush() word, char, pos, heads, types, masks, lengths, elmos, berts = batch heads_pred, types_pred = decode( word, char, pos, elmos, berts, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) pred_writer.close() sents_gold = result_segment.split('\n') result = '' test_path = 'tmp/test_pred.conll' lines = open(test_path, 'r').readlines() for i, line in enumerate(lines): if line.strip() != '': sent = sents_gold[i] words_gold = sent.split('\t') word = words_gold[1] line = line.strip() words = line.split('\t') line = words[0] + '\t' + word + '\t' + word.lower( ) + '\t' + words[4] + '\t' + words[4] + '\t_\t' + words[ 6] + '\t' + words[7] + '\t_\t_' + '\n' if line != '': result += line + '\n' result = result.strip() logging.info("Result: " + str(result)) return http_sender.send_http_result(result) else: return http_sender.send_error_response( http_response_message.ResponseCode.INPUT_FORMAT_ERROR) except BadRequest: return http_sender.send_error_response( http_response_message.ResponseCode.JSON_SYNTAX_ERROR)
def main(): args_parser = argparse.ArgumentParser( description='Tuning with stack pointer parser') args_parser.add_argument('--seed', type=int, default=1234, help='random seed for reproducibility') args_parser.add_argument('--mode', choices=['RNN', 'LSTM', 'GRU', 'FastLSTM'], help='architecture of rnn', required=True) args_parser.add_argument('--batch_size', type=int, default=64, help='Number of sentences in each batch') args_parser.add_argument('--decoder_input_size', type=int, default=256, help='Number of input units in decoder RNN.') args_parser.add_argument('--hidden_size', type=int, default=256, help='Number of hidden units in RNN') args_parser.add_argument('--arc_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--type_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--encoder_layers', type=int, default=1, help='Number of layers of encoder RNN') args_parser.add_argument('--decoder_layers', type=int, default=1, help='Number of layers of decoder RNN') args_parser.add_argument('--num_filters', type=int, default=50, help='Number of filters in CNN') args_parser.add_argument( '--trans_hid_size', type=int, default=1024, help='#hidden units in point-wise feed-forward in transformer') args_parser.add_argument( '--d_k', type=int, default=64, help='d_k for multi-head-attention in transformer encoder') args_parser.add_argument( '--d_v', type=int, default=64, help='d_v for multi-head-attention in transformer encoder') args_parser.add_argument('--multi_head_attn', action='store_true', help='use multi-head-attention.') args_parser.add_argument('--num_head', type=int, default=8, help='Value of h in multi-head attention') args_parser.add_argument( '--pool_type', default='mean', choices=['max', 'mean', 'weight'], help='pool type to form fixed length vector from word embeddings') args_parser.add_argument('--train_position', action='store_true', help='train positional encoding for transformer.') args_parser.add_argument('--no_word', action='store_true', help='do not use word embedding.') args_parser.add_argument('--pos', action='store_true', help='use part-of-speech embedding.') args_parser.add_argument('--char', action='store_true', help='use character embedding and CNN.') args_parser.add_argument('--no_CoRNN', action='store_true', help='do not use context RNN.') args_parser.add_argument('--pos_dim', type=int, default=50, help='Dimension of POS embeddings') args_parser.add_argument('--char_dim', type=int, default=50, help='Dimension of Character embeddings') args_parser.add_argument('--opt', choices=['adam', 'sgd', 'adamax'], help='optimization algorithm') args_parser.add_argument('--learning_rate', type=float, default=0.001, help='Learning rate') args_parser.add_argument('--clip', type=float, default=5.0, help='gradient clipping') args_parser.add_argument('--gamma', type=float, default=0.0, help='weight for regularization') args_parser.add_argument('--epsilon', type=float, default=1e-8, help='epsilon for adam or adamax') args_parser.add_argument('--coverage', type=float, default=0.0, help='weight for coverage loss') args_parser.add_argument('--p_rnn', nargs='+', type=float, required=True, help='dropout rate for RNN') args_parser.add_argument('--p_in', type=float, default=0.33, help='dropout rate for input embeddings') args_parser.add_argument('--p_out', type=float, default=0.33, help='dropout rate for output layer') args_parser.add_argument('--label_smooth', type=float, default=1.0, help='weight of label smoothing method') args_parser.add_argument('--skipConnect', action='store_true', help='use skip connection for decoder RNN.') args_parser.add_argument('--grandPar', action='store_true', help='use grand parent.') args_parser.add_argument('--sibling', action='store_true', help='use sibling.') args_parser.add_argument( '--prior_order', choices=['inside_out', 'left2right', 'deep_first', 'shallow_first'], help='prior order of children.', required=True) args_parser.add_argument( '--unk_replace', type=float, default=0., help='The rate to replace a singleton word with UNK') args_parser.add_argument('--punctuation', nargs='+', type=str, help='List of punctuations') args_parser.add_argument('--beam', type=int, default=1, help='Beam size for decoding') args_parser.add_argument( '--word_embedding', choices=['word2vec', 'glove', 'senna', 'sskip', 'polyglot'], help='Embedding for words', required=True) args_parser.add_argument('--word_path', help='path for word embedding dict') args_parser.add_argument( '--freeze', action='store_true', help='frozen the word embedding (disable fine-tuning).') args_parser.add_argument('--char_embedding', choices=['random', 'polyglot'], help='Embedding for characters', required=True) args_parser.add_argument('--char_path', help='path for character embedding dict') args_parser.add_argument( '--train') # "data/POS-penn/wsj/split1/wsj1.train.original" args_parser.add_argument( '--dev') # "data/POS-penn/wsj/split1/wsj1.dev.original" args_parser.add_argument( '--test') # "data/POS-penn/wsj/split1/wsj1.test.original" args_parser.add_argument('--vocab_path', help='path for prebuilt alphabets.', default=None) args_parser.add_argument('--model_path', help='path for saving model file.', required=True) args_parser.add_argument('--model_name', help='name for saving model file.', required=True) args_parser.add_argument( '--position_embed_num', type=int, default=200, help= 'Minimum value of position embedding num, which usually is max-sent-length.' ) args_parser.add_argument('--num_epochs', type=int, default=2000, help='Number of training epochs') # lrate schedule with warmup in the first iter. args_parser.add_argument('--use_warmup_schedule', action='store_true', help="Use warmup lrate schedule.") args_parser.add_argument('--decay_rate', type=float, default=0.75, help='Decay rate of learning rate') args_parser.add_argument('--max_decay', type=int, default=9, help='Number of decays before stop') args_parser.add_argument('--schedule', type=int, help='schedule for learning rate decay') args_parser.add_argument('--double_schedule_decay', type=int, default=5, help='Number of decays to double schedule') args_parser.add_argument( '--check_dev', type=int, default=5, help='Check development performance in every n\'th iteration') # # about decoder's bi-attention scoring with features (default is not using any) args_parser.add_argument( '--dec_max_dist', type=int, default=0, help= "The clamp range of decoder's distance feature, 0 means turning off.") args_parser.add_argument('--dec_dim_feature', type=int, default=10, help="Dim for feature embed.") args_parser.add_argument( '--dec_use_neg_dist', action='store_true', help="Use negative distance for dec's distance feature.") args_parser.add_argument( '--dec_use_encoder_pos', action='store_true', help="Use pos feature combined with distance feature for child nodes.") args_parser.add_argument( '--dec_use_decoder_pos', action='store_true', help="Use pos feature combined with distance feature for head nodes.") args_parser.add_argument('--dec_drop_f_embed', type=float, default=0.2, help="Dropout for dec feature embeddings.") # # about relation-aware self attention for the transformer encoder (default is not using any) # args_parser.add_argument('--rel_aware', action='store_true', # help="Enable relation-aware self-attention (multi_head_attn flag needs to be set).") args_parser.add_argument( '--enc_use_neg_dist', action='store_true', help="Use negative distance for enc's relational-distance embedding.") args_parser.add_argument( '--enc_clip_dist', type=int, default=0, help="The clipping distance for relative position features.") # # other options about how to combine multiple input features (have to make some dims fit if not concat) args_parser.add_argument('--input_concat_embeds', action='store_true', help="Concat input embeddings, otherwise add.") args_parser.add_argument('--input_concat_position', action='store_true', help="Concat position embeddings, otherwise add.") args_parser.add_argument('--position_dim', type=int, default=300, help='Dimension of Position embeddings.') # args_parser.add_argument( '--train_len_thresh', type=int, default=100, help='In training, discard sentences longer than this.') args = args_parser.parse_args() # ===== # fix data-prepare seed random.seed(1234) np.random.seed(1234) # model's seed torch.manual_seed(args.seed) # ===== # if output directory doesn't exist, create it if not os.path.exists(args.model_path): os.makedirs(args.model_path) logger = get_logger("PtrParser", args.model_path + 'log.txt') logger.info('\ncommand-line params : {0}\n'.format(sys.argv[1:])) logger.info('{0}\n'.format(args)) mode = args.mode train_path = args.train dev_path = args.dev test_path = args.test vocab_path = args.vocab_path if args.vocab_path is not None else args.model_path model_path = args.model_path model_name = args.model_name num_epochs = args.num_epochs batch_size = args.batch_size input_size_decoder = args.decoder_input_size hidden_size = args.hidden_size arc_space = args.arc_space type_space = args.type_space encoder_layers = args.encoder_layers decoder_layers = args.decoder_layers num_filters = args.num_filters learning_rate = args.learning_rate opt = args.opt momentum = 0.9 betas = (0.9, 0.9) eps = args.epsilon decay_rate = args.decay_rate clip = args.clip gamma = args.gamma cov = args.coverage schedule = args.schedule p_rnn = tuple(args.p_rnn) p_in = args.p_in p_out = args.p_out label_smooth = args.label_smooth unk_replace = args.unk_replace prior_order = args.prior_order skipConnect = args.skipConnect grandPar = args.grandPar sibling = args.sibling beam = args.beam punctuation = args.punctuation freeze = args.freeze use_word_emb = not args.no_word word_embedding = args.word_embedding word_path = args.word_path use_char = args.char char_embedding = args.char_embedding char_path = args.char_path use_con_rnn = not args.no_CoRNN use_pos = args.pos pos_dim = args.pos_dim word_dict, word_dim = utils.load_embedding_dict( word_embedding, word_path) if use_word_emb else (None, 0) char_dict = None char_dim = args.char_dim if char_embedding != 'random': char_dict, char_dim = utils.load_embedding_dict( char_embedding, char_path) logger.info("Creating Alphabets") alphabet_path = os.path.join(vocab_path, 'alphabets/') model_name = os.path.join(model_path, model_name) # todo(warn): should build vocabs previously assert os.path.isdir(alphabet_path), "should have build vocabs previously" word_alphabet, char_alphabet, pos_alphabet, type_alphabet, max_sent_length = conllx_stacked_data.create_alphabets( alphabet_path, train_path, data_paths=[dev_path, test_path], max_vocabulary_size=50000, embedd_dict=word_dict) # word_alphabet, char_alphabet, pos_alphabet, type_alphabet, max_sent_length = create_alphabets(alphabet_path, # train_path, data_paths=[dev_path, test_path], max_vocabulary_size=50000, embedd_dict=word_dict) max_sent_length = max(max_sent_length, args.position_embed_num) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) logger.info("Reading Data") use_gpu = torch.cuda.is_available() # ===== the reading def _read_one(path, is_train): lang_id = guess_language_id(path) logger.info("Reading: guess that the language of file %s is %s." % (path, lang_id)) one_data = conllx_stacked_data.read_stacked_data_to_variable( path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=(not is_train), prior_order=prior_order, lang_id=lang_id, len_thresh=(args.train_len_thresh if is_train else 100000)) return one_data data_train = _read_one(train_path, True) num_data = sum(data_train[1]) data_dev = _read_one(dev_path, False) data_test = _read_one(test_path, False) # ===== punct_set = None if punctuation is not None: punct_set = set(punctuation) logger.info("punctuations(%d): %s" % (len(punct_set), ' '.join(punct_set))) def construct_word_embedding_table(): scale = np.sqrt(3.0 / word_dim) table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32) table[conllx_stacked_data.UNK_ID, :] = np.zeros([1, word_dim]).astype( np.float32) if freeze else np.random.uniform( -scale, scale, [1, word_dim]).astype(np.float32) oov = 0 for word, index in word_alphabet.items(): if word in word_dict: embedding = word_dict[word] elif word.lower() in word_dict: embedding = word_dict[word.lower()] else: embedding = np.zeros([1, word_dim]).astype( np.float32) if freeze else np.random.uniform( -scale, scale, [1, word_dim]).astype(np.float32) oov += 1 table[index, :] = embedding logger.info('word OOV: %d' % oov) return torch.from_numpy(table) def construct_char_embedding_table(): if char_dict is None: return None scale = np.sqrt(3.0 / char_dim) table = np.empty([num_chars, char_dim], dtype=np.float32) table[conllx_stacked_data.UNK_ID, :] = np.random.uniform( -scale, scale, [1, char_dim]).astype(np.float32) oov = 0 for char, index, in char_alphabet.items(): if char in char_dict: embedding = char_dict[char] else: embedding = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) oov += 1 table[index, :] = embedding logger.info('character OOV: %d' % oov) return torch.from_numpy(table) word_table = construct_word_embedding_table() if use_word_emb else None char_table = construct_char_embedding_table() window = 3 network = StackPtrNet(word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, input_size_decoder, hidden_size, encoder_layers, decoder_layers, num_types, arc_space, type_space, args.pool_type, args.multi_head_attn, args.num_head, max_sent_length, args.trans_hid_size, args.d_k, args.d_v, train_position=args.train_position, embedd_word=word_table, embedd_char=char_table, p_in=p_in, p_out=p_out, p_rnn=p_rnn, biaffine=True, use_word_emb=use_word_emb, pos=use_pos, char=use_char, prior_order=prior_order, use_con_rnn=use_con_rnn, skipConnect=skipConnect, grandPar=grandPar, sibling=sibling, use_gpu=use_gpu, dec_max_dist=args.dec_max_dist, dec_use_neg_dist=args.dec_use_neg_dist, dec_use_encoder_pos=args.dec_use_encoder_pos, dec_use_decoder_pos=args.dec_use_decoder_pos, dec_dim_feature=args.dec_dim_feature, dec_drop_f_embed=args.dec_drop_f_embed, enc_clip_dist=args.enc_clip_dist, enc_use_neg_dist=args.enc_use_neg_dist, input_concat_embeds=args.input_concat_embeds, input_concat_position=args.input_concat_position, position_dim=args.position_dim) def save_args(): arg_path = model_name + '.arg.json' arguments = [ word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, input_size_decoder, hidden_size, encoder_layers, decoder_layers, num_types, arc_space, type_space, args.pool_type, args.multi_head_attn, args.num_head, max_sent_length, args.trans_hid_size, args.d_k, args.d_v ] kwargs = { 'train_position': args.train_position, 'use_word_emb': use_word_emb, 'use_con_rnn': use_con_rnn, 'p_in': p_in, 'p_out': p_out, 'p_rnn': p_rnn, 'biaffine': True, 'pos': use_pos, 'char': use_char, 'prior_order': prior_order, 'skipConnect': skipConnect, 'grandPar': grandPar, 'sibling': sibling, 'dec_max_dist': args.dec_max_dist, 'dec_use_neg_dist': args.dec_use_neg_dist, 'dec_use_encoder_pos': args.dec_use_encoder_pos, 'dec_use_decoder_pos': args.dec_use_decoder_pos, 'dec_dim_feature': args.dec_dim_feature, 'dec_drop_f_embed': args.dec_drop_f_embed, 'enc_clip_dist': args.enc_clip_dist, 'enc_use_neg_dist': args.enc_use_neg_dist, 'input_concat_embeds': args.input_concat_embeds, 'input_concat_position': args.input_concat_position, 'position_dim': args.position_dim } json.dump({ 'args': arguments, 'kwargs': kwargs }, open(arg_path, 'w'), indent=4) if use_word_emb and freeze: network.word_embedd.freeze() if use_gpu: network.cuda() save_args() pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) def generate_optimizer(opt, lr, params): params = filter(lambda param: param.requires_grad, params) if opt == 'adam': return Adam(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps) elif opt == 'sgd': return SGD(params, lr=lr, momentum=momentum, weight_decay=gamma, nesterov=True) elif opt == 'adamax': return Adamax(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps) else: raise ValueError('Unknown optimization algorithm: %s' % opt) lr = learning_rate optim = generate_optimizer(opt, lr, network.parameters()) opt_info = 'opt: %s, ' % opt if opt == 'adam': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) elif opt == 'sgd': opt_info += 'momentum=%.2f' % momentum elif opt == 'adamax': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) word_status = 'frozen' if freeze else 'fine tune' char_status = 'enabled' if use_char else 'disabled' pos_status = 'enabled' if use_pos else 'disabled' logger.info( "Embedding dim: word=%d (%s), char=%d (%s), pos=%d (%s)" % (word_dim, word_status, char_dim, char_status, pos_dim, pos_status)) logger.info("CNN: filter=%d, kernel=%d" % (num_filters, window)) logger.info( "RNN: %s, num_layer=(%d, %d), input_dec=%d, hidden=%d, arc_space=%d, type_space=%d" % (mode, encoder_layers, decoder_layers, input_size_decoder, hidden_size, arc_space, type_space)) logger.info( "train: cov: %.1f, (#data: %d, batch: %d, clip: %.2f, label_smooth: %.2f, unk_repl: %.2f)" % (cov, num_data, batch_size, clip, label_smooth, unk_replace)) logger.info("dropout(in, out, rnn): (%.2f, %.2f, %s)" % (p_in, p_out, p_rnn)) logger.info('prior order: %s, grand parent: %s, sibling: %s, ' % (prior_order, grandPar, sibling)) logger.info('skip connect: %s, beam: %d' % (skipConnect, beam)) logger.info(opt_info) num_batches = num_data / batch_size + 1 dev_ucorrect = 0.0 dev_lcorrect = 0.0 dev_ucomlpete_match = 0.0 dev_lcomplete_match = 0.0 dev_ucorrect_nopunc = 0.0 dev_lcorrect_nopunc = 0.0 dev_ucomlpete_match_nopunc = 0.0 dev_lcomplete_match_nopunc = 0.0 dev_root_correct = 0.0 best_epoch = 0 test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_root_correct = 0.0 test_total = 0 test_total_nopunc = 0 test_total_inst = 0 test_total_root = 0 # lrate decay patient = 0 decay = 0 max_decay = args.max_decay double_schedule_decay = args.double_schedule_decay # lrate schedule step_num = 0 use_warmup_schedule = args.use_warmup_schedule warmup_factor = (lr + 0.) / num_batches if use_warmup_schedule: logger.info("Use warmup lrate for the first epoch, from 0 up to %s." % (lr, )) # for epoch in range(1, num_epochs + 1): logger.info( 'Epoch %d (%s, optim: %s, learning rate=%.6f, eps=%.1e, decay rate=%.2f ' '(schedule=%d, patient=%d, decay=%d (%d, %d))): ' % (epoch, mode, opt, lr, eps, decay_rate, schedule, patient, decay, max_decay, double_schedule_decay)) train_err_arc_leaf = 0. train_err_arc_non_leaf = 0. train_err_type_leaf = 0. train_err_type_non_leaf = 0. train_err_cov = 0. train_total_leaf = 0. train_total_non_leaf = 0. start_time = time.time() num_back = 0 network.train() for batch in range(1, num_batches + 1): # lrate schedule (before each step) step_num += 1 if use_warmup_schedule and epoch <= 1: cur_lrate = warmup_factor * step_num # set lr for param_group in optim.param_groups: param_group['lr'] = cur_lrate # train input_encoder, input_decoder = conllx_stacked_data.get_batch_stacked_variable( data_train, batch_size, unk_replace=unk_replace) word, char, pos, heads, types, masks_e, lengths_e = input_encoder stacked_heads, children, sibling, stacked_types, skip_connect, masks_d, lengths_d = input_decoder optim.zero_grad() loss_arc_leaf, loss_arc_non_leaf, \ loss_type_leaf, loss_type_non_leaf, \ loss_cov, num_leaf, num_non_leaf = network.loss(word, char, pos, heads, stacked_heads, children, sibling, stacked_types, label_smooth, skip_connect=skip_connect, mask_e=masks_e, length_e=lengths_e, mask_d=masks_d, length_d=lengths_d) loss_arc = loss_arc_leaf + loss_arc_non_leaf loss_type = loss_type_leaf + loss_type_non_leaf loss = loss_arc + loss_type + cov * loss_cov loss.backward() clip_grad_norm(network.parameters(), clip) optim.step() num_leaf = num_leaf.data[0] num_non_leaf = num_non_leaf.data[0] train_err_arc_leaf += loss_arc_leaf.data[0] * num_leaf train_err_arc_non_leaf += loss_arc_non_leaf.data[0] * num_non_leaf train_err_type_leaf += loss_type_leaf.data[0] * num_leaf train_err_type_non_leaf += loss_type_non_leaf.data[0] * num_non_leaf train_err_cov += loss_cov.data[0] * (num_leaf + num_non_leaf) train_total_leaf += num_leaf train_total_non_leaf += num_non_leaf time_ave = (time.time() - start_time) / batch time_left = (num_batches - batch) * time_ave # update log if batch % 10 == 0: sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) err_arc_leaf = train_err_arc_leaf / train_total_leaf err_arc_non_leaf = train_err_arc_non_leaf / train_total_non_leaf err_arc = err_arc_leaf + err_arc_non_leaf err_type_leaf = train_err_type_leaf / train_total_leaf err_type_non_leaf = train_err_type_non_leaf / train_total_non_leaf err_type = err_type_leaf + err_type_non_leaf err_cov = train_err_cov / (train_total_leaf + train_total_non_leaf) err = err_arc + err_type + cov * err_cov log_info = 'train: %d/%d loss (leaf, non_leaf): %.4f, arc: %.4f (%.4f, %.4f), type: %.4f (%.4f, %.4f), coverage: %.4f, time left (estimated): %.2fs' % ( batch, num_batches, err, err_arc, err_arc_leaf, err_arc_non_leaf, err_type, err_type_leaf, err_type_non_leaf, err_cov, time_left) sys.stdout.write(log_info) sys.stdout.flush() num_back = len(log_info) sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) err_arc_leaf = train_err_arc_leaf / train_total_leaf err_arc_non_leaf = train_err_arc_non_leaf / train_total_non_leaf err_arc = err_arc_leaf + err_arc_non_leaf err_type_leaf = train_err_type_leaf / train_total_leaf err_type_non_leaf = train_err_type_non_leaf / train_total_non_leaf err_type = err_type_leaf + err_type_non_leaf err_cov = train_err_cov / (train_total_leaf + train_total_non_leaf) err = err_arc + err_type + cov * err_cov logger.info( 'train: %d loss (leaf, non_leaf): %.4f, arc: %.4f (%.4f, %.4f), type: %.4f (%.4f, %.4f), coverage: %.4f, time: %.2fs' % (num_batches, err, err_arc, err_arc_leaf, err_arc_non_leaf, err_type, err_type_leaf, err_type_non_leaf, err_cov, time.time() - start_time)) ################################################################################################ if epoch % args.check_dev != 0: continue # evaluate performance on dev data network.eval() pred_filename = 'tmp/%spred_dev%d' % (str(uid), epoch) pred_writer.start(pred_filename) gold_filename = 'tmp/%sgold_dev%d' % (str(uid), epoch) gold_writer.start(gold_filename) dev_ucorr = 0.0 dev_lcorr = 0.0 dev_total = 0 dev_ucomlpete = 0.0 dev_lcomplete = 0.0 dev_ucorr_nopunc = 0.0 dev_lcorr_nopunc = 0.0 dev_total_nopunc = 0 dev_ucomlpete_nopunc = 0.0 dev_lcomplete_nopunc = 0.0 dev_root_corr = 0.0 dev_total_root = 0.0 dev_total_inst = 0.0 for batch in conllx_stacked_data.iterate_batch_stacked_variable( data_dev, batch_size): input_encoder, _ = batch word, char, pos, heads, types, masks, lengths = input_encoder heads_pred, types_pred, _, _ = network.decode( word, char, pos, mask=masks, length=lengths, beam=beam, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root dev_ucorr += ucorr dev_lcorr += lcorr dev_total += total dev_ucomlpete += ucm dev_lcomplete += lcm dev_ucorr_nopunc += ucorr_nopunc dev_lcorr_nopunc += lcorr_nopunc dev_total_nopunc += total_nopunc dev_ucomlpete_nopunc += ucm_nopunc dev_lcomplete_nopunc += lcm_nopunc dev_root_corr += corr_root dev_total_root += total_root dev_total_inst += num_inst pred_writer.close() gold_writer.close() print( 'W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (dev_ucorr, dev_lcorr, dev_total, dev_ucorr * 100 / dev_total, dev_lcorr * 100 / dev_total, dev_ucomlpete * 100 / dev_total_inst, dev_lcomplete * 100 / dev_total_inst)) print( 'Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (dev_ucorr_nopunc, dev_lcorr_nopunc, dev_total_nopunc, dev_ucorr_nopunc * 100 / dev_total_nopunc, dev_lcorr_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_nopunc * 100 / dev_total_inst, dev_lcomplete_nopunc * 100 / dev_total_inst)) print('Root: corr: %d, total: %d, acc: %.2f%%' % (dev_root_corr, dev_total_root, dev_root_corr * 100 / dev_total_root)) if dev_lcorrect_nopunc < dev_lcorr_nopunc or ( dev_lcorrect_nopunc == dev_lcorr_nopunc and dev_ucorrect_nopunc < dev_ucorr_nopunc): dev_ucorrect_nopunc = dev_ucorr_nopunc dev_lcorrect_nopunc = dev_lcorr_nopunc dev_ucomlpete_match_nopunc = dev_ucomlpete_nopunc dev_lcomplete_match_nopunc = dev_lcomplete_nopunc dev_ucorrect = dev_ucorr dev_lcorrect = dev_lcorr dev_ucomlpete_match = dev_ucomlpete dev_lcomplete_match = dev_lcomplete dev_root_correct = dev_root_corr best_epoch = epoch patient = 0 # torch.save(network, model_name) torch.save(network.state_dict(), model_name) pred_filename = 'tmp/%spred_test%d' % (str(uid), epoch) pred_writer.start(pred_filename) gold_filename = 'tmp/%sgold_test%d' % (str(uid), epoch) gold_writer.start(gold_filename) test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_total = 0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_total_nopunc = 0 test_total_inst = 0 test_root_correct = 0.0 test_total_root = 0 for batch in conllx_stacked_data.iterate_batch_stacked_variable( data_test, batch_size): input_encoder, _ = batch word, char, pos, heads, types, masks, lengths = input_encoder heads_pred, types_pred, _, _ = network.decode( word, char, pos, mask=masks, length=lengths, beam=beam, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root test_ucorrect += ucorr test_lcorrect += lcorr test_total += total test_ucomlpete_match += ucm test_lcomplete_match += lcm test_ucorrect_nopunc += ucorr_nopunc test_lcorrect_nopunc += lcorr_nopunc test_total_nopunc += total_nopunc test_ucomlpete_match_nopunc += ucm_nopunc test_lcomplete_match_nopunc += lcm_nopunc test_root_correct += corr_root test_total_root += total_root test_total_inst += num_inst pred_writer.close() gold_writer.close() else: if dev_ucorr_nopunc * 100 / dev_total_nopunc < dev_ucorrect_nopunc * 100 / dev_total_nopunc - 5 or patient >= schedule: network.load_state_dict(torch.load(model_name)) lr = lr * decay_rate optim = generate_optimizer(opt, lr, network.parameters()) patient = 0 decay += 1 if decay % double_schedule_decay == 0: schedule *= 2 else: patient += 1 logger.info( '----------------------------------------------------------------------------------------------------------------------------' ) logger.info( 'best dev W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (dev_ucorrect, dev_lcorrect, dev_total, dev_ucorrect * 100 / dev_total, dev_lcorrect * 100 / dev_total, dev_ucomlpete_match * 100 / dev_total_inst, dev_lcomplete_match * 100 / dev_total_inst, best_epoch)) logger.info( 'best dev Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (dev_ucorrect_nopunc, dev_lcorrect_nopunc, dev_total_nopunc, dev_ucorrect_nopunc * 100 / dev_total_nopunc, dev_lcorrect_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_match_nopunc * 100 / dev_total_inst, dev_lcomplete_match_nopunc * 100 / dev_total_inst, best_epoch)) logger.info( 'best dev Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (dev_root_correct, dev_total_root, dev_root_correct * 100 / dev_total_root, best_epoch)) logger.info( '----------------------------------------------------------------------------------------------------------------------------' ) logger.info( 'best test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total, test_ucomlpete_match * 100 / test_total_inst, test_lcomplete_match * 100 / test_total_inst, best_epoch)) logger.info( 'best test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc, test_ucomlpete_match_nopunc * 100 / test_total_inst, test_lcomplete_match_nopunc * 100 / test_total_inst, best_epoch)) logger.info( 'best test Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (test_root_correct, test_total_root, test_root_correct * 100 / test_total_root, best_epoch)) logger.info( '============================================================================================================================' ) if decay == max_decay: break
def main(): args_parser = argparse.ArgumentParser( description='Tuning with stack pointer parser') args_parser.add_argument( '--test') # "data/POS-penn/wsj/split1/wsj1.test.original" args_parser.add_argument('--model_path', help='path for saving model file.', required=True) args_parser.add_argument('--model_name', help='name for saving model file.', required=True) args_parser.add_argument('--punctuation', nargs='+', type=str, help='List of punctuations') args_parser.add_argument('--beam', type=int, default=1, help='Beam size for decoding') args_parser.add_argument('--gpu', action='store_true', help='Using GPU') args_parser.add_argument( '--prior_order', choices=['inside_out', 'left2right', 'deep_first', 'shallow_first'], help='prior order of children.', required=True) args = args_parser.parse_args() logger = get_logger("Analyzer") test_path = args.test model_path = args.model_path model_name = args.model_name alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) word_alphabet, char_alphabet, pos_alphabet, \ type_alphabet = conllx_stacked_data.create_alphabets(alphabet_path, None, data_paths=[None, None], max_vocabulary_size=50000, embedd_dict=None) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) use_gpu = args.gpu prior_order = args.prior_order beam = args.beam data_test = conllx_stacked_data.read_stacked_data_to_variable( test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=True, prior_order=prior_order) logger.info('use gpu: %s, beam: %d' % (use_gpu, beam)) punct_set = None punctuation = args.punctuation if punctuation is not None: punct_set = set(punctuation) logger.info("punctuations(%d): %s" % (len(punct_set), ' '.join(punct_set))) pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) pred_writer.start('tmp/analyze_pred') gold_writer.start('tmp/analyze_gold') network = torch.load(model_name) if use_gpu: network.cuda() else: network.cpu() test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_total = 0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_total_nopunc = 0 test_total_inst = 0 test_root_correct = 0.0 test_total_root = 0 test_ucorrect_stack_leaf = 0.0 test_ucorrect_stack_non_leaf = 0.0 test_lcorrect_stack_leaf = 0.0 test_lcorrect_stack_non_leaf = 0.0 test_leaf = 0 test_non_leaf = 0 sent = 0 network.eval() start_time = time.time() for batch in conllx_stacked_data.iterate_batch_stacked_variable( data_test, 1): sys.stdout.write('%d, ' % sent) sys.stdout.flush() sent += 1 input_encoder, input_decoder = batch word, char, pos, heads, types, masks, lengths = input_encoder stacked_heads, children, stacked_types, skip_connect, mask_d, lengths_d = input_decoder heads_pred, types_pred, children_pred, stacked_types_pred = network.decode( word, char, pos, mask=masks, length=lengths, beam=beam, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) stacked_heads = stacked_heads.data children = children.data stacked_types = stacked_types.data children_pred = torch.from_numpy(children_pred).long() stacked_types_pred = torch.from_numpy(stacked_types_pred).long() if use_gpu: children_pred = children_pred.cuda() stacked_types_pred = stacked_types_pred.cuda() mask_d = mask_d.data mask_leaf = torch.eq(children, stacked_heads).float() mask_non_leaf = (1.0 - mask_leaf) mask_leaf = mask_leaf * mask_d mask_non_leaf = mask_non_leaf * mask_d num_leaf = mask_leaf.sum() num_non_leaf = mask_non_leaf.sum() ucorr_stack = torch.eq(children_pred, children).float() lcorr_stack = ucorr_stack * torch.eq(stacked_types_pred, stacked_types).float() ucorr_stack_leaf = (ucorr_stack * mask_leaf).sum() ucorr_stack_non_leaf = (ucorr_stack * mask_non_leaf).sum() lcorr_stack_leaf = (lcorr_stack * mask_leaf).sum() lcorr_stack_non_leaf = (lcorr_stack * mask_non_leaf).sum() test_ucorrect_stack_leaf += ucorr_stack_leaf test_ucorrect_stack_non_leaf += ucorr_stack_non_leaf test_lcorrect_stack_leaf += lcorr_stack_leaf test_lcorrect_stack_non_leaf += lcorr_stack_non_leaf test_leaf += num_leaf test_non_leaf += num_non_leaf # ------------------------------------------------------------------------------------------------ word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root test_ucorrect += ucorr test_lcorrect += lcorr test_total += total test_ucomlpete_match += ucm test_lcomplete_match += lcm test_ucorrect_nopunc += ucorr_nopunc test_lcorrect_nopunc += lcorr_nopunc test_total_nopunc += total_nopunc test_ucomlpete_match_nopunc += ucm_nopunc test_lcomplete_match_nopunc += lcm_nopunc test_root_correct += corr_root test_total_root += total_root test_total_inst += num_inst pred_writer.close() gold_writer.close() print('\ntime: %.2fs' % (time.time() - start_time)) print( 'test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total, test_ucomlpete_match * 100 / test_total_inst, test_lcomplete_match * 100 / test_total_inst)) print( 'test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc, test_ucomlpete_match_nopunc * 100 / test_total_inst, test_lcomplete_match_nopunc * 100 / test_total_inst)) print('test Root: corr: %d, total: %d, acc: %.2f%%' % (test_root_correct, test_total_root, test_root_correct * 100 / test_total_root)) print( '============================================================================================================================' ) print( 'Stack leaf: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%' % (test_ucorrect_stack_leaf, test_lcorrect_stack_leaf, test_leaf, test_ucorrect_stack_leaf * 100 / test_leaf, test_lcorrect_stack_leaf * 100 / test_leaf)) print( 'Stack non_leaf: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%' % (test_ucorrect_stack_non_leaf, test_lcorrect_stack_non_leaf, test_non_leaf, test_ucorrect_stack_non_leaf * 100 / test_non_leaf, test_lcorrect_stack_non_leaf * 100 / test_non_leaf)) print( '============================================================================================================================' )
def main(): args_parser = argparse.ArgumentParser(description='Tuning with stack pointer parser') args_parser.add_argument('--mode', choices=['RNN', 'LSTM', 'GRU', 'FastLSTM'], help='architecture of rnn', required=True) args_parser.add_argument('--num_epochs', type=int, default=200, help='Number of training epochs') args_parser.add_argument('--batch_size', type=int, default=64, help='Number of sentences in each batch') args_parser.add_argument('--decoder_input_size', type=int, default=256, help='Number of input units in decoder RNN.') args_parser.add_argument('--hidden_size', type=int, default=256, help='Number of hidden units in RNN') args_parser.add_argument('--arc_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--type_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--encoder_layers', type=int, default=1, help='Number of layers of encoder RNN') args_parser.add_argument('--decoder_layers', type=int, default=1, help='Number of layers of decoder RNN') args_parser.add_argument('--num_filters', type=int, default=50, help='Number of filters in CNN') args_parser.add_argument('--pos', action='store_true', help='use part-of-speech embedding.') args_parser.add_argument('--char', action='store_true', help='use character embedding and CNN.') args_parser.add_argument('--lemma', action='store_true', help='use lemma embedding.') args_parser.add_argument('--pos_dim', type=int, default=50, help='Dimension of POS embeddings') args_parser.add_argument('--char_dim', type=int, default=50, help='Dimension of Character embeddings') args_parser.add_argument('--lemma_dim', type=int, default=50, help='Dimension of Lemma embeddings') args_parser.add_argument('--opt', choices=['adam', 'sgd', 'adamax'], help='optimization algorithm') args_parser.add_argument('--learning_rate', type=float, default=0.001, help='Learning rate') args_parser.add_argument('--decay_rate', type=float, default=0.75, help='Decay rate of learning rate') args_parser.add_argument('--max_decay', type=int, default=9, help='Number of decays before stop') args_parser.add_argument('--double_schedule_decay', type=int, default=5, help='Number of decays to double schedule') args_parser.add_argument('--clip', type=float, default=5.0, help='gradient clipping') args_parser.add_argument('--gamma', type=float, default=0.0, help='weight for regularization') args_parser.add_argument('--epsilon', type=float, default=1e-8, help='epsilon for adam or adamax') args_parser.add_argument('--coverage', type=float, default=0.0, help='weight for coverage loss') args_parser.add_argument('--p_rnn', nargs=2, type=float, required=True, help='dropout rate for RNN') args_parser.add_argument('--p_in', type=float, default=0.33, help='dropout rate for input embeddings') args_parser.add_argument('--p_out', type=float, default=0.33, help='dropout rate for output layer') args_parser.add_argument('--label_smooth', type=float, default=1.0, help='weight of label smoothing method') args_parser.add_argument('--skipConnect', action='store_true', help='use skip connection for decoder RNN.') args_parser.add_argument('--grandPar', action='store_true', help='use grand parent.') args_parser.add_argument('--sibling', action='store_true', help='use sibling.') args_parser.add_argument('--prior_order', choices=['inside_out', 'left2right', 'deep_first', 'shallow_first'], help='prior order of children.', required=False) args_parser.add_argument('--schedule', type=int, help='schedule for learning rate decay') args_parser.add_argument('--unk_replace', type=float, default=0., help='The rate to replace a singleton word with UNK') args_parser.add_argument('--punctuation', nargs='+', type=str, help='List of punctuations') args_parser.add_argument('--beam', type=int, default=1, help='Beam size for decoding') args_parser.add_argument('--word_embedding', choices=['glove', 'senna', 'sskip', 'polyglot'], help='Embedding for words', required=True) args_parser.add_argument('--word_path', help='path for word embedding dict') args_parser.add_argument('--freeze', action='store_true', help='frozen the word embedding (disable fine-tuning).') args_parser.add_argument('--char_embedding', choices=['random', 'polyglot'], help='Embedding for characters', required=True) args_parser.add_argument('--char_path', help='path for character embedding dict') args_parser.add_argument('--train') # "data/POS-penn/wsj/split1/wsj1.train.original" args_parser.add_argument('--dev') # "data/POS-penn/wsj/split1/wsj1.dev.original" args_parser.add_argument('--test') # "data/POS-penn/wsj/split1/wsj1.test.original" args_parser.add_argument('--test2') args_parser.add_argument('--model_path', help='path for saving model file.', required=True) args_parser.add_argument('--model_name', help='name for saving model file.', required=True) args = args_parser.parse_args() logger = get_logger("PtrParser") print('SEMANTIC DEPENDENCY PARSER with POINTER NETWORKS') print('CUDA?', torch.cuda.is_available()) mode = args.mode train_path = args.train dev_path = args.dev test_path = args.test test_path2 = args.test2 model_path = args.model_path model_name = args.model_name num_epochs = args.num_epochs batch_size = args.batch_size input_size_decoder = args.decoder_input_size hidden_size = args.hidden_size arc_space = args.arc_space type_space = args.type_space encoder_layers = args.encoder_layers decoder_layers = args.decoder_layers num_filters = args.num_filters learning_rate = args.learning_rate opt = args.opt momentum = 0.9 betas = (0.9, 0.9) eps = args.epsilon decay_rate = args.decay_rate clip = args.clip gamma = args.gamma cov = args.coverage schedule = args.schedule p_rnn = tuple(args.p_rnn) p_in = args.p_in p_out = args.p_out label_smooth = args.label_smooth unk_replace = args.unk_replace prior_order = args.prior_order skipConnect = args.skipConnect grandPar = args.grandPar sibling = args.sibling beam = args.beam punctuation = args.punctuation freeze = args.freeze word_embedding = args.word_embedding word_path = args.word_path use_char = args.char char_embedding = args.char_embedding char_path = args.char_path use_pos = args.pos pos_dim = args.pos_dim use_lemma = args.lemma lemma_dim = args.lemma_dim word_dict, word_dim = utils.load_embedding_dict(word_embedding, word_path) char_dict = None char_dim = args.char_dim if char_embedding != 'random': char_dict, char_dim = utils.load_embedding_dict(char_embedding, char_path) logger.info("Creating Alphabets") alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) word_alphabet, char_alphabet, pos_alphabet, type_alphabet, lemma_alphabet = conllx_stacked_data.create_alphabets(alphabet_path, train_path, data_paths=[dev_path, test_path, test_path2], max_vocabulary_size=50000, embedd_dict=word_dict) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() num_lemmas = lemma_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) logger.info("LEMMA Alphabet Size: %d" % num_lemmas) logger.info("Reading Data") use_gpu = torch.cuda.is_available() data_train = conllx_stacked_data.read_stacked_data_to_variable(train_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, lemma_alphabet, use_gpu=use_gpu, prior_order=prior_order) num_data = sum(data_train[1]) data_dev = conllx_stacked_data.read_stacked_data_to_variable(dev_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, lemma_alphabet, use_gpu=use_gpu, volatile=True, prior_order=prior_order) data_test = conllx_stacked_data.read_stacked_data_to_variable(test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, lemma_alphabet, use_gpu=use_gpu, volatile=True, prior_order=prior_order) data_test2 = conllx_stacked_data.read_stacked_data_to_variable(test_path2, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, lemma_alphabet, use_gpu=use_gpu, volatile=True, prior_order=prior_order) punct_set = None if punctuation is not None: punct_set = set(punctuation) #logger.info("punctuations(%d): %s" % (len(punct_set), ' '.join(punct_set))) def construct_word_embedding_table(): scale = np.sqrt(3.0 / word_dim) table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32) table[conllx_stacked_data.UNK_ID, :] = np.zeros([1, word_dim]).astype(np.float32) if freeze else np.random.uniform(-scale, scale, [1, word_dim]).astype(np.float32) oov = 0 for word, index in word_alphabet.items(): if word in word_dict: embedding = word_dict[word] elif word.lower() in word_dict: embedding = word_dict[word.lower()] else: embedding = np.zeros([1, word_dim]).astype(np.float32) if freeze else np.random.uniform(-scale, scale, [1, word_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('word OOV: %d' % oov) print(torch.__version__) return torch.from_numpy(table) def construct_lemma_embedding_table(): scale = np.sqrt(3.0 / lemma_dim) table = np.empty([lemma_alphabet.size(), lemma_dim], dtype=np.float32) table[conllx_stacked_data.UNK_ID, :] = np.zeros([1, lemma_dim]).astype(np.float32) if freeze else np.random.uniform(-scale, scale, [1, lemma_dim]).astype(np.float32) oov = 0 for lemma, index in lemma_alphabet.items(): if lemma in word_dict: embedding = word_dict[lemma] elif lemma.lower() in word_dict: embedding = word_dict[lemma.lower()] else: embedding = np.zeros([1, lemma_dim]).astype(np.float32) if freeze else np.random.uniform(-scale, scale, [1, lemma_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('LEMMA OOV: %d' % oov) print(torch.__version__) return torch.from_numpy(table) def construct_char_embedding_table(): if char_dict is None: return None scale = np.sqrt(3.0 / char_dim) table = np.empty([num_chars, char_dim], dtype=np.float32) table[conllx_stacked_data.UNK_ID, :] = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) oov = 0 for char, index, in char_alphabet.items(): if char in char_dict: embedding = char_dict[char] else: embedding = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('character OOV: %d' % oov) return torch.from_numpy(table) word_table = construct_word_embedding_table() char_table = construct_char_embedding_table() lemma_table = construct_lemma_embedding_table() window = 3 network = NewStackPtrNet(word_dim, num_words, lemma_dim, num_lemmas, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, input_size_decoder, hidden_size, encoder_layers, decoder_layers, num_types, arc_space, type_space, embedd_word=word_table, embedd_char=char_table, embedd_lemma=lemma_table, p_in=p_in, p_out=p_out, p_rnn=p_rnn, biaffine=True, pos=use_pos, char=use_char, lemma=use_lemma, prior_order=prior_order, skipConnect=skipConnect, grandPar=grandPar, sibling=sibling) def save_args(): arg_path = model_name + '.arg.json' arguments = [word_dim, num_words, lemma_dim, num_lemmas, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, input_size_decoder, hidden_size, encoder_layers, decoder_layers, num_types, arc_space, type_space] kwargs = {'p_in': p_in, 'p_out': p_out, 'p_rnn': p_rnn, 'biaffine': True, 'pos': use_pos, 'char': use_char, 'lemma': use_lemma, 'prior_order': prior_order, 'skipConnect': skipConnect, 'grandPar': grandPar, 'sibling': sibling} json.dump({'args': arguments, 'kwargs': kwargs}, open(arg_path, 'w'), indent=4) if freeze: network.word_embedd.freeze() if use_gpu: print('CUDA IS AVAILABLE') network.cuda() else: print('CUDA IS NOT AVAILABLE', use_gpu) save_args() pred_writer = CoNLLXWriter(word_alphabet, lemma_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, lemma_alphabet, char_alphabet, pos_alphabet, type_alphabet) def generate_optimizer(opt, lr, params): params = filter(lambda param: param.requires_grad, params) if opt == 'adam': return Adam(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps) elif opt == 'sgd': return SGD(params, lr=lr, momentum=momentum, weight_decay=gamma, nesterov=True) elif opt == 'adamax': return Adamax(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps) else: raise ValueError('Unknown optimization algorithm: %s' % opt) lr = learning_rate optim = generate_optimizer(opt, lr, network.parameters()) opt_info = 'opt: %s, ' % opt if opt == 'adam': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) elif opt == 'sgd': opt_info += 'momentum=%.2f' % momentum elif opt == 'adamax': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) word_status = 'frozen' if freeze else 'fine tune' char_status = 'enabled' if use_char else 'disabled' pos_status = 'enabled' if use_pos else 'disabled' lemma_status = 'enabled' if use_lemma else 'disabled' logger.info("Embedding dim: word=%d (%s), lemma=%d (%s) char=%d (%s), pos=%d (%s)" % (word_dim, word_status, lemma_dim, lemma_status, char_dim, char_status, pos_dim, pos_status)) logger.info("CNN: filter=%d, kernel=%d" % (num_filters, window)) logger.info("RNN: %s, num_layer=(%d, %d), input_dec=%d, hidden=%d, arc_space=%d, type_space=%d" % (mode, encoder_layers, decoder_layers, input_size_decoder, hidden_size, arc_space, type_space)) logger.info("train: cov: %.1f, (#data: %d, batch: %d, clip: %.2f, label_smooth: %.2f, unk_repl: %.2f)" % (cov, num_data, batch_size, clip, label_smooth, unk_replace)) logger.info("dropout(in, out, rnn): (%.2f, %.2f, %s)" % (p_in, p_out, p_rnn)) logger.info('prior order: %s, grand parent: %s, sibling: %s, ' % (prior_order, grandPar, sibling)) logger.info('skip connect: %s, beam: %d' % (skipConnect, beam)) logger.info(opt_info) num_batches = num_data / batch_size + 1 #dev_ucorrect = 0.0 dev_bestLF1 = 0.0 dev_bestUF1 = 0.0 dev_bestUprecision = 0.0 dev_bestLprecision = 0.0 dev_bestUrecall = 0.0 dev_bestLrecall = 0.0 best_epoch = 0 test_ucorrect = 0.0 test_lcorrect = 0.0 #test_ucomlpete_match = 0.0 #test_lcomplete_match = 0.0 #test_ucorrect_nopunc = 0.0 #test_lcorrect_nopunc = 0.0 #test_ucomlpete_match_nopunc = 0.0 #test_lcomplete_match_nopunc = 0.0 #test_root_correct = 0.0 test_total_pred = 0 test_total_gold = 0 #test_total_nopunc = 0 test_total_inst = 0 #test_total_root = 0 test_LF1 = 0.0 test_UF1 = 0.0 test_Uprecision = 0.0 test_Lprecision = 0.0 test_Urecall = 0.0 test_Lrecall = 0.0 test2_ucorrect = 0.0 test2_lcorrect = 0.0 test2_total_pred = 0 test2_total_gold = 0 test2_total_inst = 0 test2_LF1 = 0.0 test2_UF1 = 0.0 test2_Uprecision = 0.0 test2_Lprecision = 0.0 test2_Urecall = 0.0 test2_Lrecall = 0.0 patient = 0 decay = 0 max_decay = args.max_decay double_schedule_decay = args.double_schedule_decay for epoch in range(1, num_epochs + 1): print('Epoch %d (%s, optim: %s, learning rate=%.6f, eps=%.1e, decay rate=%.2f (schedule=%d, patient=%d, decay=%d (%d, %d))): ' % ( epoch, mode, opt, lr, eps, decay_rate, schedule, patient, decay, max_decay, double_schedule_decay)) train_err_cov = 0. train_err_arc = 0. train_err_type = 0. train_total = 0. start_time = time.time() num_back = 0 network.train() for batch in range(1, num_batches + 1): input_encoder, input_decoder = conllx_stacked_data.get_batch_stacked_variable(data_train, batch_size, unk_replace=unk_replace) word, lemma, char, pos, heads, types, masks_e, lengths_e = input_encoder stacked_heads, children, sibling, stacked_types, skip_connect, previous, next, masks_d, lengths_d = input_decoder #print('HEADSSS', heads) optim.zero_grad() loss_arc, \ loss_type, \ loss_cov, num = network.loss(word, lemma, char, pos, heads, stacked_heads, children, sibling, stacked_types, previous, next, label_smooth, skip_connect=skip_connect, mask_e=masks_e, length_e=lengths_e, mask_d=masks_d, length_d=lengths_d) loss = loss_arc + loss_type + cov * loss_cov loss.backward() clip_grad_norm(network.parameters(), clip) optim.step() train_err_arc += loss_arc.data[0] * num train_err_type += loss_type.data[0] * num train_err_cov += loss_cov.data[0] * num train_total += num time_ave = (time.time() - start_time) / batch time_left = (num_batches - batch) * time_ave sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) err_arc = train_err_arc / train_total err_type = train_err_type / train_total err_cov = train_err_cov / train_total err = err_arc + err_type + cov * err_cov print('train: %d loss: %.4f, arc: %.4f, type: %.4f, coverage: %.4f, time: %.2fs' % ( num_batches, err, err_arc, err_type, err_cov, time.time() - start_time)) print('======EVALUATING PERFORMANCE ON DEV======') # evaluate performance on dev data network.eval() #pred_filename = 'tmp/%spred_dev%d' % (str(uid), epoch) pred_filename = '%spred_dev%d' % (str(uid), epoch) pred_filename = os.path.join(model_path, pred_filename) pred_writer.start(pred_filename) #gold_filename = 'tmp/%sgold_dev%d' % (str(uid), epoch) gold_filename = '%sgold_dev%d' % (str(uid), epoch) gold_filename = os.path.join(model_path, gold_filename) gold_writer.start(gold_filename) dev_ucorr = 0.0 dev_lcorr = 0.0 dev_total_gold = 0 dev_total_pred = 0 dev_total_inst = 0.0 start_time_dev = time.time() for batch in conllx_stacked_data.iterate_batch_stacked_variable(data_dev, batch_size): input_encoder, _ = batch word, lemma, char, pos, heads, types, masks, lengths = input_encoder heads_pred, types_pred, _, _ = network.decode(word, lemma, char, pos, mask=masks, length=lengths, beam=beam, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() lemma = lemma.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, lemma, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, lemma, pos, heads, types, lengths, symbolic_root=True) #stats, stats_nopunc, stats_root, num_inst = parser.evalF1(word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) #ucorr, lcorr, total, ucm, lcm = stats #ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc #corr_root, total_root = stats_root ucorr, lcorr, total_gold, total_pred, num_inst = parser.evalF1(word, lemma, pos, heads_pred, types_pred, heads, types, word_alphabet, lemma_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) dev_ucorr += ucorr dev_lcorr += lcorr dev_total_gold += total_gold dev_total_pred += total_pred dev_total_inst += num_inst end_time_dev = time.time() lasted_time_dev=end_time_dev-start_time_dev pred_writer.close() gold_writer.close() dev_Uprecision=0. dev_Lprecision=0. if dev_total_pred!=0: dev_Uprecision=dev_ucorr * 100 / dev_total_pred dev_Lprecision=dev_lcorr * 100 / dev_total_pred dev_Urecall=dev_ucorr * 100 / dev_total_gold dev_Lrecall=dev_lcorr * 100 / dev_total_gold if dev_Uprecision ==0. and dev_Urecall==0.: dev_UF1=0 else: dev_UF1=2*(dev_Uprecision*dev_Urecall)/(dev_Uprecision+dev_Urecall) if dev_Lprecision ==0. and dev_Lrecall==0.: dev_LF1=0 else: dev_LF1=2*(dev_Lprecision*dev_Lrecall)/(dev_Lprecision+dev_Lrecall) print('CUR DEV %d: ucorr: %d, lcorr: %d, tot_gold: %d, tot_pred: %d, Uprec: %.2f%%, Urec: %.2f%%, Lprec: %.2f%%, Lrec: %.2f%%, UF1: %.2f%%, LF1: %.2f%%' % ( epoch, dev_ucorr, dev_lcorr, dev_total_gold, dev_total_pred, dev_Uprecision, dev_Urecall, dev_Lprecision, dev_Lrecall, dev_UF1, dev_LF1)) #if dev_lcorrect_nopunc < dev_lcorr_nopunc or (dev_lcorrect_nopunc == dev_lcorr_nopunc and dev_ucorrect_nopunc < dev_ucorr_nopunc): if dev_bestLF1 < dev_LF1: dev_bestLF1 = dev_LF1 dev_bestUF1 = dev_UF1 dev_bestUprecision = dev_Uprecision dev_bestLprecision = dev_Lprecision dev_bestUrecall = dev_Urecall dev_bestLrecall = dev_Lrecall best_epoch = epoch patient = 0 # torch.save(network, model_name) torch.save(network.state_dict(), model_name) print('======EVALUATING PERFORMANCE ON TEST======') #pred_filename = 'tmp/%spred_test%d' % (str(uid), epoch) pred_filename = '%spred_test%d' % (str(uid), epoch) pred_filename = os.path.join(model_path, pred_filename) pred_writer.start(pred_filename) #gold_filename = 'tmp/%sgold_test%d' % (str(uid), epoch) gold_filename = '%sgold_test%d' % (str(uid), epoch) gold_filename = os.path.join(model_path, gold_filename) gold_writer.start(gold_filename) test_ucorrect = 0.0 test_lcorrect = 0.0 test_total_pred = 0 test_total_gold = 0 test_total_inst = 0 start_time_test = time.time() for batch in conllx_stacked_data.iterate_batch_stacked_variable(data_test, batch_size): input_encoder, _ = batch word, lemma, char, pos, heads, types, masks, lengths = input_encoder heads_pred, types_pred, _, _ = network.decode(word, lemma, char, pos, mask=masks, length=lengths, beam=beam, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() lemma = lemma.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, lemma, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, lemma, pos, heads, types, lengths, symbolic_root=True) ucorr, lcorr, total_gold, total_pred, num_inst = parser.evalF1(word, lemma, pos, heads_pred, types_pred, heads, types, word_alphabet, lemma_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) test_ucorrect += ucorr test_lcorrect += lcorr test_total_gold += total_gold test_total_pred += total_pred test_total_inst += num_inst end_time_test = time.time() lasted_time_test=end_time_test-start_time_test pred_writer.close() gold_writer.close() test_Uprecision=0. test_Lprecision=0. if test_total_pred!=0: test_Uprecision=test_ucorrect * 100 / test_total_pred test_Lprecision=test_lcorrect * 100 / test_total_pred test_Urecall=test_ucorrect * 100 / test_total_gold test_Lrecall=test_lcorrect * 100 / test_total_gold if test_Uprecision ==0. and test_Urecall==0.: test_UF1=0 else: test_UF1=2*(test_Uprecision*test_Urecall)/(test_Uprecision+test_Urecall) if test_Lprecision ==0. and test_Lrecall==0.: test_LF1=0 else: test_LF1=2*(test_Lprecision*test_Lrecall)/(test_Lprecision+test_Lrecall) print('======EVALUATING PERFORMANCE ON TEST 2======') #pred_filename = 'tmp/%spred_test%d' % (str(uid), epoch) pred_filename2 = '%spred_test_two%d' % (str(uid), epoch) pred_filename2 = os.path.join(model_path, pred_filename2) pred_writer.start(pred_filename2) #gold_filename = 'tmp/%sgold_test%d' % (str(uid), epoch) gold_filename2 = '%sgold_test_two%d' % (str(uid), epoch) gold_filename2 = os.path.join(model_path, gold_filename2) gold_writer.start(gold_filename2) test2_ucorrect = 0.0 test2_lcorrect = 0.0 test2_total_pred = 0 test2_total_gold = 0 test2_total_inst = 0 start_time_test2 = time.time() for batch in conllx_stacked_data.iterate_batch_stacked_variable(data_test2, batch_size): input_encoder, _ = batch word, lemma, char, pos, heads, types, masks, lengths = input_encoder heads_pred, types_pred, _, _ = network.decode(word, lemma, char, pos, mask=masks, length=lengths, beam=beam, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() lemma = lemma.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, lemma, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, lemma, pos, heads, types, lengths, symbolic_root=True) ucorr, lcorr, total_gold, total_pred, num_inst = parser.evalF1(word, lemma, pos, heads_pred, types_pred, heads, types, word_alphabet, lemma_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) test2_ucorrect += ucorr test2_lcorrect += lcorr test2_total_gold += total_gold test2_total_pred += total_pred test2_total_inst += num_inst end_time_test2 = time.time() lasted_time_test2=end_time_test2-start_time_test2 pred_writer.close() gold_writer.close() test2_Uprecision=0. test2_Lprecision=0. if dev_total_pred!=0: test2_Uprecision=test2_ucorrect * 100 / test2_total_pred test2_Lprecision=test2_lcorrect * 100 / test2_total_pred test2_Urecall=test2_ucorrect * 100 / test2_total_gold test2_Lrecall=test2_lcorrect * 100 / test2_total_gold if test2_Uprecision ==0. and test2_Urecall==0.: test2_UF1=0. else: test2_UF1=2*(test2_Uprecision*test2_Urecall)/(test2_Uprecision+test2_Urecall) if test2_Lprecision ==0 and test2_Lrecall==0: test2_LF1=0. else: test2_LF1=2*(test2_Lprecision*test2_Lrecall)/(test2_Lprecision+test2_Lrecall) else: #if dev_ucorr_nopunc * 100 / dev_total_nopunc < dev_ucorrect_nopunc * 100 / dev_total_nopunc - 5 or patient >= schedule: if dev_LF1 < dev_bestLF1 - 5 or patient >= schedule: # network = torch.load(model_name) network.load_state_dict(torch.load(model_name)) lr = lr * decay_rate optim = generate_optimizer(opt, lr, network.parameters()) patient = 0 decay += 1 if decay % double_schedule_decay == 0: schedule *= 2 else: patient += 1 print('----------------------------------------------------------------------------------------------------------------------------') print('TIME DEV: ', lasted_time_dev, 'NUM SENTS DEV: ', dev_total_inst, 'SPEED DEV: ', dev_total_inst/lasted_time_dev) print('DEV: Uprec: %.2f%%, Urec: %.2f%%, Lprec: %.2f%%, Lrec: %.2f%%, UF1: %.2f%%, LF1: %.2f%% (epoch: %d)' % ( dev_bestUprecision, dev_bestUrecall, dev_bestLprecision, dev_bestLrecall, dev_bestUF1, dev_bestLF1, best_epoch)) print('----------------------------------------------------------------------------------------------------------------------------') print('TIME TEST: ', lasted_time_test, 'NUM SENTS TEST: ', test_total_inst, 'SPEED TEST: ', test_total_inst/lasted_time_test) print('TEST: ucorr: %d, lcorr: %d, tot_gold: %d, tot_pred: %d, Uprec: %.2f%%, Urec: %.2f%%, Lprec: %.2f%%, Lrec: %.2f%%, UF1: %.2f%%, LF1: %.2f%% (epoch: %d)' % ( test_ucorrect, test_lcorrect, test_total_gold, test_total_pred, test_Uprecision, test_Urecall, test_Lprecision, test_Lrecall, test_UF1, test_LF1, best_epoch)) print('----------------------------------------------------------------------------------------------------------------------------') print('TIME TEST2: ', lasted_time_test2, 'NUM SENTS TEST: ', test2_total_inst, 'SPEED TEST2: ', test2_total_inst/lasted_time_test2) print('TEST2: ucorr: %d, lcorr: %d, tot_gold: %d, tot_pred: %d, Uprec: %.2f%%, Urec: %.2f%%, Lprec: %.2f%%, Lrec: %.2f%%, UF1: %.2f%%, LF1: %.2f%% (epoch: %d)' % ( test2_ucorrect, test2_lcorrect, test2_total_gold, test2_total_pred, test2_Uprecision, test2_Urecall, test2_Lprecision, test2_Lrecall, test2_UF1, test2_LF1, best_epoch)) print('============================================================================================================================') #exit(0) if decay == max_decay: break
def main(): args_parser = argparse.ArgumentParser( description='Tuning with stack pointer parser') args_parser.add_argument('--mode', choices=['RNN', 'LSTM', 'GRU', 'FastLSTM'], help='architecture of rnn', required=True) args_parser.add_argument('--num_epochs', type=int, default=200, help='Number of training epochs') args_parser.add_argument('--batch_size', type=int, default=64, help='Number of sentences in each batch') #args_parser.add_argument('--decoder_input_size', type=int, default=256, help='Number of input units in decoder RNN.') args_parser.add_argument('--hidden_size', type=int, default=256, help='Number of hidden units in RNN') args_parser.add_argument('--arc_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--type_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--encoder_layers', type=int, default=1, help='Number of layers of encoder RNN') #args_parser.add_argument('--decoder_layers', type=int, default=1, help='Number of layers of decoder RNN') args_parser.add_argument('--num_filters', type=int, default=50, help='Number of filters in CNN') # NOTE: action='store_true' is just to set ON args_parser.add_argument('--pos', action='store_true', help='use part-of-speech embedding.') args_parser.add_argument('--char', action='store_true', help='use character embedding and CNN.') args_parser.add_argument('--pos_dim', type=int, default=50, help='Dimension of POS embeddings') args_parser.add_argument('--char_dim', type=int, default=50, help='Dimension of Character embeddings') # NOTE: arg MUST be one of choices(when specified) args_parser.add_argument('--opt', choices=['adam', 'sgd', 'adamax'], help='optimization algorithm') args_parser.add_argument('--learning_rate', type=float, default=0.001, help='Learning rate') args_parser.add_argument('--decay_rate', type=float, default=0.75, help='Decay rate of learning rate') args_parser.add_argument('--max_decay', type=int, default=9, help='Number of decays before stop') args_parser.add_argument('--double_schedule_decay', type=int, default=5, help='Number of decays to double schedule') args_parser.add_argument('--clip', type=float, default=1.0, help='gradient clipping') args_parser.add_argument('--gamma', type=float, default=0.0, help='weight for regularization') args_parser.add_argument('--epsilon', type=float, default=1e-8, help='epsilon for adam or adamax') args_parser.add_argument('--coverage', type=float, default=0.0, help='weight for coverage loss') args_parser.add_argument('--p_rnn', nargs=2, type=float, required=True, help='dropout rate for RNN') args_parser.add_argument('--p_in', type=float, default=0.33, help='dropout rate for input embeddings') args_parser.add_argument('--p_out', type=float, default=0.33, help='dropout rate for output layer') args_parser.add_argument('--label_smooth', type=float, default=1.0, help='weight of label smoothing method') args_parser.add_argument('--skipConnect', action='store_true', help='use skip connection for decoder RNN.') args_parser.add_argument('--grandPar', action='store_true', help='use grand parent.') args_parser.add_argument('--sibling', action='store_true', help='use sibling.') args_parser.add_argument( '--prior_order', choices=['inside_out', 'left2right', 'deep_first', 'shallow_first'], help='prior order of children.', required=True) args_parser.add_argument('--schedule', type=int, help='schedule for learning rate decay') args_parser.add_argument( '--unk_replace', type=float, default=0., help='The rate to replace a singleton word with UNK') args_parser.add_argument('--punctuation', nargs='+', type=str, help='List of punctuations') args_parser.add_argument('--beam', type=int, default=1, help='Beam size for decoding') args_parser.add_argument( '--word_embedding', choices=['glove', 'senna', 'sskip', 'polyglot', 'NNLM'], help='Embedding for words', required=True) args_parser.add_argument('--word_path', help='path for word embedding dict') args_parser.add_argument( '--freeze', action='store_true', help='frozen the word embedding (disable fine-tuning).') args_parser.add_argument('--char_embedding', choices=['random', 'polyglot'], help='Embedding for characters', required=True) args_parser.add_argument('--char_path', help='path for character embedding dict') args_parser.add_argument( '--train') # "data/POS-penn/wsj/split1/wsj1.train.original" args_parser.add_argument( '--dev') # "data/POS-penn/wsj/split1/wsj1.dev.original" args_parser.add_argument( '--test') # "data/POS-penn/wsj/split1/wsj1.test.original" args_parser.add_argument('--model_path', help='path for saving model file.', required=True) args_parser.add_argument('--model_name', help='name for saving model file.', required=True) # TODO: to include in logging process args_parser.add_argument('--pos_embedding', choices=[1, 2, 4], type=int, help='Embedding method for korean POS tag', default=2) args_parser.add_argument('--pos_path', help='path for pos embedding dict') args_parser.add_argument('--elmo', action='store_true', help='use elmo embedding.') args_parser.add_argument('--elmo_path', help='path for elmo embedding model.') args_parser.add_argument('--elmo_dim', type=int, help='dimension for elmo embedding model') #args_parser.add_argument('--fine_tune_path', help='fine tune starting from this state_dict') args_parser.add_argument('--model_version', help='previous model version to load') #hoon : bert args_parser.add_argument( '--bert', action='store_true', help='use elmo embedding.') # true if use bert(hoon) args_parser.add_argument( '--etri_train', help='path for etri data of bert') # etri train path(hoon) args_parser.add_argument( '--etri_dev', help='path for etri data of bert') # etri dev path(hoon) args_parser.add_argument('--bert_path', help='path for bert embedding model.') # yjyj args_parser.add_argument('--bert_dim', type=int, help='dimension for bert embedding model') # yjyj args_parser.add_argument('--bert_learning_rate', type=float, default=5e-5, help='Bert Learning rate') args_parser.add_argument('--decode', choices=['mst', 'greedy'], help='decoding algorithm', required=True) #yj args_parser.add_argument('--objective', choices=['cross_entropy', 'crf'], default='cross_entropy', help='objective function of training procedure.') args = args_parser.parse_args() logger = get_logger("PtrParser") mode = args.mode train_path = args.train dev_path = args.dev test_path = args.test model_path = args.model_path + uid + '/' # for numerous experiments model_name = args.model_name num_epochs = args.num_epochs batch_size = args.batch_size #input_size_decoder = args.decoder_input_size hidden_size = args.hidden_size arc_space = args.arc_space type_space = args.type_space encoder_layers = args.encoder_layers #decoder_layers = args.decoder_layers num_filters = args.num_filters learning_rate = args.learning_rate opt = args.opt momentum = 0.9 betas = (0.9, 0.9) eps = args.epsilon decay_rate = args.decay_rate clip = args.clip gamma = args.gamma cov = args.coverage schedule = args.schedule p_rnn = tuple(args.p_rnn) p_in = args.p_in p_out = args.p_out label_smooth = args.label_smooth unk_replace = args.unk_replace prior_order = args.prior_order skipConnect = args.skipConnect grandPar = args.grandPar sibling = args.sibling beam = args.beam punctuation = args.punctuation freeze = args.freeze word_embedding = args.word_embedding word_path = args.word_path use_char = args.char char_embedding = args.char_embedding # QUESTION: pretrained vector for char? char_path = args.char_path use_pos = False pos_embedding = args.pos_embedding pos_path = args.pos_path pos_dict = None pos_dim = args.pos_dim # NOTE pretrain 있을 경우 pos_dim은 그거 따라감 if pos_path is not None: pos_dict, pos_dim = utils.load_embedding_dict( word_embedding, pos_path) # NOTE 임시적으로 word_embedding(NNLM)이랑 같은 형식 word_dict, word_dim = utils.load_embedding_dict(word_embedding, word_path) char_dict = None char_dim = args.char_dim if char_embedding != 'random': char_dict, char_dim = utils.load_embedding_dict( char_embedding, char_path) use_elmo = args.elmo elmo_path = args.elmo_path elmo_dim = args.elmo_dim #fine_tune_path = args.fine_tune_path #bert(hoon) use_bert = args.bert #bert yj bert_path = args.bert_path bert_dim = args.bert_dim bert_lr = args.bert_learning_rate etri_train_path = args.etri_train etri_dev_path = args.etri_dev obj = args.objective decoding = args.decode logger.info("Creating Alphabets") alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) # min_occurence=1 data_paths = [dev_path, test_path] if test_path else [dev_path] word_alphabet, char_alphabet, pos_alphabet, type_alphabet = conllx_stacked_data.create_alphabets( alphabet_path, train_path, data_paths=data_paths, max_vocabulary_size=50000, pos_embedding=pos_embedding, embedd_dict=word_dict) num_words = word_alphabet.size() # 30268 num_chars = char_alphabet.size() # 3545 num_pos = pos_alphabet.size() # 46 num_types = type_alphabet.size() # 39 logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) logger.info("Reading Data") use_gpu = torch.cuda.is_available() # data is a list of tuple containing tensors, etc ... data_train = conllx_stacked_data.read_stacked_data_to_variable( train_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, pos_embedding, use_gpu=1, prior_order=prior_order, elmo=use_elmo, bert=use_bert, etri_path=etri_train_path) num_data = sum(data_train[2]) data_dev = conllx_stacked_data.read_stacked_data_to_variable( dev_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, pos_embedding, use_gpu=use_gpu, volatile=True, prior_order=prior_order, elmo=use_elmo, bert=use_bert, etri_path=etri_dev_path) if test_path: data_test = conllx_stacked_data.read_stacked_data_to_variable( test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, pos_embedding, use_gpu=use_gpu, volatile=True, prior_order=prior_order, elmo=use_elmo) punct_set = None if punctuation is not None: punct_set = set(punctuation) logger.info("punctuations(%d): %s" % (len(punct_set), ' '.join(punct_set))) def construct_word_embedding_table(): scale = np.sqrt(3.0 / word_dim) table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32) # NOTE: UNK 관리! table[conllx_stacked_data.UNK_ID, :] = np.zeros([1, word_dim]).astype( np.float32) if freeze else np.random.uniform( -scale, scale, [1, word_dim]).astype(np.float32) oov = 0 for word, index in list(word_alphabet.items()): if word in word_dict: embedding = word_dict[word] elif word.lower() in word_dict: embedding = word_dict[word.lower()] else: # NOTE: words not in pretrained are set to random embedding = np.zeros([1, word_dim]).astype( np.float32) if freeze else np.random.uniform( -scale, scale, [1, word_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('word OOV: %d' % oov) return torch.from_numpy(table) def construct_char_embedding_table(): if char_dict is None: return None scale = np.sqrt(3.0 / char_dim) table = np.empty([num_chars, char_dim], dtype=np.float32) table[conllx_stacked_data.UNK_ID, :] = np.random.uniform( -scale, scale, [1, char_dim]).astype(np.float32) oov = 0 #for char, index, in char_alphabet.items(): for char, index in list(char_alphabet.items()): if char in char_dict: embedding = char_dict[char] else: embedding = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('character OOV: %d' % oov) return torch.from_numpy(table) def construct_pos_embedding_table(): if pos_dict is None: return None scale = np.sqrt(3.0 / char_dim) table = np.empty([num_pos, pos_dim], dtype=np.float32) for pos, index in list(pos_alphabet.items()): if pos in pos_dict: embedding = pos_dict[pos] else: embedding = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) table[index, :] = embedding return torch.from_numpy(table) word_table = construct_word_embedding_table() char_table = construct_char_embedding_table() pos_table = construct_pos_embedding_table() window = 3 # yj 수정 # network = StackPtrNet(word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, # mode, input_size_decoder, hidden_size, encoder_layers, decoder_layers, # num_types, arc_space, type_space, pos_embedding, # embedd_word=word_table, embedd_char=char_table, embedd_pos=pos_table, p_in=p_in, p_out=p_out, # p_rnn=p_rnn, biaffine=True, pos=use_pos, char=use_char, elmo=use_elmo, prior_order=prior_order, # skipConnect=skipConnect, grandPar=grandPar, sibling=sibling, elmo_path=elmo_path, elmo_dim=elmo_dim, # bert = use_bert, bert_path=bert_path, bert_dim=bert_dim) network = BiRecurrentConvBiAffine(word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, hidden_size, encoder_layers, num_types, arc_space, type_space, embedd_word=word_table, embedd_char=char_table, embedd_pos=pos_table, p_in=p_in, p_out=p_out, p_rnn=p_rnn, biaffine=True, pos=use_pos, char=use_char, elmo=use_elmo, elmo_path=elmo_path, elmo_dim=elmo_dim, bert=use_bert, bert_path=bert_path, bert_dim=bert_dim) # if fine_tune_path is not None: # pretrained_dict = torch.load(fine_tune_path) # model_dict = network.state_dict() # # select # #model_dict['pos_embedd.weight'] = pretrained_dict['pos_embedd.weight'] # model_dict['word_embedd.weight'] = pretrained_dict['word_embedd.weight'] # #model_dict['char_embedd.weight'] = pretrained_dict['char_embedd.weight'] # network.load_state_dict(model_dict) model_ver = args.model_version if model_ver is not None: savePath = args.model_path + model_ver + 'network.pt' network.load_state_dict(torch.load(savePath)) logger.info('Load model: %s' % (model_ver)) def save_args(): arg_path = model_name + '.arg.json' arguments = [ word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, hidden_size, encoder_layers, num_types, arc_space, type_space, pos_embedding ] kwargs = { 'p_in': p_in, 'p_out': p_out, 'p_rnn': p_rnn, 'biaffine': True, 'pos': use_pos, 'char': use_char, 'elmo': use_elmo, 'bert': use_bert } json.dump({ 'args': arguments, 'kwargs': kwargs }, open(arg_path, 'w', encoding="utf-8"), indent=4) with open(arg_path + '.raw_args', 'w', encoding="utf-8") as f: f.write(str(args)) if freeze: network.word_embedd.freeze() if use_gpu: network.cuda() save_args() pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet, pos_embedding) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet, pos_embedding) def generate_optimizer(opt, lr, params): # params = [param for name, param in params if param.requires_grad] params = [param for name, param in params] if True: return AdamW(params, lr=lr, betas=betas, weight_decay=gamma) if opt == 'adam': return Adam(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps) elif opt == 'sgd': return SGD(params, lr=lr, momentum=momentum, weight_decay=gamma, nesterov=True) elif opt == 'adamax': return Adamax(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps) else: raise ValueError('Unknown optimization algorithm: %s' % opt) # 우선 huggingface 기본 bert option으로 수정 def generate_bert_optimizer(t_total, bert_lr, model): no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], 'weight_decay': gamma }, { 'params': [ p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) ], 'weight_decay': 0.0 }] optimizer = AdamW(optimizer_grouped_parameters, lr=bert_lr, eps=1e-8) scheduler = WarmupLinearSchedule(optimizer, warmup_steps=0, t_total=t_total) return scheduler, optimizer lr = learning_rate if use_bert: scheduler, optim = generate_bert_optimizer( len(data_train) * num_epochs, lr, network) #optim = generate_optimizer(opt, lr, network.named_parameters()) opt_info = 'opt: %s, ' % opt if opt == 'adam': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) elif opt == 'sgd': opt_info += 'momentum=%.2f' % momentum elif opt == 'adamax': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) word_status = 'frozen' if freeze else 'fine tune' char_status = 'enabled' if use_char else 'disabled' pos_status = 'enabled' if use_pos else 'disabled' logger.info( "Embedding dim: word=%d (%s), char=%d (%s), pos=%d (%s)" % (word_dim, word_status, char_dim, char_status, pos_dim, pos_status)) logger.info("CNN: filter=%d, kernel=%d" % (num_filters, window)) #logger.info("RNN: %s, num_layer=(%d, %d), input_dec=%d, hidden=%d, arc_space=%d, type_space=%d" % (mode, encoder_layers, decoder_layers, input_size_decoder, hidden_size, arc_space, type_space)) logger.info( "train: cov: %.1f, (#data: %d, batch: %d, clip: %.2f, label_smooth: %.2f, unk_repl: %.2f)" % (cov, num_data, batch_size, clip, label_smooth, unk_replace)) logger.info("dropout(in, out, rnn): (%.2f, %.2f, %s)" % (p_in, p_out, p_rnn)) logger.info('prior order: %s, grand parent: %s, sibling: %s, ' % (prior_order, grandPar, sibling)) logger.info('skip connect: %s, beam: %d' % (skipConnect, beam)) logger.info(opt_info) num_batches = int(num_data / batch_size + 1) # kwon dev_ucorrect = 0.0 dev_lcorrect = 0.0 dev_ucomlpete_match = 0.0 dev_lcomplete_match = 0.0 dev_ucorrect_nopunc = 0.0 dev_lcorrect_nopunc = 0.0 dev_ucomlpete_match_nopunc = 0.0 dev_lcomplete_match_nopunc = 0.0 dev_root_correct = 0.0 best_epoch = 0 test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_root_correct = 0.0 test_total = 0 test_total_nopunc = 0 test_total_inst = 0 test_total_root = 0 if decoding == 'greedy': decode = network.decode elif decoding == 'mst': decode = network.decode_mst else: raise ValueError('Unknown decoding algorithm: %s' % decoding) patient = 0 decay = 0 max_decay = args.max_decay double_schedule_decay = args.double_schedule_decay for epoch in range(1, num_epochs + 1): print( 'Epoch %d (%s, optim: %s, learning rate=%.6f, eps=%.1e, decay rate=%.2f (schedule=%d, patient=%d, decay=%d)): ' % (epoch, mode, opt, lr, eps, decay_rate, schedule, patient, decay)) train_err = 0. train_err_arc = 0. train_err_type = 0. train_total = 0. start_time = time.time() num_back = 0 network.train() for batch in range(1, num_batches + 1): # load data input_encoder, _ = conllx_stacked_data.get_batch_stacked_variable( data_train, batch_size, pos_embedding, unk_replace=unk_replace, elmo=use_elmo, bert=use_bert) word_elmo = None if use_elmo: word, char, pos, heads, types, masks, lengths, word_elmo, word_bert = input_encoder else: word, char, pos, heads, types, masks, lengths, word_bert = input_encoder #stacked_heads, children, sibling, stacked_types, skip_connect, masks_d, lengths_d = input_decoder optim.zero_grad() # yjyj loss_arc, loss_type, bert_word_feature_ids, bert_morp_feature_ids = network.loss( word, char, pos, heads, types, mask=masks, length=lengths, input_word_bert=word_bert) # loss_arc_leaf, loss_arc_non_leaf, \ # loss_type_leaf, loss_type_non_leaf, \ # loss_cov, num_leaf, num_non_leaf = network.loss(word, char, pos, heads, stacked_heads, children, sibling, stacked_types, label_smooth, skip_connect=skip_connect, mask_e=masks_e, \ # length_e=lengths_e, mask_d=masks_d, length_d=lengths_d, input_word_elmo = word_elmo, input_word_bert = word_bert) # loss_arc = loss_arc_leaf + loss_arc_non_leaf # loss_type = loss_type_leaf + loss_type_non_leaf # loss = loss_arc + loss_type + cov * loss_cov # cov is set to 0 by default loss = loss_arc + loss_type loss.backward() clip_grad_norm_(network.parameters(), clip) optim.step() if use_bert: pass #bert_optim.step() #scheduler.step() num_inst = word.size( 0) if obj == 'crf' else masks.data.sum() - word.size(0) train_err += loss.item() * num_inst train_err_arc += loss_arc.item() * num_inst train_err_type += loss_type.item() * num_inst train_total += num_inst time_ave = (time.time() - start_time) / batch time_left = (num_batches - batch) * time_ave # yjyj # num_leaf = num_leaf.item() # num_non_leaf = num_non_leaf.item() # train_err_arc_leaf += loss_arc_leaf.item() * num_leaf # train_err_arc_non_leaf += loss_arc_non_leaf.item() * num_non_leaf # # train_err_type_leaf += loss_type_leaf.item() * num_leaf # train_err_type_non_leaf += loss_type_non_leaf.item() * num_non_leaf # # train_err_cov += loss_cov.item() * (num_leaf + num_non_leaf) # train_total_leaf += num_leaf # train_total_non_leaf += num_non_leaf # # time_ave = (time.time() - start_time) / batch # time_left = (num_batches - batch) * time_ave # update log # update log if batch % 10 == 0: sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) log_info = 'train: %d/%d loss: %.4f, arc: %.4f, type: %.4f, time left: %.2fs' % ( batch, num_batches, train_err / train_total, train_err_arc / train_total, train_err_type / train_total, time_left) sys.stdout.write(log_info) sys.stdout.flush() num_back = len(log_info) sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) print( 'train: %d loss: %.4f, arc: %.4f, type: %.4f, time: %.2fs' % (num_batches, train_err / train_total, train_err_arc / train_total, train_err_type / train_total, time.time() - start_time)) # yjyj # if batch % 10 == 0: # sys.stdout.write("\b" * num_back) # sys.stdout.write(" " * num_back) # sys.stdout.write("\b" * num_back) # err_arc_leaf = train_err_arc_leaf / train_total_leaf # err_arc_non_leaf = train_err_arc_non_leaf / train_total_non_leaf # err_arc = err_arc_leaf + err_arc_non_leaf # # err_type_leaf = train_err_type_leaf / train_total_leaf # err_type_non_leaf = train_err_type_non_leaf / train_total_non_leaf # err_type = err_type_leaf + err_type_non_leaf # # err_cov = train_err_cov / (train_total_leaf + train_total_non_leaf) # # err = err_arc + err_type + cov * err_cov # log_info = 'train: %d/%d loss (leaf, non_leaf): %.4f, arc: %.4f (%.4f, %.4f), type: %.4f (%.4f, %.4f), coverage: %.4f, time left (estimated): %.2fs' % ( # batch, num_batches, err, err_arc, err_arc_leaf, err_arc_non_leaf, err_type, err_type_leaf, err_type_non_leaf, err_cov, time_left) # sys.stdout.write(log_info) # sys.stdout.flush() # num_back = len(log_info) # # sys.stdout.write("\b" * num_back) # sys.stdout.write(" " * num_back) # sys.stdout.write("\b" * num_back) # err_arc_leaf = train_err_arc_leaf / train_total_leaf # err_arc_non_leaf = train_err_arc_non_leaf / train_total_non_leaf # err_arc = err_arc_leaf + err_arc_non_leaf # # err_type_leaf = train_err_type_leaf / train_total_leaf # err_type_non_leaf = train_err_type_non_leaf / train_total_non_leaf # err_type = err_type_leaf + err_type_non_leaf # # err_cov = train_err_cov / (train_total_leaf + train_total_non_leaf) # # err = err_arc + err_type + cov * err_cov # print('train: %d loss (leaf, non_leaf): %.4f, arc: %.4f (%.4f, %.4f), type: %.4f (%.4f, %.4f), coverage: %.4f, time: %.2fs' % ( # num_batches, err, err_arc, err_arc_leaf, err_arc_non_leaf, err_type, err_type_leaf, err_type_non_leaf, err_cov, time.time() - start_time)) # evaluate performance on dev data network.eval() pred_filename = model_path + 'tmp/pred_dev%d' % (epoch) pred_writer.start(pred_filename) gold_filename = model_path + 'tmp/gold_dev%d' % (epoch) gold_writer.start(gold_filename) dev_ucorr = 0.0 dev_lcorr = 0.0 dev_total = 0 dev_ucomlpete = 0.0 dev_lcomplete = 0.0 dev_ucorr_nopunc = 0.0 dev_lcorr_nopunc = 0.0 dev_total_nopunc = 0 dev_ucomlpete_nopunc = 0.0 dev_lcomplete_nopunc = 0.0 dev_root_corr = 0.0 dev_total_root = 0.0 dev_total_inst = 0.0 for batch in conllx_stacked_data.iterate_batch_stacked_variable( data_dev, batch_size, pos_embedding, type='dev', elmo=use_elmo): input_encoder, _ = batch #@TODO 여기 input word elmo랑 input word bert 처리 if use_elmo: word, char, pos, heads, types, masks, lengths, word_elmo, word_bert = input_encoder heads_pred, types_pred = decode( word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) # heads_pred, types_pred, _, _ = network.decode(word, char, pos, input_word_elmo=word_elmo, mask=masks, # length=lengths, beam=beam, # leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS, input_word_bert=word_bert) else: word, char, pos, heads, types, masks, lengths, word_bert = input_encoder heads_pred, types_pred, bert_word_feature_ids, bert_morp_feature_ids = decode( word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS, input_word_bert=word_bert) # heads_pred, types_pred, _, _ = network.decode(word, char, pos, mask=masks, length=lengths, beam=beam, # leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS, input_word_bert=word_bert) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser_bpe.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True, bert_word_feature_ids=bert_word_feature_ids, bert_morp_feature_ids=bert_morp_feature_ids) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root dev_ucorr += ucorr dev_lcorr += lcorr dev_total += total dev_ucomlpete += ucm dev_lcomplete += lcm dev_ucorr_nopunc += ucorr_nopunc dev_lcorr_nopunc += lcorr_nopunc dev_total_nopunc += total_nopunc dev_ucomlpete_nopunc += ucm_nopunc dev_lcomplete_nopunc += lcm_nopunc dev_root_corr += corr_root dev_total_root += total_root dev_total_inst += num_inst pred_writer.close() gold_writer.close() print( 'W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (dev_ucorr, dev_lcorr, dev_total, dev_ucorr * 100 / dev_total, dev_lcorr * 100 / dev_total, dev_ucomlpete * 100 / dev_total_inst, dev_lcomplete * 100 / dev_total_inst)) print( 'Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (dev_ucorr_nopunc, dev_lcorr_nopunc, dev_total_nopunc, dev_ucorr_nopunc * 100 / dev_total_nopunc, dev_lcorr_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_nopunc * 100 / dev_total_inst, dev_lcomplete_nopunc * 100 / dev_total_inst)) print('Root: corr: %d, total: %d, acc: %.2f%%' % (dev_root_corr, dev_total_root, dev_root_corr * 100 / dev_total_root)) if dev_ucorrect_nopunc * 1.5 + dev_lcorrect_nopunc < dev_ucorr_nopunc * 1.5 + dev_lcorr_nopunc: dev_ucorrect_nopunc = dev_ucorr_nopunc dev_lcorrect_nopunc = dev_lcorr_nopunc dev_ucomlpete_match_nopunc = dev_ucomlpete_nopunc dev_lcomplete_match_nopunc = dev_lcomplete_nopunc dev_ucorrect = dev_ucorr dev_lcorrect = dev_lcorr dev_ucomlpete_match = dev_ucomlpete dev_lcomplete_match = dev_lcomplete dev_root_correct = dev_root_corr best_epoch = epoch patient = 0 # torch.save(network, model_name) torch.save(network.state_dict(), model_name) # save embedding to txt # FIXME format! #with open(model_path + 'embedding.txt', 'w') as f: # for word, idx in word_alphabet.items(): # embedding = network.word_embedd.weight[idx, :] # f.write('{}\t{}\n'.format(word, embedding)) if test_path: pred_filename = model_path + 'tmp/%spred_test%d' % (str(uid), epoch) pred_writer.start(pred_filename) gold_filename = model_path + 'tmp/%sgold_test%d' % (str(uid), epoch) gold_writer.start(gold_filename) test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_total = 0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_total_nopunc = 0 test_total_inst = 0 test_root_correct = 0.0 test_total_root = 0 for batch in conllx_stacked_data.iterate_batch_stacked_variable( data_test, batch_size, pos_embedding, type='dev'): input_encoder, _ = batch word, char, pos, heads, types, masks, lengths = input_encoder # yjyj # heads_pred, types_pred, _, _ = network.decode(word, char, pos, mask=masks, length=lengths, beam=beam, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) heads_pred, types_pred = decode( word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser_bpe.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root test_ucorrect += ucorr test_lcorrect += lcorr test_total += total test_ucomlpete_match += ucm test_lcomplete_match += lcm test_ucorrect_nopunc += ucorr_nopunc test_lcorrect_nopunc += lcorr_nopunc test_total_nopunc += total_nopunc test_ucomlpete_match_nopunc += ucm_nopunc test_lcomplete_match_nopunc += lcm_nopunc test_root_correct += corr_root test_total_root += total_root test_total_inst += num_inst pred_writer.close() gold_writer.close() else: if dev_ucorr_nopunc * 100 / dev_total_nopunc < dev_ucorrect_nopunc * 100 / dev_total_nopunc - 5 or patient >= schedule: # network = torch.load(model_name) network.load_state_dict(torch.load(model_name)) lr = lr * decay_rate # = generate_optimizer(opt, lr, network.named_parameters()) optim = generate_bert_optimizer(opt, lr, network) patient = 0 decay += 1 if decay % double_schedule_decay == 0: schedule *= 2 else: patient += 1 print( '----------------------------------------------------------------------------------------------------------------------------' ) print( 'best dev W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (dev_ucorrect, dev_lcorrect, dev_total, dev_ucorrect * 100 / dev_total, dev_lcorrect * 100 / dev_total, dev_ucomlpete_match * 100 / dev_total_inst, dev_lcomplete_match * 100 / dev_total_inst, best_epoch)) print( 'best dev Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (dev_ucorrect_nopunc, dev_lcorrect_nopunc, dev_total_nopunc, dev_ucorrect_nopunc * 100 / dev_total_nopunc, dev_lcorrect_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_match_nopunc * 100 / dev_total_inst, dev_lcomplete_match_nopunc * 100 / dev_total_inst, best_epoch)) print('best dev Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (dev_root_correct, dev_total_root, dev_root_correct * 100 / dev_total_root, best_epoch)) print( '----------------------------------------------------------------------------------------------------------------------------' ) if test_path: print( 'best test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total, test_ucomlpete_match * 100 / test_total_inst, test_lcomplete_match * 100 / test_total_inst, best_epoch)) print( 'best test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc, test_ucomlpete_match_nopunc * 100 / test_total_inst, test_lcomplete_match_nopunc * 100 / test_total_inst, best_epoch)) print( 'best test Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (test_root_correct, test_total_root, test_root_correct * 100 / test_total_root, best_epoch)) print( '============================================================================================================================' ) if decay == max_decay: break def save_result(): result_path = model_name + '.result.txt' best_dev_Punc = 'best dev W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( dev_ucorrect, dev_lcorrect, dev_total, dev_ucorrect * 100 / dev_total, dev_lcorrect * 100 / dev_total, dev_ucomlpete_match * 100 / dev_total_inst, dev_lcomplete_match * 100 / dev_total_inst, best_epoch) best_dev_noPunc = 'best dev Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( dev_ucorrect_nopunc, dev_lcorrect_nopunc, dev_total_nopunc, dev_ucorrect_nopunc * 100 / dev_total_nopunc, dev_lcorrect_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_match_nopunc * 100 / dev_total_inst, dev_lcomplete_match_nopunc * 100 / dev_total_inst, best_epoch) best_dev_Root = 'best dev Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % ( dev_root_correct, dev_total_root, dev_root_correct * 100 / dev_total_root, best_epoch) f = open(result_path, 'w') f.write(str(best_dev_Punc.encode('utf-8')) + '\n') f.write(str(best_dev_noPunc.encode('utf-8')) + '\n') f.write(str(best_dev_Root.encode('utf-8'))) f.close() save_result()
def stackptr(model_path, model_name, test_path, punct_set, use_gpu, logger, args): pos_embedding = args.pos_embedding alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) word_alphabet, char_alphabet, pos_alphabet, type_alphabet = conllx_stacked_data.create_alphabets( alphabet_path, None, pos_embedding, data_paths=[None, None], max_vocabulary_size=50000, embedd_dict=None) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) beam = args.beam ordered = args.ordered display_inst = args.display def load_model_arguments_from_json(): arguments = json.load(open(arg_path, 'r')) return arguments['args'], arguments['kwargs'] arg_path = model_name + '.arg.json' args, kwargs = load_model_arguments_from_json() prior_order = kwargs['prior_order'] logger.info('use gpu: %s, beam: %d, order: %s (%s)' % (use_gpu, beam, prior_order, ordered)) data_test = conllx_stacked_data.read_stacked_data_to_variable( test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, pos_embedding, use_gpu=use_gpu, volatile=True, prior_order=prior_order, is_test=True) pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet, pos_embedding) logger.info('model: %s' % model_name) # kwargs???�로??embedidng 추�? word_path = os.path.join(model_path, 'embedding.txt') word_dict, word_dim = utils.load_embedding_dict('NNLM', word_path) def get_embedding_table(): table = np.empty([len(word_dict), word_dim]) for idx, (word, embedding) in enumerate(word_dict.items()): try: table[idx, :] = embedding except: print(word) return torch.from_numpy(table) word_table = get_embedding_table() kwargs['embedd_word'] = word_table args[1] = len(word_dict) # word_dim network = StackPtrNet(*args, **kwargs) # word_embedidng?� ??불러?�기 model_dict = network.state_dict() pretrained_dict = torch.load(model_name) model_dict.update({ k: v for k, v in pretrained_dict.items() if k != 'word_embedd.weight' }) network.load_state_dict(model_dict) if use_gpu: network.cuda() else: network.cpu() network.eval() if not ordered: pred_writer.start(model_path + '/tmp/inference.txt') else: pred_writer.start(model_path + '/tmp/inference_ordered_temp.txt') sent = 0 start_time = time.time() for batch in conllx_stacked_data.iterate_batch_stacked_variable( data_test, 1, pos_embedding, type='dev'): sys.stdout.write('%d, ' % sent) sys.stdout.flush() sent += 1 input_encoder, input_decoder = batch word, char, pos, heads, types, masks, lengths = input_encoder stacked_heads, children, siblings, stacked_types, skip_connect, mask_d, lengths_d = input_decoder heads_pred, types_pred, children_pred, stacked_types_pred = network.decode( word, char, pos, mask=masks, length=lengths, beam=beam, ordered=ordered, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) stacked_heads = stacked_heads.data children = children.data stacked_types = stacked_types.data children_pred = torch.from_numpy(children_pred).long() stacked_types_pred = torch.from_numpy(stacked_types_pred).long() if use_gpu: children_pred = children_pred.cuda() stacked_types_pred = stacked_types_pred.cuda() word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) pred_writer.close()
def biaffine(model_path, model_name, test_path, punct_set, use_gpu, logger, args): alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) word_alphabet, char_alphabet, pos_alphabet, \ type_alphabet = conllx_data.create_alphabets(alphabet_path, None, data_paths=[None, None], max_vocabulary_size=50000, embedd_dict=None) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) decoding = args.decode logger.info('use gpu: %s, decoding: %s' % (use_gpu, decoding)) data_test = conllx_data.read_data_to_tensor(test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=True, symbolic_root=True) pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) logger.info('model: %s' % model_name) def load_model_arguments_from_json(): arguments = json.load(open(arg_path, 'r')) return arguments['args'], arguments['kwargs'] arg_path = model_name + '.arg.json' args, kwargs = load_model_arguments_from_json() network = BiRecurrentConvBiAffine(*args, **kwargs) network.load_state_dict(torch.load(model_name)) if use_gpu: network.cuda() else: network.cpu() network.eval() test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_total = 0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_total_nopunc = 0 test_total_inst = 0 test_root_correct = 0.0 test_total_root = 0 if decoding == 'greedy': decode = network.decode elif decoding == 'mst': decode = network.decode_mst else: raise ValueError('Unknown decoding algorithm: %s' % decoding) pred_writer.start('tmp/analyze_pred_%s' % str(uid)) gold_writer.start('tmp/analyze_gold_%s' % str(uid)) sent = 0 start_time = time.time() for batch in conllx_data.iterate_batch_tensor(data_test, 1): sys.stdout.write('%d, ' % sent) sys.stdout.flush() sent += 1 word, char, pos, heads, types, masks, lengths = batch heads_pred, types_pred = decode( word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root test_ucorrect += ucorr test_lcorrect += lcorr test_total += total test_ucomlpete_match += ucm test_lcomplete_match += lcm test_ucorrect_nopunc += ucorr_nopunc test_lcorrect_nopunc += lcorr_nopunc test_total_nopunc += total_nopunc test_ucomlpete_match_nopunc += ucm_nopunc test_lcomplete_match_nopunc += lcm_nopunc test_root_correct += corr_root test_total_root += total_root test_total_inst += num_inst pred_writer.close() gold_writer.close() print('\ntime: %.2fs' % (time.time() - start_time)) print( 'test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total, test_ucomlpete_match * 100 / test_total_inst, test_lcomplete_match * 100 / test_total_inst)) print( 'test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc, test_ucomlpete_match_nopunc * 100 / test_total_inst, test_lcomplete_match_nopunc * 100 / test_total_inst)) print('test Root: corr: %d, total: %d, acc: %.2f%%' % (test_root_correct, test_total_root, test_root_correct * 100 / test_total_root))
def main(): args_parser = argparse.ArgumentParser( description='Tuning with stack pointer parser') args_parser.add_argument( '--test') # "data/POS-penn/wsj/split1/wsj1.test.original" args_parser.add_argument('--model_path', help='path for saving model file.', required=True) args_parser.add_argument('--model_name', help='name for saving model file.', required=True) args_parser.add_argument('--punctuation', nargs='+', type=str, help='List of punctuations') args_parser.add_argument('--beam', type=int, default=1, help='Beam size for decoding') args_parser.add_argument('--ordered', action='store_true', help='Using order constraints in decoding') args_parser.add_argument('--display', action='store_true', help='Display wrong examples') args_parser.add_argument('--gpu', action='store_true', help='Using GPU') args_parser.add_argument( '--prior_order', choices=['inside_out', 'left2right', 'deep_first', 'shallow_first'], help='prior order of children.', required=True) args = args_parser.parse_args() logger = get_logger("Analyzer") test_path = args.test model_path = args.model_path model_name = args.model_name alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) word_alphabet, char_alphabet, pos_alphabet, \ type_alphabet = conllx_stacked_data.create_alphabets(alphabet_path, None, data_paths=[None, None], max_vocabulary_size=50000, embedd_dict=None) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) use_gpu = args.gpu prior_order = args.prior_order beam = args.beam ordered = args.ordered display_inst = args.display data_test = conllx_stacked_data.read_stacked_data_to_variable( test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=True, prior_order=prior_order) logger.info('use gpu: %s, beam: %d, ordered: %s' % (use_gpu, beam, ordered)) punct_set = None punctuation = args.punctuation if punctuation is not None: punct_set = set(punctuation) logger.info("punctuations(%d): %s" % (len(punct_set), ' '.join(punct_set))) pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) logger.info('model: %s' % model_name) network = torch.load(model_name) if use_gpu: network.cuda() else: network.cpu() network.eval() test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_total = 0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_total_nopunc = 0 test_total_inst = 0 test_root_correct = 0.0 test_total_root = 0 test_ucorrect_stack_leaf = 0.0 test_ucorrect_stack_non_leaf = 0.0 test_lcorrect_stack_leaf = 0.0 test_lcorrect_stack_non_leaf = 0.0 test_leaf = 0 test_non_leaf = 0 pred_writer.start('tmp/analyze_pred_%s' % str(uid)) gold_writer.start('tmp/analyze_gold_%s' % str(uid)) sent = 0 start_time = time.time() for batch in conllx_stacked_data.iterate_batch_stacked_variable( data_test, 1): sys.stdout.write('%d, ' % sent) sys.stdout.flush() sent += 1 input_encoder, input_decoder = batch word, char, pos, heads, types, masks, lengths = input_encoder stacked_heads, children, siblings, stacked_types, skip_connect, mask_d, lengths_d = input_decoder heads_pred, types_pred, children_pred, stacked_types_pred = network.decode( word, char, pos, mask=masks, length=lengths, beam=beam, ordered=ordered, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) stacked_heads = stacked_heads.data children = children.data stacked_types = stacked_types.data children_pred = torch.from_numpy(children_pred).long() stacked_types_pred = torch.from_numpy(stacked_types_pred).long() if use_gpu: children_pred = children_pred.cuda() stacked_types_pred = stacked_types_pred.cuda() mask_d = mask_d.data mask_leaf = torch.eq(children, stacked_heads).float() mask_non_leaf = (1.0 - mask_leaf) mask_leaf = mask_leaf * mask_d mask_non_leaf = mask_non_leaf * mask_d num_leaf = mask_leaf.sum() num_non_leaf = mask_non_leaf.sum() ucorr_stack = torch.eq(children_pred, children).float() lcorr_stack = ucorr_stack * torch.eq(stacked_types_pred, stacked_types).float() ucorr_stack_leaf = (ucorr_stack * mask_leaf).sum() ucorr_stack_non_leaf = (ucorr_stack * mask_non_leaf).sum() lcorr_stack_leaf = (lcorr_stack * mask_leaf).sum() lcorr_stack_non_leaf = (lcorr_stack * mask_non_leaf).sum() test_ucorrect_stack_leaf += ucorr_stack_leaf test_ucorrect_stack_non_leaf += ucorr_stack_non_leaf test_lcorrect_stack_leaf += lcorr_stack_leaf test_lcorrect_stack_non_leaf += lcorr_stack_non_leaf test_leaf += num_leaf test_non_leaf += num_non_leaf # ------------------------------------------------------------------------------------------------ word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root test_ucorrect += ucorr test_lcorrect += lcorr test_total += total test_ucomlpete_match += ucm test_lcomplete_match += lcm test_ucorrect_nopunc += ucorr_nopunc test_lcorrect_nopunc += lcorr_nopunc test_total_nopunc += total_nopunc test_ucomlpete_match_nopunc += ucm_nopunc test_lcomplete_match_nopunc += lcm_nopunc test_root_correct += corr_root test_total_root += total_root test_total_inst += num_inst pred_writer.close() gold_writer.close() print('\ntime: %.2fs' % (time.time() - start_time)) print( 'test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total, test_ucomlpete_match * 100 / test_total_inst, test_lcomplete_match * 100 / test_total_inst)) print( 'test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc, test_ucomlpete_match_nopunc * 100 / test_total_inst, test_lcomplete_match_nopunc * 100 / test_total_inst)) print('test Root: corr: %d, total: %d, acc: %.2f%%' % (test_root_correct, test_total_root, test_root_correct * 100 / test_total_root)) print( '============================================================================================================================' ) print( 'Stack leaf: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%' % (test_ucorrect_stack_leaf, test_lcorrect_stack_leaf, test_leaf, test_ucorrect_stack_leaf * 100 / test_leaf, test_lcorrect_stack_leaf * 100 / test_leaf)) print( 'Stack non_leaf: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%' % (test_ucorrect_stack_non_leaf, test_lcorrect_stack_non_leaf, test_non_leaf, test_ucorrect_stack_non_leaf * 100 / test_non_leaf, test_lcorrect_stack_non_leaf * 100 / test_non_leaf)) print( '============================================================================================================================' ) def analyze(): np.set_printoptions(linewidth=100000) pred_path = 'tmp/analyze_pred_%s' % str(uid) data_gold = conllx_stacked_data.read_stacked_data_to_variable( test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=True, prior_order=prior_order) data_pred = conllx_stacked_data.read_stacked_data_to_variable( pred_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=True, prior_order=prior_order) gold_iter = conllx_stacked_data.iterate_batch_stacked_variable( data_gold, 1) test_iter = conllx_stacked_data.iterate_batch_stacked_variable( data_pred, 1) model_err = 0 search_err = 0 type_err = 0 for gold, pred in zip(gold_iter, test_iter): gold_encoder, gold_decoder = gold word, char, pos, gold_heads, gold_types, masks, lengths = gold_encoder gold_stacked_heads, gold_children, gold_siblings, gold_stacked_types, gold_skip_connect, gold_mask_d, gold_lengths_d = gold_decoder pred_encoder, pred_decoder = pred _, _, _, pred_heads, pred_types, _, _ = pred_encoder pred_stacked_heads, pred_children, pred_siblings, pred_stacked_types, pred_skip_connect, pred_mask_d, pred_lengths_d = pred_decoder assert gold_heads.size() == pred_heads.size( ), 'sentence dis-match.' ucorr_stack = torch.eq(pred_children, gold_children).float() lcorr_stack = ucorr_stack * torch.eq(pred_stacked_types, gold_stacked_types).float() ucorr_stack = (ucorr_stack * gold_mask_d).data.sum() lcorr_stack = (lcorr_stack * gold_mask_d).data.sum() num_stack = gold_mask_d.data.sum() if lcorr_stack < num_stack: loss_pred, loss_pred_arc, loss_pred_type = calc_loss( network, word, char, pos, pred_heads, pred_stacked_heads, pred_children, pred_siblings, pred_stacked_types, pred_skip_connect, masks, lengths, pred_mask_d, pred_lengths_d) loss_gold, loss_gold_arc, loss_gold_type = calc_loss( network, word, char, pos, gold_heads, gold_stacked_heads, gold_children, gold_siblings, gold_stacked_types, gold_skip_connect, masks, lengths, gold_mask_d, gold_lengths_d) if display_inst: print('%d, %d, %d' % (ucorr_stack, lcorr_stack, num_stack)) print( 'pred(arc, type): %.4f (%.4f, %.4f), gold(arc, type): %.4f (%.4f, %.4f)' % (loss_pred, loss_pred_arc, loss_pred_type, loss_gold, loss_gold_arc, loss_gold_type)) word = word[0].data.cpu().numpy() pos = pos[0].data.cpu().numpy() head_gold = gold_heads[0].data.cpu().numpy() type_gold = gold_types[0].data.cpu().numpy() head_pred = pred_heads[0].data.cpu().numpy() type_pred = pred_types[0].data.cpu().numpy() display(word, pos, head_gold, type_gold, head_pred, type_pred, lengths[0], word_alphabet, pos_alphabet, type_alphabet) length_dec = gold_lengths_d[0] gold_display = np.empty([3, length_dec]) gold_display[0] = gold_stacked_types.data[0].cpu().numpy( )[:length_dec] gold_display[1] = gold_children.data[0].cpu().numpy( )[:length_dec] gold_display[2] = gold_stacked_heads.data[0].cpu().numpy( )[:length_dec] print(gold_display) print( '--------------------------------------------------------' ) pred_display = np.empty([3, pred_lengths_d[0]])[:length_dec] pred_display[0] = pred_stacked_types.data[0].cpu().numpy( )[:length_dec] pred_display[1] = pred_children.data[0].cpu().numpy( )[:length_dec] pred_display[2] = pred_stacked_heads.data[0].cpu().numpy( )[:length_dec] print(pred_display) print( '========================================================' ) raw_input() if ucorr_stack == num_stack: type_err += 1 elif loss_pred < loss_gold: model_err += 1 else: search_err += 1 print('type errors: %d' % type_err) print('model errors: %d' % model_err) print('search errors: %d' % search_err) analyze()
def main(): uid = uuid.uuid4().hex[:6] args_parser = argparse.ArgumentParser( description='Tuning with stack pointer parser') args_parser.add_argument('--mode', choices=['RNN', 'LSTM', 'GRU', 'FastLSTM'], help='architecture of rnn', default='FastLSTM') args_parser.add_argument('--num_epochs', type=int, default=10, help='Number of training epochs') args_parser.add_argument('--batch_size', type=int, default=32, help='Number of sentences in each batch') args_parser.add_argument('--decoder_input_size', type=int, default=256, help='Number of input units in decoder RNN.') args_parser.add_argument('--hidden_size', type=int, default=256, help='Number of hidden units in RNN') args_parser.add_argument('--arc_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--type_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--encoder_layers', type=int, default=1, help='Number of layers of encoder RNN') args_parser.add_argument('--decoder_layers', type=int, default=1, help='Number of layers of decoder RNN') args_parser.add_argument('--char_num_filters', type=int, default=50, help='Number of filters in CNN(Character Level)') args_parser.add_argument('--eojul_num_filters', type=int, default=100, help='Number of filters in CNN(Eojul Level)') args_parser.add_argument('--pos', action='store_true', help='use part-of-speech embedding.') args_parser.add_argument('--char', action='store_true', help='use character embedding and CNN.') args_parser.add_argument('--eojul', action='store_true', help='use eojul embedding and CNN.') args_parser.add_argument('--word_dim', type=int, default=100, help='Dimension of Word embeddings') args_parser.add_argument('--pos_dim', type=int, default=50, help='Dimension of POS embeddings') args_parser.add_argument('--char_dim', type=int, default=50, help='Dimension of Character embeddings') args_parser.add_argument('--opt', choices=['adam', 'sgd', 'adamax'], help='optimization algorithm', default='adam') args_parser.add_argument('--learning_rate', type=float, default=0.001, help='Learning rate') args_parser.add_argument('--decay_rate', type=float, default=0.75, help='Decay rate of learning rate') args_parser.add_argument('--max_decay', type=int, default=9, help='Number of decays before stop') args_parser.add_argument('--double_schedule_decay', type=int, default=5, help='Number of decays to double schedule') args_parser.add_argument('--clip', type=float, default=5.0, help='gradient clipping') args_parser.add_argument('--gamma', type=float, default=0.0, help='weight for regularization') args_parser.add_argument('--epsilon', type=float, default=1e-8, help='epsilon for adam or adamax') args_parser.add_argument('--coverage', type=float, default=0.0, help='weight for coverage loss') args_parser.add_argument('--p_rnn', nargs=2, type=float, default=[0.33, 0.33], help='dropout rate for RNN') args_parser.add_argument('--p_in', type=float, default=0.33, help='dropout rate for input embeddings') args_parser.add_argument('--p_out', type=float, default=0.33, help='dropout rate for output layer') args_parser.add_argument('--label_smooth', type=float, default=1.0, help='weight of label smoothing method') args_parser.add_argument('--skipConnect', action='store_true', help='use skip connection for decoder RNN.') args_parser.add_argument('--grandPar', action='store_true', help='use grand parent.') args_parser.add_argument('--sibling', action='store_true', help='use sibling.') args_parser.add_argument( '--prior_order', choices=['inside_out', 'left2right', 'deep_first', 'shallow_first'], help='prior order of children.', required=True) args_parser.add_argument('--schedule', type=int, default=20, help='schedule for learning rate decay') args_parser.add_argument( '--unk_replace', type=float, default=0., help='The rate to replace a singleton word with UNK') args_parser.add_argument('--punctuation', nargs='+', type=str, help='List of punctuations') args_parser.add_argument('--beam', type=int, default=1, help='Beam size for decoding') args_parser.add_argument( '--word_embedding', choices=['random', 'word2vec', 'glove', 'senna', 'sskip', 'polyglot'], help='Embedding for words', required=True) args_parser.add_argument('--word_path', help='path for word embedding dict') args_parser.add_argument( '--freeze', action='store_true', help='frozen the word embedding (disable fine-tuning).') args_parser.add_argument('--char_embedding', choices=['random', 'word2vec'], help='Embedding for characters', required=True) args_parser.add_argument('--char_path', help='path for character embedding dict') args_parser.add_argument('--pos_embedding', choices=['random', 'word2vec'], help='Embedding for part of speeches', required=True) args_parser.add_argument('--pos_path', help='path for part of speech embedding dict') args_parser.add_argument( '--train') # "data/POS-penn/wsj/split1/wsj1.train.original" args_parser.add_argument( '--dev') # "data/POS-penn/wsj/split1/wsj1.dev.original" args_parser.add_argument( '--test') # "data/POS-penn/wsj/split1/wsj1.test.original" args_parser.add_argument('--model_path', help='path for saving model file.', required=True) args_parser.add_argument('--model_name', help='name for saving model file.', required=True) args_parser.add_argument('--use_gpu', action='store_true', help='use the gpu') args = args_parser.parse_args() logger = get_logger("PtrParser") mode = args.mode train_path = args.train dev_path = args.dev test_path = args.test model_path = args.model_path model_name = "{}_{}".format(str(uid), args.model_name) num_epochs = args.num_epochs batch_size = args.batch_size input_size_decoder = args.decoder_input_size hidden_size = args.hidden_size arc_space = args.arc_space type_space = args.type_space encoder_layers = args.encoder_layers decoder_layers = args.decoder_layers char_num_filters = args.char_num_filters eojul_num_filters = args.eojul_num_filters learning_rate = args.learning_rate opt = args.opt momentum = 0.9 betas = (0.9, 0.9) eps = args.epsilon decay_rate = args.decay_rate clip = args.clip gamma = args.gamma cov = args.coverage schedule = args.schedule p_rnn = tuple(args.p_rnn) p_in = args.p_in p_out = args.p_out label_smooth = args.label_smooth unk_replace = args.unk_replace prior_order = args.prior_order skipConnect = args.skipConnect grandPar = args.grandPar sibling = args.sibling use_gpu = args.use_gpu beam = args.beam punctuation = args.punctuation freeze = args.freeze word_embedding = args.word_embedding word_path = args.word_path use_char = args.char char_embedding = args.char_embedding char_path = args.char_path pos_embedding = args.pos_embedding pos_path = args.pos_path use_pos = args.pos if word_embedding != 'random': word_dict, word_dim = utils.load_embedding_dict( word_embedding, word_path) else: word_dict = {} word_dim = args.word_dim if char_embedding != 'random': char_dict, char_dim = utils.load_embedding_dict( char_embedding, char_path) else: if use_char: char_dict = {} char_dim = args.char_dim else: char_dict = None if pos_embedding != 'random': pos_dict, pos_dim = utils.load_embedding_dict(pos_embedding, pos_path) else: if use_pos: pos_dict = {} pos_dim = args.pos_dim else: pos_dict = None use_eojul = args.eojul logger.info("Creating Alphabets") alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) word_alphabet, char_alphabet, pos_alphabet, type_alphabet = conllx_stacked_data.create_alphabets( alphabet_path, train_path, data_paths=[dev_path, test_path], max_vocabulary_size=50000, embedd_dict=word_dict) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) logger.info("Reading Data") use_gpu = use_gpu data_train = conllx_stacked_data.read_stacked_data_to_variable( train_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, prior_order=prior_order) num_data = sum(data_train[1]) data_dev = conllx_stacked_data.read_stacked_data_to_variable( dev_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, prior_order=prior_order) data_test = conllx_stacked_data.read_stacked_data_to_variable( test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, prior_order=prior_order) punct_set = None if punctuation is not None: punct_set = set(punctuation) logger.info("punctuations(%d): %s" % (len(punct_set), ' '.join(punct_set))) def construct_word_embedding_table(): scale = np.sqrt(3.0 / word_dim) table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32) table[conllx_stacked_data.UNK_ID, :] = np.zeros([1, word_dim]).astype( np.float32) if freeze else np.random.uniform( -scale, scale, [1, word_dim]).astype(np.float32) oov = 0 for word, index in word_alphabet.items(): if word in word_dict: embedding = word_dict[word] elif word.lower() in word_dict: embedding = word_dict[word.lower()] else: embedding = np.zeros([1, word_dim]).astype( np.float32) if freeze else np.random.uniform( -scale, scale, [1, word_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('word OOV: %d' % oov) return torch.from_numpy(table) def construct_char_embedding_table(): if char_dict is None: return None scale = np.sqrt(3.0 / char_dim) table = np.empty([num_chars, char_dim], dtype=np.float32) table[conllx_stacked_data.UNK_ID, :] = np.random.uniform( -scale, scale, [1, char_dim]).astype(np.float32) oov = 0 for char, index in char_alphabet.items(): if char in char_dict: embedding = char_dict[char] else: embedding = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('character OOV: %d' % oov) return torch.from_numpy(table) def construct_pos_embedding_table(): if pos_dict is None: return None scale = np.sqrt(3.0 / pos_dim) table = np.empty([num_pos, pos_dim], dtype=np.float32) table[conllx_stacked_data.UNK_ID, :] = np.random.uniform( -scale, scale, [1, pos_dim]).astype(np.float32) oov = 0 for pos, index in pos_alphabet.items(): if pos in pos_dict: embedding = pos_dict[pos] else: embedding = np.random.uniform(-scale, scale, [1, pos_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('pos OOV: %d' % oov) return torch.from_numpy(table) word_table = construct_word_embedding_table() char_table = construct_char_embedding_table() pos_table = construct_pos_embedding_table() char_window = 3 eojul_window = 3 network = StackPtrNet(word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, char_num_filters, char_window, eojul_num_filters, eojul_window, mode, input_size_decoder, hidden_size, encoder_layers, decoder_layers, num_types, arc_space, type_space, embedd_word=word_table, embedd_char=char_table, embedd_pos=pos_table, p_in=p_in, p_out=p_out, p_rnn=p_rnn, biaffine=True, pos=use_pos, char=use_char, eojul=use_eojul, prior_order=prior_order, skipConnect=skipConnect, grandPar=grandPar, sibling=sibling) def save_args(): arg_path = model_name + '.arg.json' arguments = [ word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, char_num_filters, char_window, eojul_num_filters, eojul_window, mode, input_size_decoder, hidden_size, encoder_layers, decoder_layers, num_types, arc_space, type_space ] kwargs = { 'p_in': p_in, 'p_out': p_out, 'p_rnn': p_rnn, 'biaffine': True, 'pos': use_pos, 'char': use_char, 'eojul': use_eojul, 'prior_order': prior_order, 'skipConnect': skipConnect, 'grandPar': grandPar, 'sibling': sibling } json.dump({ 'args': arguments, 'kwargs': kwargs }, open(arg_path, 'w'), indent=4) if freeze: network.word_embedd.freeze() if use_gpu: network.cuda() save_args() pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) def generate_optimizer(opt, lr, params): params = filter(lambda param: param.requires_grad, params) if opt == 'adam': return Adam(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps) elif opt == 'sgd': return SGD(params, lr=lr, momentum=momentum, weight_decay=gamma, nesterov=True) elif opt == 'adamax': return Adamax(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps) else: raise ValueError('Unknown optimization algorithm: %s' % opt) lr = learning_rate optim = generate_optimizer(opt, lr, network.parameters()) opt_info = 'opt: %s, ' % opt if opt == 'adam': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) elif opt == 'sgd': opt_info += 'momentum=%.2f' % momentum elif opt == 'adamax': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) word_status = 'frozen' if freeze else 'fine tune' char_status = 'enabled' if use_char else 'disabled' pos_status = 'enabled' if use_pos else 'disabled' logger.info( "Embedding dim: word=%d (%s), char=%d (%s), pos=%d (%s)" % (word_dim, word_status, char_dim, char_status, pos_dim, pos_status)) logger.info("Char CNN: filter=%d, kernel=%d" % (char_num_filters, char_window)) logger.info("Eojul CNN: filter=%d, kernel=%d" % (eojul_num_filters, eojul_window)) logger.info( "RNN: %s, num_layer=(%d, %d), input_dec=%d, hidden=%d, arc_space=%d, type_space=%d" % (mode, encoder_layers, decoder_layers, input_size_decoder, hidden_size, arc_space, type_space)) logger.info( "train: cov: %.1f, (#data: %d, batch: %d, clip: %.2f, label_smooth: %.2f, unk_repl: %.2f)" % (cov, num_data, batch_size, clip, label_smooth, unk_replace)) logger.info("dropout(in, out, rnn): (%.2f, %.2f, %s)" % (p_in, p_out, p_rnn)) logger.info('prior order: %s, grand parent: %s, sibling: %s, ' % (prior_order, grandPar, sibling)) logger.info('skip connect: %s, beam: %d, use_gpu: %s' % (skipConnect, beam, use_gpu)) logger.info(opt_info) num_batches = num_data // batch_size + 1 dev_ucorrect = 0.0 dev_lcorrect = 0.0 dev_ucomlpete_match = 0.0 dev_lcomplete_match = 0.0 dev_ucorrect_nopunc = 0.0 dev_lcorrect_nopunc = 0.0 dev_ucomlpete_match_nopunc = 0.0 dev_lcomplete_match_nopunc = 0.0 dev_root_correct = 0.0 best_epoch = 0 test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_root_correct = 0.0 test_total = 0 test_total_nopunc = 0 test_total_inst = 0 test_total_root = 0 patient = 0 decay = 0. max_decay = args.max_decay double_schedule_decay = args.double_schedule_decay for epoch in range(1, num_epochs + 1): print( 'Epoch %d (%s, optim: %s, learning rate=%.6f, eps=%.1e, decay rate=%.2f (schedule=%d, patient=%d, decay=%d (%d, %d))): ' % (epoch, mode, opt, lr, eps, decay_rate, schedule, patient, decay, max_decay, double_schedule_decay)) train_err_arc_leaf = 0. train_err_arc_non_leaf = 0. train_err_type_leaf = 0. train_err_type_non_leaf = 0. train_err_cov = 0. train_total_leaf = 0. train_total_non_leaf = 0. start_time = time.time() num_back = 0 network.train() for batch in range(1, num_batches + 1): input_encoder, input_decoder = conllx_stacked_data.get_batch_stacked_variable( data_train, batch_size, unk_replace=unk_replace, use_gpu=use_gpu) word, char, pos, heads, types, masks_e, lengths_e = input_encoder stacked_heads, children, sibling, stacked_types, skip_connect, masks_d, lengths_d = input_decoder optim.zero_grad() loss_arc_leaf, loss_arc_non_leaf, \ loss_type_leaf, loss_type_non_leaf, \ loss_cov, num_leaf, num_non_leaf = network.loss(word, char, pos, heads, stacked_heads, children, sibling, stacked_types, label_smooth, skip_connect=skip_connect, mask_e=masks_e, length_e=lengths_e, mask_d=masks_d, length_d=lengths_d) loss_arc = loss_arc_leaf + loss_arc_non_leaf loss_type = loss_type_leaf + loss_type_non_leaf loss = loss_arc + loss_type + cov * loss_cov loss.backward() clip_grad_norm_(network.parameters(), clip) optim.step() num_leaf = num_leaf.item() ##180809 data[0] --> item() num_non_leaf = num_non_leaf.item() ##180809 data[0] --> item() train_err_arc_leaf += loss_arc_leaf.item( ) * num_leaf ##180809 data[0] --> item() train_err_arc_non_leaf += loss_arc_non_leaf.item( ) * num_non_leaf ##180809 data[0] --> item() train_err_type_leaf += loss_type_leaf.item( ) * num_leaf ##180809 data[0] --> item() train_err_type_non_leaf += loss_type_non_leaf.item( ) * num_non_leaf ##180809 data[0] --> item() train_err_cov += loss_cov.item() * (num_leaf + num_non_leaf ) ##180809 data[0] --> item() train_total_leaf += num_leaf train_total_non_leaf += num_non_leaf time_ave = (time.time() - start_time) / batch time_left = (num_batches - batch) * time_ave # update log if batch % 10 == 0: sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) err_arc_leaf = train_err_arc_leaf / train_total_leaf err_arc_non_leaf = train_err_arc_non_leaf / train_total_non_leaf err_arc = err_arc_leaf + err_arc_non_leaf err_type_leaf = train_err_type_leaf / train_total_leaf err_type_non_leaf = train_err_type_non_leaf / train_total_non_leaf err_type = err_type_leaf + err_type_non_leaf err_cov = train_err_cov / (train_total_leaf + train_total_non_leaf) err = err_arc + err_type + cov * err_cov log_info = 'train: %d/%d loss (leaf, non_leaf): %.4f, arc: %.4f (%.4f, %.4f), type: %.4f (%.4f, %.4f), coverage: %.4f, time left (estimated): %.2fs' % ( batch, num_batches, err, err_arc, err_arc_leaf, err_arc_non_leaf, err_type, err_type_leaf, err_type_non_leaf, err_cov, time_left) sys.stdout.write(log_info) sys.stdout.flush() num_back = len(log_info) sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) err_arc_leaf = train_err_arc_leaf / train_total_leaf err_arc_non_leaf = train_err_arc_non_leaf / train_total_non_leaf err_arc = err_arc_leaf + err_arc_non_leaf err_type_leaf = train_err_type_leaf / train_total_leaf err_type_non_leaf = train_err_type_non_leaf / train_total_non_leaf err_type = err_type_leaf + err_type_non_leaf err_cov = train_err_cov / (train_total_leaf + train_total_non_leaf) err = err_arc + err_type + cov * err_cov print( 'train: %d loss (leaf, non_leaf): %.4f, arc: %.4f (%.4f, %.4f), type: %.4f (%.4f, %.4f), coverage: %.4f, time: %.2fs' % (num_batches, err, err_arc, err_arc_leaf, err_arc_non_leaf, err_type, err_type_leaf, err_type_non_leaf, err_cov, time.time() - start_time)) #torch.save(network.state_dict(), model_name+"."+str(epoch)) #continue # evaluate performance on dev data network.eval() tmp_root = 'tmp' if not os.path.isdir(tmp_root): logger.info('Creating temporary folder(%s)' % (tmp_root, )) os.makedirs(tmp_root) pred_filename = '%s/%spred_dev%d' % (tmp_root, str(uid), epoch) pred_writer.start(pred_filename) gold_filename = '%s/%sgold_dev%d' % (tmp_root, str(uid), epoch) gold_writer.start(gold_filename) dev_ucorr = 0.0 dev_lcorr = 0.0 dev_total = 0 dev_ucomlpete = 0.0 dev_lcomplete = 0.0 dev_ucorr_nopunc = 0.0 dev_lcorr_nopunc = 0.0 dev_total_nopunc = 0 dev_ucomlpete_nopunc = 0.0 dev_lcomplete_nopunc = 0.0 dev_root_corr = 0.0 dev_total_root = 0.0 dev_total_inst = 0.0 for batch in conllx_stacked_data.iterate_batch_stacked_variable( data_dev, batch_size, use_gpu=use_gpu): input_encoder, _, sentences = batch word, char, pos, heads, types, masks, lengths = input_encoder heads_pred, types_pred, _, _ = network.decode( word, char, pos, mask=masks, length=lengths, beam=beam, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(sentences, word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(sentences, word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root dev_ucorr += ucorr dev_lcorr += lcorr dev_total += total dev_ucomlpete += ucm dev_lcomplete += lcm dev_ucorr_nopunc += ucorr_nopunc dev_lcorr_nopunc += lcorr_nopunc dev_total_nopunc += total_nopunc dev_ucomlpete_nopunc += ucm_nopunc dev_lcomplete_nopunc += lcm_nopunc dev_root_corr += corr_root dev_total_root += total_root dev_total_inst += num_inst pred_writer.close() gold_writer.close() print( 'W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (dev_ucorr, dev_lcorr, dev_total, dev_ucorr * 100 / dev_total, dev_lcorr * 100 / dev_total, dev_ucomlpete * 100 / dev_total_inst, dev_lcomplete * 100 / dev_total_inst)) print( 'Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (dev_ucorr_nopunc, dev_lcorr_nopunc, dev_total_nopunc, dev_ucorr_nopunc * 100 / dev_total_nopunc, dev_lcorr_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_nopunc * 100 / dev_total_inst, dev_lcomplete_nopunc * 100 / dev_total_inst)) print('Root: corr: %d, total: %d, acc: %.2f%%' % (dev_root_corr, dev_total_root, dev_root_corr * 100 / dev_total_root)) if dev_lcorrect_nopunc < dev_lcorr_nopunc or ( dev_lcorrect_nopunc == dev_lcorr_nopunc and dev_ucorrect_nopunc < dev_ucorr_nopunc): dev_ucorrect_nopunc = dev_ucorr_nopunc dev_lcorrect_nopunc = dev_lcorr_nopunc dev_ucomlpete_match_nopunc = dev_ucomlpete_nopunc dev_lcomplete_match_nopunc = dev_lcomplete_nopunc dev_ucorrect = dev_ucorr dev_lcorrect = dev_lcorr dev_ucomlpete_match = dev_ucomlpete dev_lcomplete_match = dev_lcomplete dev_root_correct = dev_root_corr best_epoch = epoch patient = 0 # torch.save(network, model_name) torch.save(network.state_dict(), model_name) pred_filename = 'tmp/%spred_test%d' % (str(uid), epoch) pred_writer.start(pred_filename) gold_filename = 'tmp/%sgold_test%d' % (str(uid), epoch) gold_writer.start(gold_filename) test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_total = 0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_total_nopunc = 0 test_total_inst = 0 test_root_correct = 0.0 test_total_root = 0 for batch in conllx_stacked_data.iterate_batch_stacked_variable( data_test, batch_size, use_gpu=use_gpu): input_encoder, _, sentences = batch word, char, pos, heads, types, masks, lengths = input_encoder heads_pred, types_pred, _, _ = network.decode( word, char, pos, mask=masks, length=lengths, beam=beam, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(sentences, word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(sentences, word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root test_ucorrect += ucorr test_lcorrect += lcorr test_total += total test_ucomlpete_match += ucm test_lcomplete_match += lcm test_ucorrect_nopunc += ucorr_nopunc test_lcorrect_nopunc += lcorr_nopunc test_total_nopunc += total_nopunc test_ucomlpete_match_nopunc += ucm_nopunc test_lcomplete_match_nopunc += lcm_nopunc test_root_correct += corr_root test_total_root += total_root test_total_inst += num_inst pred_writer.close() gold_writer.close() else: if dev_ucorr_nopunc * 100 / dev_total_nopunc < dev_ucorrect_nopunc * 100 / dev_total_nopunc - 5 or patient >= schedule: # network = torch.load(model_name) network.load_state_dict(torch.load(model_name)) lr = lr * decay_rate optim = generate_optimizer(opt, lr, network.parameters()) patient = 0 decay += 1 if decay % double_schedule_decay == 0: schedule *= 2 else: patient += 1 print( '----------------------------------------------------------------------------------------------------------------------------' ) print( 'best dev W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (dev_ucorrect, dev_lcorrect, dev_total, dev_ucorrect * 100 / dev_total, dev_lcorrect * 100 / dev_total, dev_ucomlpete_match * 100 / dev_total_inst, dev_lcomplete_match * 100 / dev_total_inst, best_epoch)) print( 'best dev Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (dev_ucorrect_nopunc, dev_lcorrect_nopunc, dev_total_nopunc, dev_ucorrect_nopunc * 100 / dev_total_nopunc, dev_lcorrect_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_match_nopunc * 100 / dev_total_inst, dev_lcomplete_match_nopunc * 100 / dev_total_inst, best_epoch)) print('best dev Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (dev_root_correct, dev_total_root, dev_root_correct * 100 / dev_total_root, best_epoch)) if test_total_inst != 0 or test_total != 0: print( '----------------------------------------------------------------------------------------------------------------------------' ) print( 'best test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total, test_ucomlpete_match * 100 / test_total_inst, test_lcomplete_match * 100 / test_total_inst, best_epoch)) print( 'best test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc, test_ucomlpete_match_nopunc * 100 / test_total_inst, test_lcomplete_match_nopunc * 100 / test_total_inst, best_epoch)) print( 'best test Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (test_root_correct, test_total_root, test_root_correct * 100 / test_total_root, best_epoch)) print( '============================================================================================================================' ) if decay == max_decay: break
def main(): args_parser = argparse.ArgumentParser( description='Tuning with stack pointer parser') args_parser.add_argument('--mode', choices=['RNN', 'LSTM', 'GRU', 'FastLSTM'], help='architecture of rnn', required=True) args_parser.add_argument('--num_epochs', type=int, default=200, help='Number of training epochs') args_parser.add_argument('--batch_size', type=int, default=64, help='Number of sentences in each batch') args_parser.add_argument('--hidden_size', type=int, default=256, help='Number of hidden units in RNN') args_parser.add_argument('--arc_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--type_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--num_layers', type=int, default=1, help='Number of layers of RNN') args_parser.add_argument('--num_filters', type=int, default=50, help='Number of filters in CNN') args_parser.add_argument('--pos_dim', type=int, default=50, help='Dimension of POS embeddings') args_parser.add_argument('--char_dim', type=int, default=50, help='Dimension of Character embeddings') args_parser.add_argument('--opt', choices=['adam', 'sgd', 'adadelta'], help='optimization algorithm') args_parser.add_argument('--learning_rate', type=float, default=0.001, help='Learning rate') args_parser.add_argument('--decay_rate', type=float, default=0.5, help='Decay rate of learning rate') args_parser.add_argument('--clip', type=float, default=5.0, help='gradient clipping') args_parser.add_argument('--gamma', type=float, default=0.0, help='weight for regularization') args_parser.add_argument('--coverage', type=float, default=0.0, help='weight for coverage loss') args_parser.add_argument('--p_rnn', nargs=2, type=float, required=True, help='dropout rate for RNN') args_parser.add_argument('--p_in', type=float, default=0.33, help='dropout rate for input embeddings') args_parser.add_argument('--p_out', type=float, default=0.33, help='dropout rate for output layer') args_parser.add_argument( '--prior_order', choices=['inside_out', 'left2right', 'deep_first', 'shallow_first'], help='prior order of children.', required=True) args_parser.add_argument('--schedule', type=int, help='schedule for learning rate decay') args_parser.add_argument( '--unk_replace', type=float, default=0., help='The rate to replace a singleton word with UNK') args_parser.add_argument('--punctuation', nargs='+', type=str, help='List of punctuations') args_parser.add_argument('--beam', type=int, default=1, help='Beam size for decoding') args_parser.add_argument('--word_embedding', choices=['glove', 'senna', 'sskip', 'polyglot'], help='Embedding for words', required=True) args_parser.add_argument('--word_path', help='path for word embedding dict') args_parser.add_argument('--char_embedding', choices=['random', 'polyglot'], help='Embedding for characters', required=True) args_parser.add_argument('--char_path', help='path for character embedding dict') args_parser.add_argument( '--train') # "data/POS-penn/wsj/split1/wsj1.train.original" args_parser.add_argument( '--dev') # "data/POS-penn/wsj/split1/wsj1.dev.original" args_parser.add_argument( '--test') # "data/POS-penn/wsj/split1/wsj1.test.original" args_parser.add_argument('--model_path', help='path for saving model file.', required=True) args_parser.add_argument('--model_name', help='name for saving model file.', required=True) args = args_parser.parse_args() logger = get_logger("PtrParser") mode = args.mode train_path = args.train dev_path = args.dev test_path = args.test model_path = args.model_path model_name = args.model_name num_epochs = args.num_epochs batch_size = args.batch_size hidden_size = args.hidden_size arc_space = args.arc_space type_space = args.type_space num_layers = args.num_layers num_filters = args.num_filters learning_rate = args.learning_rate opt = args.opt momentum = 0.9 betas = (0.9, 0.9) rho = 0.9 eps = 1e-6 decay_rate = args.decay_rate clip = args.clip gamma = args.gamma cov = args.coverage schedule = args.schedule p_rnn = tuple(args.p_rnn) p_in = args.p_in p_out = args.p_out unk_replace = args.unk_replace prior_order = args.prior_order beam = args.beam punctuation = args.punctuation word_embedding = args.word_embedding word_path = args.word_path char_embedding = args.char_embedding char_path = args.char_path pos_dim = args.pos_dim word_dict, word_dim = utils.load_embedding_dict(word_embedding, word_path) char_dict = None char_dim = args.char_dim if char_embedding != 'random': char_dict, char_dim = utils.load_embedding_dict( char_embedding, char_path) logger.info("Creating Alphabets") alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) word_alphabet, char_alphabet, pos_alphabet, type_alphabet = conllx_stacked_data.create_alphabets( alphabet_path, train_path, data_paths=[dev_path, test_path], max_vocabulary_size=50000, embedd_dict=word_dict) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) logger.info("Reading Data") use_gpu = torch.cuda.is_available() data_train = conllx_stacked_data.read_stacked_data_to_variable( train_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, prior_order=prior_order) num_data = sum(data_train[1]) data_dev = conllx_stacked_data.read_stacked_data_to_variable( dev_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=True, prior_order=prior_order) data_test = conllx_stacked_data.read_stacked_data_to_variable( test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=True, prior_order=prior_order) punct_set = None if punctuation is not None: punct_set = set(punctuation) logger.info("punctuations(%d): %s" % (len(punct_set), ' '.join(punct_set))) def construct_word_embedding_table(): scale = np.sqrt(3.0 / word_dim) table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32) table[conllx_stacked_data.UNK_ID, :] = np.random.uniform( -scale, scale, [1, word_dim]).astype(np.float32) oov = 0 for word, index in word_alphabet.items(): if word in word_dict: embedding = word_dict[word] elif word.lower() in word_dict: embedding = word_dict[word.lower()] else: embedding = np.random.uniform(-scale, scale, [1, word_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('word OOV: %d' % oov) return torch.from_numpy(table) def construct_char_embedding_table(): if char_dict is None: return None scale = np.sqrt(3.0 / char_dim) table = np.empty([num_chars, char_dim], dtype=np.float32) table[conllx_stacked_data.UNK_ID, :] = np.random.uniform( -scale, scale, [1, char_dim]).astype(np.float32) oov = 0 for char, index, in char_alphabet.items(): if char in char_dict: embedding = char_dict[char] else: embedding = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('character OOV: %d' % oov) return torch.from_numpy(table) word_table = construct_word_embedding_table() char_table = construct_char_embedding_table() window = 3 network = StackPtrNet(word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, hidden_size, num_layers, num_types, arc_space, type_space, embedd_word=word_table, embedd_char=char_table, p_in=p_in, p_out=p_out, p_rnn=p_rnn, biaffine=True, prior_order=prior_order) if use_gpu: network.cuda() pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) def generate_optimizer(opt, lr, params): if opt == 'adam': return Adam(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps) elif opt == 'sgd': return SGD(params, lr=lr, momentum=momentum, weight_decay=gamma, nesterov=True) elif opt == 'adadelta': return Adadelta(params, lr=lr, rho=rho, weight_decay=gamma, eps=eps) else: raise ValueError('Unknown optimization algorithm: %s' % opt) lr = learning_rate optim = generate_optimizer(opt, lr, network.parameters()) opt_info = 'opt: %s, ' % opt if opt == 'adam': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) elif opt == 'sgd': opt_info += 'momentum=%.2f' % momentum elif opt == 'adadelta': opt_info += 'rho=%.2f, eps=%.1e' % (rho, eps) logger.info("Embedding dim: word=%d, char=%d, pos=%d" % (word_dim, char_dim, pos_dim)) logger.info( "Network: %s, num_layer=%d, hidden=%d, filter=%d, arc_space=%d, type_space=%d" % (mode, num_layers, hidden_size, num_filters, arc_space, type_space)) logger.info( "train: cov: %.1f, (#data: %d, batch: %d, clip: %.2f, dropout(in, out, rnn): (%.2f, %.2f, %s), unk_repl: %.2f)" % (cov, num_data, batch_size, clip, p_in, p_out, p_rnn, unk_replace)) logger.info('prior order: %s, beam: %d' % (prior_order, beam)) logger.info(opt_info) num_batches = num_data / batch_size + 1 dev_ucorrect = 0.0 dev_lcorrect = 0.0 dev_ucomlpete_match = 0.0 dev_lcomplete_match = 0.0 dev_ucorrect_nopunc = 0.0 dev_lcorrect_nopunc = 0.0 dev_ucomlpete_match_nopunc = 0.0 dev_lcomplete_match_nopunc = 0.0 dev_root_correct = 0.0 best_epoch = 0 test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_root_correct = 0.0 test_total = 0 test_total_nopunc = 0 test_total_inst = 0 test_total_root = 0 patient = 0 for epoch in range(1, num_epochs + 1): print( 'Epoch %d (%s, optim: %s, learning rate=%.6f, decay rate=%.2f (schedule=%d, patient=%d)): ' % (epoch, mode, opt, lr, decay_rate, schedule, patient)) train_err_arc_leaf = 0. train_err_arc_non_leaf = 0. train_err_type_leaf = 0. train_err_type_non_leaf = 0. train_err_cov = 0. train_total_leaf = 0. train_total_non_leaf = 0. start_time = time.time() num_back = 0 network.train() for batch in range(1, num_batches + 1): input_encoder, input_decoder = conllx_stacked_data.get_batch_stacked_variable( data_train, batch_size, unk_replace=unk_replace) word, char, pos, heads, types, masks_e, lengths_e = input_encoder stacked_heads, children, stacked_types, masks_d, lengths_d = input_decoder optim.zero_grad() loss_arc_leaf, loss_arc_non_leaf, \ loss_type_leaf, loss_type_non_leaf, \ loss_cov, num_leaf, num_non_leaf = network.loss(word, char, pos, stacked_heads, children, stacked_types, mask_e=masks_e, length_e=lengths_e, mask_d=masks_d, length_d=lengths_d) loss_arc = loss_arc_leaf + loss_arc_non_leaf loss_type = loss_type_leaf + loss_type_non_leaf loss = loss_arc + loss_type + cov * loss_cov loss.backward() clip_grad_norm(network.parameters(), clip) optim.step() num_leaf = num_leaf.data[0] num_non_leaf = num_non_leaf.data[0] train_err_arc_leaf += loss_arc_leaf.data[0] * num_leaf train_err_arc_non_leaf += loss_arc_non_leaf.data[0] * num_non_leaf train_err_type_leaf += loss_type_leaf.data[0] * num_leaf train_err_type_non_leaf += loss_type_non_leaf.data[0] * num_non_leaf train_err_cov += loss_cov.data[0] * (num_leaf + num_non_leaf) train_total_leaf += num_leaf train_total_non_leaf += num_non_leaf time_ave = (time.time() - start_time) / batch time_left = (num_batches - batch) * time_ave # update log if batch % 10 == 0: sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) err_arc_leaf = train_err_arc_leaf / train_total_leaf err_arc_non_leaf = train_err_arc_non_leaf / train_total_non_leaf err_arc = err_arc_leaf + err_arc_non_leaf err_type_leaf = train_err_type_leaf / train_total_leaf err_type_non_leaf = train_err_type_non_leaf / train_total_non_leaf err_type = err_type_leaf + err_type_non_leaf err_cov = train_err_cov / (train_total_leaf + train_total_non_leaf) err = err_arc + err_type + cov * err_cov log_info = 'train: %d/%d loss (leaf, non_leaf): %.4f, arc: %.4f (%.4f, %.4f), type: %.4f (%.4f, %.4f), coverage: %.4f, time left (estimated): %.2fs' % ( batch, num_batches, err, err_arc, err_arc_leaf, err_arc_non_leaf, err_type, err_type_leaf, err_type_non_leaf, err_cov, time_left) sys.stdout.write(log_info) sys.stdout.flush() num_back = len(log_info) sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) err_arc_leaf = train_err_arc_leaf / train_total_leaf err_arc_non_leaf = train_err_arc_non_leaf / train_total_non_leaf err_arc = err_arc_leaf + err_arc_non_leaf err_type_leaf = train_err_type_leaf / train_total_leaf err_type_non_leaf = train_err_type_non_leaf / train_total_non_leaf err_type = err_type_leaf + err_type_non_leaf err_cov = train_err_cov / (train_total_leaf + train_total_non_leaf) err = err_arc + err_type + cov * err_cov print( 'train: %d loss (leaf, non_leaf): %.4f, arc: %.4f (%.4f, %.4f), type: %.4f (%.4f, %.4f), coverage: %.4f, time: %.2fs' % (num_batches, err, err_arc, err_arc_leaf, err_arc_non_leaf, err_type, err_type_leaf, err_type_non_leaf, err_cov, time.time() - start_time)) # evaluate performance on dev data network.eval() pred_filename = 'tmp/%spred_dev%d' % (str(uid), epoch) pred_writer.start(pred_filename) gold_filename = 'tmp/%sgold_dev%d' % (str(uid), epoch) gold_writer.start(gold_filename) dev_ucorr = 0.0 dev_lcorr = 0.0 dev_total = 0 dev_ucomlpete = 0.0 dev_lcomplete = 0.0 dev_ucorr_nopunc = 0.0 dev_lcorr_nopunc = 0.0 dev_total_nopunc = 0 dev_ucomlpete_nopunc = 0.0 dev_lcomplete_nopunc = 0.0 dev_root_corr = 0.0 dev_total_root = 0.0 dev_total_inst = 0.0 for batch in conllx_stacked_data.iterate_batch_stacked_variable( data_dev, batch_size): input_encoder, _ = batch word, char, pos, heads, types, masks, lengths = input_encoder heads_pred, types_pred, _, _ = network.decode( word, char, pos, mask=masks, length=lengths, beam=beam, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root dev_ucorr += ucorr dev_lcorr += lcorr dev_total += total dev_ucomlpete += ucm dev_lcomplete += lcm dev_ucorr_nopunc += ucorr_nopunc dev_lcorr_nopunc += lcorr_nopunc dev_total_nopunc += total_nopunc dev_ucomlpete_nopunc += ucm_nopunc dev_lcomplete_nopunc += lcm_nopunc dev_root_corr += corr_root dev_total_root += total_root dev_total_inst += num_inst pred_writer.close() gold_writer.close() print( 'W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (dev_ucorr, dev_lcorr, dev_total, dev_ucorr * 100 / dev_total, dev_lcorr * 100 / dev_total, dev_ucomlpete * 100 / dev_total_inst, dev_lcomplete * 100 / dev_total_inst)) print( 'Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (dev_ucorr_nopunc, dev_lcorr_nopunc, dev_total_nopunc, dev_ucorr_nopunc * 100 / dev_total_nopunc, dev_lcorr_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_nopunc * 100 / dev_total_inst, dev_lcomplete_nopunc * 100 / dev_total_inst)) print('Root: corr: %d, total: %d, acc: %.2f%%' % (dev_root_corr, dev_total_root, dev_root_corr * 100 / dev_total_root)) if dev_ucorrect_nopunc <= dev_ucorr_nopunc: dev_ucorrect_nopunc = dev_ucorr_nopunc dev_lcorrect_nopunc = dev_lcorr_nopunc dev_ucomlpete_match_nopunc = dev_ucomlpete_nopunc dev_lcomplete_match_nopunc = dev_lcomplete_nopunc dev_ucorrect = dev_ucorr dev_lcorrect = dev_lcorr dev_ucomlpete_match = dev_ucomlpete dev_lcomplete_match = dev_lcomplete dev_root_correct = dev_root_corr best_epoch = epoch patient = 0 torch.save(network, model_name) pred_filename = 'tmp/%spred_test%d' % (str(uid), epoch) pred_writer.start(pred_filename) gold_filename = 'tmp/%sgold_test%d' % (str(uid), epoch) gold_writer.start(gold_filename) test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_total = 0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_total_nopunc = 0 test_total_inst = 0 test_root_correct = 0.0 test_total_root = 0 for batch in conllx_stacked_data.iterate_batch_stacked_variable( data_test, batch_size): input_encoder, _ = batch word, char, pos, heads, types, masks, lengths = input_encoder heads_pred, types_pred, _, _ = network.decode( word, char, pos, mask=masks, length=lengths, beam=beam, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root test_ucorrect += ucorr test_lcorrect += lcorr test_total += total test_ucomlpete_match += ucm test_lcomplete_match += lcm test_ucorrect_nopunc += ucorr_nopunc test_lcorrect_nopunc += lcorr_nopunc test_total_nopunc += total_nopunc test_ucomlpete_match_nopunc += ucm_nopunc test_lcomplete_match_nopunc += lcm_nopunc test_root_correct += corr_root test_total_root += total_root test_total_inst += num_inst pred_writer.close() gold_writer.close() else: if patient < schedule: patient += 1 else: network = torch.load(model_name) lr = lr * decay_rate optim = generate_optimizer(opt, lr, network.parameters()) patient = 0 print( '----------------------------------------------------------------------------------------------------------------------------' ) print( 'best dev W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (dev_ucorrect, dev_lcorrect, dev_total, dev_ucorrect * 100 / dev_total, dev_lcorrect * 100 / dev_total, dev_ucomlpete_match * 100 / dev_total_inst, dev_lcomplete_match * 100 / dev_total_inst, best_epoch)) print( 'best dev Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (dev_ucorrect_nopunc, dev_lcorrect_nopunc, dev_total_nopunc, dev_ucorrect_nopunc * 100 / dev_total_nopunc, dev_lcorrect_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_match_nopunc * 100 / dev_total_inst, dev_lcomplete_match_nopunc * 100 / dev_total_inst, best_epoch)) print('best dev Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (dev_root_correct, dev_total_root, dev_root_correct * 100 / dev_total_root, best_epoch)) print( '----------------------------------------------------------------------------------------------------------------------------' ) print( 'best test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total, test_ucomlpete_match * 100 / test_total_inst, test_lcomplete_match * 100 / test_total_inst, best_epoch)) print( 'best test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc, test_ucomlpete_match_nopunc * 100 / test_total_inst, test_lcomplete_match_nopunc * 100 / test_total_inst, best_epoch)) print('best test Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (test_root_correct, test_total_root, test_root_correct * 100 / test_total_root, best_epoch)) print( '============================================================================================================================' )
def main(): args_parser = argparse.ArgumentParser(description='Testing with stack pointer parser') args_parser.add_argument('--model_path', help='path for parser model directory', required=True) args_parser.add_argument('--model_name', help='parser model file', required=True) args_parser.add_argument('--output_path', help='path for result with parser model', required=True) args_parser.add_argument('--test', required=True) args_parser.add_argument('--beam', type=int, default=1, help='Beam size for decoding') args_parser.add_argument('--use_gpu', action='store_true', help='use the gpu') args_parser.add_argument('--batch_size', type=int, default=32) args = args_parser.parse_args() logger = get_logger("PtrParser Decoding") model_path = args.model_path model_name = os.path.join(model_path, args.model_name) output_path = args.output_path beam = args.beam use_gpu = args.use_gpu test_path = args.test batch_size = args.batch_size def load_args(): with open("{}.arg.json".format(model_name)) as f: key_parameters = json.loads(f.read()) return key_parameters['args'], key_parameters['kwargs'] # arguments = [word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, char_num_filters, char_window, eojul_num_filters, eojul_window, # mode, input_size_decoder, hidden_size, encoder_layers, decoder_layers, # num_types, arc_space, type_space] # kwargs = {'p_in': p_in, 'p_out': p_out, 'p_rnn': p_rnn, 'biaffine': True, 'pos': use_pos, 'char': use_char, 'eojul': use_eojul, 'prior_order': prior_order, # 'skipConnect': skipConnect, 'grandPar': grandPar, 'sibling': sibling} arguments, kwarguments = load_args() mode = arguments[10] input_size_decoder = arguments[11] hidden_size = arguments[12] arc_space = arguments[16] type_space = arguments[17] encoder_layers = arguments[13] decoder_layers = arguments[14] char_num_filters = arguments[6] eojul_num_filters = arguments[8] p_rnn = kwarguments['p_rnn'] p_in = kwarguments['p_in'] p_out = kwarguments['p_out'] prior_order = kwarguments['prior_order'] skipConnect = kwarguments['skipConnect'] grandPar = kwarguments['grandPar'] sibling = kwarguments['sibling'] use_char = kwarguments['char'] use_pos = kwarguments['pos'] use_eojul = kwarguments['eojul'] logger.info("Creating Alphabets") alphabet_path = os.path.join(model_path, 'alphabets/') word_alphabet, char_alphabet, pos_alphabet, type_alphabet = conllx_stacked_data.load_alphabets(alphabet_path) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) logger.info("Reading Data") data_test = conllx_stacked_data.read_stacked_data_to_variable(test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, prior_order=prior_order) num_data = sum(data_test[1]) word_table = None word_dim = arguments[0] char_table = None char_dim = arguments[2] pos_table = None pos_dim = arguments[4] char_window = arguments[7] eojul_window = arguments[9] if arguments[1] != num_words: print("Mismatching number of word vocabulary({} != {})".format(arguments[1], num_words)) exit() if arguments[3] != num_chars: print("Mismatching number of character vocabulary({} != {})".format(arguments[3], num_chars)) exit() if arguments[5] != num_pos: print("Mismatching number of part-of-speech vocabulary({} != {})".format(arguments[5], num_pos)) exit() if arguments[15] != num_types: print("Mismatching number types of vocabulary({} != {})".format(arguments[14], num_types)) exit() network = StackPtrNet(word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, char_num_filters, char_window, eojul_num_filters, eojul_window, mode, input_size_decoder, hidden_size, encoder_layers, decoder_layers, num_types, arc_space, type_space, embedd_word=word_table, embedd_char=char_table, embedd_pos=pos_table, p_in=p_in, p_out=p_out, p_rnn=p_rnn, biaffine=True, pos=use_pos, char=use_char, eojul=use_eojul, prior_order=prior_order, skipConnect=skipConnect, grandPar=grandPar, sibling=sibling) if use_gpu: network.cuda() print("loading model: {}".format(model_name)) if use_gpu: network.load_state_dict(torch.load(model_name)) else: network.load_state_dict(torch.load(model_name, map_location='cpu')) pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) logger.info("Embedding dim: word=%d, char=%d, pos=%d" % (word_dim, char_dim, pos_dim)) logger.info("Char CNN: filter=%d, kernel=%d" % (char_num_filters, char_window)) logger.info("Eojul CNN: filter=%d, kernel=%d" % (eojul_num_filters, eojul_window)) logger.info("RNN: %s, num_layer=(%d, %d), input_dec=%d, hidden=%d, arc_space=%d, type_space=%d" % ( mode, encoder_layers, decoder_layers, input_size_decoder, hidden_size, arc_space, type_space)) logger.info("dropout(in, out, rnn): (%.2f, %.2f, %s)" % (p_in, p_out, p_rnn)) logger.info('prior order: %s, grand parent: %s, sibling: %s, ' % (prior_order, grandPar, sibling)) logger.info('skip connect: %s, beam: %d, use_gpu: %s' % (skipConnect, beam, use_gpu)) network.eval() pred_filename = '%s/pred_test.txt' % (output_path, ) pred_writer.start(pred_filename) gold_filename = '%s/gold_test.txt' % (output_path, ) gold_writer.start(gold_filename) test_ucorrect = 0.0 test_lcorrect = 0.0 test_total = 0 test_total_inst = 0 test_root_correct = 0.0 test_total_root = 0 num_back = 0 for batch in conllx_stacked_data.iterate_batch_stacked_variable(data_test, batch_size, use_gpu=use_gpu): input_encoder, _, sentences = batch word, char, pos, heads, types, masks, lengths = input_encoder heads_pred, types_pred, _, _ = network.decode(word, char, pos, mask=masks, length=lengths, beam=beam, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(sentences, word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(sentences, word, pos, heads, types, lengths, symbolic_root=True) stats, _, stats_root, num_inst = parser.eval(word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=None, symbolic_root=True) ucorr, lcorr, total, _, _ = stats corr_root, total_root = stats_root test_ucorrect += ucorr test_lcorrect += lcorr test_total += total test_root_correct += corr_root test_total_root += total_root test_total_inst += num_inst sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) log_info = "({:.1f}%){}/{}".format(test_total_inst * 100 / num_data, test_total_inst, num_data) sys.stdout.write(log_info) sys.stdout.flush() num_back = len(log_info) pred_writer.close() gold_writer.close() sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) print('----------------------------------------------------------------------------------------------------------------------------') print('best test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%' % ( test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total)) print('best test Root: corr: %d, total: %d, acc: %.2f%%' % (test_root_correct, test_total_root, test_root_correct * 100 / test_total_root)) print('============================================================================================================================')
def stackptr(model_path, model_name, test_path, punct_set, use_gpu, logger, args): pos_embedding = args.pos_embedding alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) word_alphabet, char_alphabet, pos_alphabet, type_alphabet = conllx_stacked_data.create_alphabets\ (alphabet_path,None, pos_embedding,data_paths=[None, None], max_vocabulary_size=50000, embedd_dict=None) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) beam = args.beam ordered = args.ordered use_bert = args.bert bert_path = args.bert_path bert_feature_dim = args.bert_feature_dim if use_bert: etri_test_path = args.etri_test else: etri_test_path = None def load_model_arguments_from_json(): arguments = json.load(open(arg_path, 'r')) return arguments['args'], arguments['kwargs'] arg_path = model_name + '.arg.json' args, kwargs = load_model_arguments_from_json() prior_order = kwargs['prior_order'] logger.info('use gpu: %s, beam: %d, order: %s (%s)' % (use_gpu, beam, prior_order, ordered)) data_test = conllx_stacked_data.read_stacked_data_to_variable(test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, pos_embedding, use_gpu=use_gpu, volatile=True, prior_order=prior_order, is_test=False, bert=use_bert, etri_path=etri_test_path) pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet, pos_embedding) logger.info('model: %s' % model_name) word_path = os.path.join(model_path, 'embedding.txt') word_dict, word_dim = utils.load_embedding_dict('NNLM', word_path) def get_embedding_table(): table = np.empty([len(word_dict), word_dim]) for idx,(word, embedding) in enumerate(word_dict.items()): try: table[idx, :] = embedding except: print(word) return torch.from_numpy(table) def construct_word_embedding_table(): scale = np.sqrt(3.0 / word_dim) table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32) table[conllx_stacked_data.UNK_ID, :] = np.random.uniform(-scale, scale, [1, word_dim]).astype(np.float32) oov = 0 for word, index in list(word_alphabet.items()): if word in word_dict: embedding = word_dict[word] elif word.lower() in word_dict: embedding = word_dict[word.lower()] else: embedding = np.random.uniform(-scale, scale, [1, word_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('word OOV: %d' % oov) return torch.from_numpy(table) # word_table = get_embedding_table() word_table = construct_word_embedding_table() # kwargs['embedd_word'] = word_table # args[1] = len(word_dict) # word_dim network = StackPtrNet(*args, **kwargs, bert=use_bert, bert_path=bert_path, bert_feature_dim=bert_feature_dim) network.load_state_dict(torch.load(model_name)) """ model_dict = network.state_dict() pretrained_dict = torch.load(model_name) model_dict.update({k:v for k,v in list(pretrained_dict.items()) if k != 'word_embedd.weight'}) network.load_state_dict(model_dict) """ if use_gpu: network.cuda() else: network.cpu() network.eval() if not ordered: pred_writer.start(model_path + '/inference.txt') else: pred_writer.start(model_path + '/RL_B[test].txt') sent = 1 dev_ucorr_nopunc = 0.0 dev_lcorr_nopunc = 0.0 dev_total_nopunc = 0 dev_ucomlpete_nopunc = 0.0 dev_lcomplete_nopunc = 0.0 dev_total_inst = 0.0 sys.stdout.write('Start!\n') start_time = time.time() for batch in conllx_stacked_data.iterate_batch_stacked_variable(data_test, 1, pos_embedding, type='dev', bert=use_bert): if sent % 100 == 0: #### print('Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % ( dev_ucorr_nopunc, dev_lcorr_nopunc, dev_total_nopunc, dev_ucorr_nopunc * 100 / dev_total_nopunc, dev_lcorr_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_nopunc * 100 / dev_total_inst, dev_lcomplete_nopunc * 100 / dev_total_inst)) sys.stdout.write('[%d/%d]\n' %(sent, int(data_test[2][0]))) #### sys.stdout.flush() sent += 1 input_encoder, input_decoder = batch word, char, pos, heads, types, masks_e, lengths, word_bert = input_encoder stacked_heads, children, sibling, stacked_types, skip_connect, previous, nexts, masks_d, lengths_d = input_decoder heads_pred, types_pred, _, _ = network.decode(word, char, pos, previous, nexts, stacked_heads, mask_e=masks_e, mask_d=masks_d, length=lengths, beam=beam, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS, input_word_bert=word_bert) """ stacked_heads = stacked_heads.data children = children.data stacked_types = stacked_types.data children_pred = torch.from_numpy(children_pred).long() stacked_types_pred = torch.from_numpy(stacked_types_pred).long() if use_gpu: children_pred = children_pred.cuda() stacked_types_pred = stacked_types_pred.cuda() """ word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.test_write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) ########### stats, stats_nopunc, _, num_inst = parser.eval(word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc dev_ucorr_nopunc += ucorr_nopunc dev_lcorr_nopunc += lcorr_nopunc dev_total_nopunc += total_nopunc dev_ucomlpete_nopunc += ucm_nopunc dev_lcomplete_nopunc += lcm_nopunc dev_total_inst += num_inst end_time = time.time() ################ pred_writer.close() print('\nFINISHED!!\n', end_time - start_time) print('Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % ( dev_ucorr_nopunc, dev_lcorr_nopunc, dev_total_nopunc, dev_ucorr_nopunc * 100 / dev_total_nopunc, dev_lcorr_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_nopunc * 100 / dev_total_inst, dev_lcomplete_nopunc * 100 / dev_total_inst))