def __init__(self, model_path, model_name): print("................................................") print("LOADING Biaffine Model") alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) self.word_alpha, self.char_alpha, self.tag_alpha, self.type_alpha = conllx_data.create_alphabets(alphabet_path, None, data_paths=[None, None], max_vocabulary_size=50000, embedd_dict=None) self.id2word = {v: k for k, v in self.word_alpha.instance2index.iteritems()} num_words = self.word_alpha.size() num_chars = self.char_alpha.size() num_pos = self.tag_alpha.size() num_types = self.type_alpha.size() print("Word Alphabet Size: %d" % num_words) print("Character Alphabet Size: %d" % num_chars) print("POS Alphabet Size: %d" % num_pos) print("Type Alphabet Size: %d" % num_types) def load_model_arguments_from_json(): arguments = json.load(open(arg_path, 'r')) return arguments['args'], arguments['kwargs'] arg_path = model_name + '.arg.json' args, kwargs = load_model_arguments_from_json() self.network = BiRecurrentConvBiAffine(*args, **kwargs) self.network.load_state_dict(torch.load(model_name)) self.network.id2word = self.id2word self.network.cuda() self.network.eval()
def main(): args_parser = argparse.ArgumentParser(description='Tuning with graph-based parsing') args_parser.add_argument('--mode', choices=['RNN', 'LSTM', 'GRU', 'FastLSTM'], help='architecture of rnn', required=True) args_parser.add_argument('--num_epochs', type=int, default=200, help='Number of training epochs') args_parser.add_argument('--batch_size', type=int, default=64, help='Number of sentences in each batch') args_parser.add_argument('--hidden_size', type=int, default=256, help='Number of hidden units in RNN') args_parser.add_argument('--arc_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--type_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--num_layers', type=int, default=1, help='Number of layers of RNN') args_parser.add_argument('--num_filters', type=int, default=50, help='Number of filters in CNN') args_parser.add_argument('--pos', action='store_true', help='use part-of-speech embedding.') args_parser.add_argument('--pos_dim', type=int, default=50, help='Dimension of POS embeddings') args_parser.add_argument('--char_dim', type=int, default=50, help='Dimension of Character embeddings') args_parser.add_argument('--objective', choices=['cross_entropy', 'crf'], default='cross_entropy', help='objective function of training procedure.') args_parser.add_argument('--decode', choices=['mst', 'greedy'], help='decoding algorithm', required=True) args_parser.add_argument('--learning_rate', type=float, default=0.01, help='Learning rate') args_parser.add_argument('--decay_rate', type=float, default=0.05, help='Decay rate of learning rate') args_parser.add_argument('--gamma', type=float, default=0.0, help='weight for regularization') args_parser.add_argument('--p_rnn', nargs=2, type=float, required=True, help='dropout rate for RNN') args_parser.add_argument('--p_in', type=float, default=0.33, help='dropout rate for input embeddings') args_parser.add_argument('--p_out', type=float, default=0.33, help='dropout rate for output layer') args_parser.add_argument('--schedule', type=int, help='schedule for learning rate decay') args_parser.add_argument('--unk_replace', type=float, default=0., help='The rate to replace a singleton word with UNK') args_parser.add_argument('--punctuation', nargs='+', type=str, help='List of punctuations') args_parser.add_argument('--word_embedding', choices=['glove', 'senna', 'sskip', 'polyglot'], help='Embedding for words', required=True) args_parser.add_argument('--word_path', help='path for word embedding dict') args_parser.add_argument('--char_embedding', choices=['random', 'polyglot'], help='Embedding for characters', required=True) args_parser.add_argument('--char_path', help='path for character embedding dict') args_parser.add_argument('--train') # "data/POS-penn/wsj/split1/wsj1.train.original" args_parser.add_argument('--dev') # "data/POS-penn/wsj/split1/wsj1.dev.original" args_parser.add_argument('--test') # "data/POS-penn/wsj/split1/wsj1.test.original" args_parser.add_argument('--model_path', help='path for saving model file.', required=True) args = args_parser.parse_args() print("*** Model UID: %s ***" % uid) logger = get_logger("GraphParser") mode = args.mode obj = args.objective decoding = args.decode train_path = args.train dev_path = args.dev test_path = args.test model_path = args.model_path num_epochs = args.num_epochs batch_size = args.batch_size hidden_size = args.hidden_size arc_space = args.arc_space type_space = args.type_space num_layers = args.num_layers num_filters = args.num_filters learning_rate = args.learning_rate momentum = 0.9 betas = (0.9, 0.9) decay_rate = args.decay_rate gamma = args.gamma schedule = args.schedule p_rnn = tuple(args.p_rnn) p_in = args.p_in p_out = args.p_out unk_replace = args.unk_replace punctuation = args.punctuation word_embedding = args.word_embedding word_path = args.word_path char_embedding = args.char_embedding char_path = args.char_path use_pos = args.pos pos_dim = args.pos_dim word_dict, word_dim = utils.load_embedding_dict(word_embedding, word_path) char_dict = None char_dim = args.char_dim if char_embedding != 'random': char_dict, char_dim = utils.load_embedding_dict(char_embedding, char_path) logger.info("Creating Alphabets") alphabet_path = os.path.join(model_path, 'alphabets/') word_alphabet, char_alphabet, pos_alphabet, type_alphabet = conllx_data.create_alphabets(alphabet_path, train_path, data_paths=[dev_path, test_path], max_vocabulary_size=50000, embedd_dict=word_dict) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) logger.info("Reading Data") use_gpu = torch.cuda.is_available() data_train = conllx_data.read_data_to_variable(train_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, symbolic_root=True) # data_train = conllx_data.read_data(train_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet) # num_data = sum([len(bucket) for bucket in data_train]) num_data = sum(data_train[1]) data_dev = conllx_data.read_data_to_variable(dev_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=True, symbolic_root=True) data_test = conllx_data.read_data_to_variable(test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=True, symbolic_root=True) punct_set = None if punctuation is not None: punct_set = set(punctuation) logger.info("punctuations(%d): %s" % (len(punct_set), ' '.join(punct_set))) def construct_word_embedding_table(): scale = np.sqrt(3.0 / word_dim) table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32) table[conllx_data.UNK_ID, :] = np.random.uniform(-scale, scale, [1, word_dim]).astype(np.float32) oov = 0 for word, index in word_alphabet.items(): if word in word_dict: embedding = word_dict[word] elif word.lower() in word_dict: embedding = word_dict[word.lower()] else: embedding = np.random.uniform(-scale, scale, [1, word_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('word OOV: %d' % oov) return torch.from_numpy(table) def construct_char_embedding_table(): if char_dict is None: return None scale = np.sqrt(3.0 / char_dim) table = np.empty([num_chars, char_dim], dtype=np.float32) table[conllx_data.UNK_ID, :] = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) oov = 0 for char, index, in char_alphabet.items(): if char in char_dict: embedding = char_dict[char] else: embedding = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('character OOV: %d' % oov) return torch.from_numpy(table) word_table = construct_word_embedding_table() char_table = construct_char_embedding_table() window = 3 if obj == 'cross_entropy': network = BiRecurrentConvBiAffine(word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, hidden_size, num_layers, num_types, arc_space, type_space, embedd_word=word_table, embedd_char=char_table, p_in=p_in, p_out=p_out, p_rnn=p_rnn, biaffine=True, pos=use_pos) elif obj == 'crf': raise NotImplementedError else: raise RuntimeError('Unknown objective: %s' % obj) if use_gpu: network.cuda() pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) adam_epochs = 50 adam_rate = 0.001 if adam_epochs > 0: lr = adam_rate opt = 'adam' optim = Adam(network.parameters(), lr=adam_rate, betas=betas, weight_decay=gamma) else: opt = 'sgd' lr = learning_rate optim = SGD(network.parameters(), lr=lr, momentum=momentum, weight_decay=gamma, nesterov=True) logger.info("Embedding dim: word=%d, char=%d, pos=%d (%s)" % (word_dim, char_dim, pos_dim, use_pos)) logger.info("Network: %s, num_layer=%d, hidden=%d, filter=%d, arc_space=%d, type_space=%d" % ( mode, num_layers, hidden_size, num_filters, arc_space, type_space)) logger.info("train: obj: %s, l2: %f, (#data: %d, batch: %d, dropout(in, out, rnn): (%.2f, %.2f, %s), unk replace: %.2f)" % ( obj, gamma, num_data, batch_size, p_in, p_out, p_rnn, unk_replace)) logger.info("decoding algorithm: %s" % decoding) num_batches = num_data / batch_size + 1 dev_ucorrect = 0.0 dev_lcorrect = 0.0 dev_ucomlpete_match = 0.0 dev_lcomplete_match = 0.0 dev_ucorrect_nopunc = 0.0 dev_lcorrect_nopunc = 0.0 dev_ucomlpete_match_nopunc = 0.0 dev_lcomplete_match_nopunc = 0.0 dev_root_correct = 0.0 best_epoch = 0 test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_root_correct = 0.0 test_total = 0 test_total_nopunc = 0 test_total_inst = 0 test_total_root = 0 if decoding == 'greedy': decode = network.decode elif decoding == 'mst': decode = network.decode_mst else: raise ValueError('Unknown decoding algorithm: %s' % decoding) for epoch in range(1, num_epochs + 1): print('Epoch %d (%s, optim: %s, learning rate=%.4f, decay rate=%.4f (schedule=%d)): ' % ( epoch, mode, opt, lr, decay_rate, schedule)) train_err = 0. train_err_arc = 0. train_err_type = 0. train_total = 0. start_time = time.time() num_back = 0 network.train() for batch in range(1, num_batches + 1): word, char, pos, heads, types, masks, lengths = conllx_data.get_batch_variable(data_train, batch_size, unk_replace=unk_replace) optim.zero_grad() loss_arc, loss_type = network.loss(word, char, pos, heads, types, mask=masks, length=lengths) loss = loss_arc + loss_type loss.backward() optim.step() num_inst = word.size(0) if obj == 'crf' else masks.data.sum() - word.size(0) train_err += loss.data[0] * num_inst train_err_arc += loss_arc.data[0] * num_inst train_err_type += loss_type.data[0] * num_inst train_total += num_inst time_ave = (time.time() - start_time) / batch time_left = (num_batches - batch) * time_ave # update log if batch % 10 == 0: sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) log_info = 'train: %d/%d loss: %.4f, arc: %.4f, type: %.4f, time left (estimated): %.2fs' % ( batch, num_batches, train_err / train_total, train_err_arc / train_total, train_err_type / train_total, time_left) sys.stdout.write(log_info) sys.stdout.flush() num_back = len(log_info) sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) print('train: %d loss: %.4f, arc: %.4f, type: %.4f, time: %.2fs' % ( num_batches, train_err / train_total, train_err_arc / train_total, train_err_type / train_total, time.time() - start_time)) # evaluate performance on dev data network.eval() pred_filename = 'tmp/%spred_dev%d' % (str(uid), epoch) pred_writer.start(pred_filename) gold_filename = 'tmp/%sgold_dev%d' % (str(uid), epoch) gold_writer.start(gold_filename) print('[%s] Epoch %d complete' % (time.strftime("%Y-%m-%d %H:%M:%S"), epoch)) dev_ucorr = 0.0 dev_lcorr = 0.0 dev_total = 0 dev_ucomlpete = 0.0 dev_lcomplete = 0.0 dev_ucorr_nopunc = 0.0 dev_lcorr_nopunc = 0.0 dev_total_nopunc = 0 dev_ucomlpete_nopunc = 0.0 dev_lcomplete_nopunc = 0.0 dev_root_corr = 0.0 dev_total_root = 0.0 dev_total_inst = 0.0 for batch in conllx_data.iterate_batch_variable(data_dev, batch_size): word, char, pos, heads, types, masks, lengths = batch heads_pred, types_pred = decode(word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval(word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root dev_ucorr += ucorr dev_lcorr += lcorr dev_total += total dev_ucomlpete += ucm dev_lcomplete += lcm dev_ucorr_nopunc += ucorr_nopunc dev_lcorr_nopunc += lcorr_nopunc dev_total_nopunc += total_nopunc dev_ucomlpete_nopunc += ucm_nopunc dev_lcomplete_nopunc += lcm_nopunc dev_root_corr += corr_root dev_total_root += total_root dev_total_inst += num_inst pred_writer.close() gold_writer.close() print('W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % ( dev_ucorr, dev_lcorr, dev_total, dev_ucorr * 100 / dev_total, dev_lcorr * 100 / dev_total, dev_ucomlpete * 100 / dev_total_inst, dev_lcomplete * 100 / dev_total_inst)) print('Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % ( dev_ucorr_nopunc, dev_lcorr_nopunc, dev_total_nopunc, dev_ucorr_nopunc * 100 / dev_total_nopunc, dev_lcorr_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_nopunc * 100 / dev_total_inst, dev_lcomplete_nopunc * 100 / dev_total_inst)) print('Root: corr: %d, total: %d, acc: %.2f%%' %( dev_root_corr, dev_total_root, dev_root_corr * 100 / dev_total_root)) if dev_ucorrect_nopunc <= dev_ucorr_nopunc: dev_ucorrect_nopunc = dev_ucorr_nopunc dev_lcorrect_nopunc = dev_lcorr_nopunc dev_ucomlpete_match_nopunc = dev_ucomlpete_nopunc dev_lcomplete_match_nopunc = dev_lcomplete_nopunc dev_ucorrect = dev_ucorr dev_lcorrect = dev_lcorr dev_ucomlpete_match = dev_ucomlpete dev_lcomplete_match = dev_lcomplete dev_root_correct = dev_root_corr best_epoch = epoch pred_filename = 'tmp/%spred_test%d' % (str(uid), epoch) pred_writer.start(pred_filename) gold_filename = 'tmp/%sgold_test%d' % (str(uid), epoch) gold_writer.start(gold_filename) test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_total = 0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_total_nopunc = 0 test_total_inst = 0 test_root_correct = 0.0 test_total_root = 0 for batch in conllx_data.iterate_batch_variable(data_test, batch_size): word, char, pos, heads, types, masks, lengths = batch heads_pred, types_pred = decode(word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval(word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root test_ucorrect += ucorr test_lcorrect += lcorr test_total += total test_ucomlpete_match += ucm test_lcomplete_match += lcm test_ucorrect_nopunc += ucorr_nopunc test_lcorrect_nopunc += lcorr_nopunc test_total_nopunc += total_nopunc test_ucomlpete_match_nopunc += ucm_nopunc test_lcomplete_match_nopunc += lcm_nopunc test_root_correct += corr_root test_total_root += total_root test_total_inst += num_inst pred_writer.close() gold_writer.close() print('----------------------------------------------------------------------------------------------------------------------------') print('best dev W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( dev_ucorrect, dev_lcorrect, dev_total, dev_ucorrect * 100 / dev_total, dev_lcorrect * 100 / dev_total, dev_ucomlpete_match * 100 / dev_total_inst, dev_lcomplete_match * 100 / dev_total_inst, best_epoch)) print('best dev Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( dev_ucorrect_nopunc, dev_lcorrect_nopunc, dev_total_nopunc, dev_ucorrect_nopunc * 100 / dev_total_nopunc, dev_lcorrect_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_match_nopunc * 100 / dev_total_inst, dev_lcomplete_match_nopunc * 100 / dev_total_inst, best_epoch)) print('best dev Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % ( dev_root_correct, dev_total_root, dev_root_correct * 100 / dev_total_root, best_epoch)) print('----------------------------------------------------------------------------------------------------------------------------') print('best test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total, test_ucomlpete_match * 100 / test_total_inst, test_lcomplete_match * 100 / test_total_inst, best_epoch)) print('best test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc, test_ucomlpete_match_nopunc * 100 / test_total_inst, test_lcomplete_match_nopunc * 100 / test_total_inst, best_epoch)) print('best test Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % ( test_root_correct, test_total_root, test_root_correct * 100 / test_total_root, best_epoch)) print('============================================================================================================================') if epoch % schedule == 0: # lr = lr * decay_rate if epoch < adam_epochs: opt = 'adam' lr = adam_rate / (1.0 + epoch * decay_rate) optim = Adam(network.parameters(), lr=lr, betas=betas, weight_decay=gamma) else: opt = 'sgd' lr = learning_rate / (1.0 + (epoch - adam_epochs) * decay_rate) optim = SGD(network.parameters(), lr=lr, momentum=momentum, weight_decay=gamma, nesterov=True)
def biaffine(model_path, model_name, test_path, punct_set, use_gpu, logger, args): alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) word_alphabet, char_alphabet, pos_alphabet, \ type_alphabet = conllx_data.create_alphabets(alphabet_path, None, data_paths=[None, None], max_vocabulary_size=50000, embedd_dict=None) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) decoding = args.decode logger.info('use gpu: %s, decoding: %s' % (use_gpu, decoding)) data_test = conllx_data.read_data_to_tensor(test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=True, symbolic_root=True) pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) logger.info('model: %s' % model_name) def load_model_arguments_from_json(): arguments = json.load(open(arg_path, 'r')) return arguments['args'], arguments['kwargs'] arg_path = model_name + '.arg.json' args, kwargs = load_model_arguments_from_json() network = BiRecurrentConvBiAffine(*args, **kwargs) network.load_state_dict(torch.load(model_name)) if use_gpu: network.cuda() else: network.cpu() network.eval() test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_total = 0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_total_nopunc = 0 test_total_inst = 0 test_root_correct = 0.0 test_total_root = 0 if decoding == 'greedy': decode = network.decode elif decoding == 'mst': decode = network.decode_mst else: raise ValueError('Unknown decoding algorithm: %s' % decoding) pred_writer.start('tmp/analyze_pred_%s' % str(uid)) gold_writer.start('tmp/analyze_gold_%s' % str(uid)) sent = 0 start_time = time.time() for batch in conllx_data.iterate_batch_tensor(data_test, 1): sys.stdout.write('%d, ' % sent) sys.stdout.flush() sent += 1 word, char, pos, heads, types, masks, lengths = batch heads_pred, types_pred = decode( word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root test_ucorrect += ucorr test_lcorrect += lcorr test_total += total test_ucomlpete_match += ucm test_lcomplete_match += lcm test_ucorrect_nopunc += ucorr_nopunc test_lcorrect_nopunc += lcorr_nopunc test_total_nopunc += total_nopunc test_ucomlpete_match_nopunc += ucm_nopunc test_lcomplete_match_nopunc += lcm_nopunc test_root_correct += corr_root test_total_root += total_root test_total_inst += num_inst pred_writer.close() gold_writer.close() print('\ntime: %.2fs' % (time.time() - start_time)) print( 'test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total, test_ucomlpete_match * 100 / test_total_inst, test_lcomplete_match * 100 / test_total_inst)) print( 'test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc, test_ucomlpete_match_nopunc * 100 / test_total_inst, test_lcomplete_match_nopunc * 100 / test_total_inst)) print('test Root: corr: %d, total: %d, acc: %.2f%%' % (test_root_correct, test_total_root, test_root_correct * 100 / test_total_root))
def main(): args_parser = argparse.ArgumentParser(description='Tuning with graph-based parsing') args_parser.add_argument('--test_phase', action='store_true', help='Load trained model and run testing phase.') args_parser.add_argument('--mode', choices=['RNN', 'LSTM', 'GRU', 'FastLSTM'], help='architecture of rnn', required=True) args_parser.add_argument('--cuda', action='store_true', help='using GPU') args_parser.add_argument('--num_epochs', type=int, default=200, help='Number of training epochs') args_parser.add_argument('--batch_size', type=int, default=64, help='Number of sentences in each batch') args_parser.add_argument('--hidden_size', type=int, default=256, help='Number of hidden units in RNN') args_parser.add_argument('--arc_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--type_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--num_layers', type=int, default=1, help='Number of layers of RNN') args_parser.add_argument('--num_filters', type=int, default=50, help='Number of filters in CNN') args_parser.add_argument('--pos', action='store_true', help='use part-of-speech embedding.') args_parser.add_argument('--char', action='store_true', help='use character embedding and CNN.') args_parser.add_argument('--pos_dim', type=int, default=50, help='Dimension of POS embeddings') args_parser.add_argument('--char_dim', type=int, default=50, help='Dimension of Character embeddings') args_parser.add_argument('--opt', choices=['adam', 'sgd', 'adamax'], help='optimization algorithm') args_parser.add_argument('--objective', choices=['cross_entropy', 'crf'], default='cross_entropy', help='objective function of training procedure.') args_parser.add_argument('--decode', choices=['mst', 'greedy'], help='decoding algorithm', required=True) args_parser.add_argument('--learning_rate', type=float, default=0.01, help='Learning rate') args_parser.add_argument('--decay_rate', type=float, default=0.05, help='Decay rate of learning rate') args_parser.add_argument('--clip', type=float, default=5.0, help='gradient clipping') args_parser.add_argument('--gamma', type=float, default=0.0, help='weight for regularization') args_parser.add_argument('--epsilon', type=float, default=1e-8, help='epsilon for adam or adamax') args_parser.add_argument('--p_rnn', nargs=2, type=float, required=True, help='dropout rate for RNN') args_parser.add_argument('--p_in', type=float, default=0.33, help='dropout rate for input embeddings') args_parser.add_argument('--p_out', type=float, default=0.33, help='dropout rate for output layer') args_parser.add_argument('--schedule', type=int, help='schedule for learning rate decay') args_parser.add_argument('--unk_replace', type=float, default=0., help='The rate to replace a singleton word with UNK') args_parser.add_argument('--punctuation', nargs='+', type=str, help='List of punctuations') args_parser.add_argument('--word_embedding', choices=['glove', 'senna', 'sskip', 'polyglot'], help='Embedding for words', required=True) args_parser.add_argument('--word_path', help='path for word embedding dict') args_parser.add_argument('--freeze', action='store_true', help='frozen the word embedding (disable fine-tuning).') args_parser.add_argument('--char_embedding', choices=['random', 'polyglot'], help='Embedding for characters', required=True) args_parser.add_argument('--char_path', help='path for character embedding dict') args_parser.add_argument('--train') # "data/POS-penn/wsj/split1/wsj1.train.original" args_parser.add_argument('--dev') # "data/POS-penn/wsj/split1/wsj1.dev.original" args_parser.add_argument('--test') # "data/POS-penn/wsj/split1/wsj1.test.original" args_parser.add_argument('--model_path', help='path for saving model file.', required=True) args_parser.add_argument('--model_name', help='name for saving model file.', required=True) args = args_parser.parse_args() logger = get_logger("GraphParser") mode = args.mode obj = args.objective decoding = args.decode train_path = args.train dev_path = args.dev test_path = args.test model_path = args.model_path model_name = args.model_name num_epochs = args.num_epochs batch_size = args.batch_size hidden_size = args.hidden_size arc_space = args.arc_space type_space = args.type_space num_layers = args.num_layers num_filters = args.num_filters learning_rate = args.learning_rate opt = args.opt momentum = 0.9 betas = (0.9, 0.9) eps = args.epsilon decay_rate = args.decay_rate clip = args.clip gamma = args.gamma schedule = args.schedule p_rnn = tuple(args.p_rnn) p_in = args.p_in p_out = args.p_out unk_replace = args.unk_replace punctuation = args.punctuation freeze = args.freeze word_embedding = args.word_embedding word_path = args.word_path use_char = args.char char_embedding = args.char_embedding char_path = args.char_path use_pos = args.pos pos_dim = args.pos_dim word_dict, word_dim = utils.load_embedding_dict(word_embedding, word_path) char_dict = None char_dim = args.char_dim if char_embedding != 'random': char_dict, char_dim = utils.load_embedding_dict(char_embedding, char_path) logger.info("Creating Alphabets") alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) word_alphabet, char_alphabet, pos_alphabet, type_alphabet = conllx_data.create_alphabets(alphabet_path, train_path, data_paths=[dev_path, test_path], max_vocabulary_size=100000, embedd_dict=word_dict) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) logger.info("Reading Data") device = torch.device('cuda') if args.cuda else torch.device('cpu') data_train = conllx_data.read_data_to_tensor(train_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, symbolic_root=True, device=device) # data_train = conllx_data.read_data(train_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet) # num_data = sum([len(bucket) for bucket in data_train]) num_data = sum(data_train[1]) data_dev = conllx_data.read_data_to_tensor(dev_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, symbolic_root=True, device=device) data_test = conllx_data.read_data_to_tensor(test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, symbolic_root=True, device=device) punct_set = None if punctuation is not None: punct_set = set(punctuation) logger.info("punctuations(%d): %s" % (len(punct_set), ' '.join(punct_set))) def construct_word_embedding_table(): scale = np.sqrt(3.0 / word_dim) table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32) table[conllx_data.UNK_ID, :] = np.zeros([1, word_dim]).astype(np.float32) if freeze else np.random.uniform(-scale, scale, [1, word_dim]).astype(np.float32) oov = 0 for word, index in word_alphabet.items(): if word in word_dict: embedding = word_dict[word] elif word.lower() in word_dict: embedding = word_dict[word.lower()] else: embedding = np.zeros([1, word_dim]).astype(np.float32) if freeze else np.random.uniform(-scale, scale, [1, word_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('word OOV: %d' % oov) return torch.from_numpy(table) def construct_char_embedding_table(): if char_dict is None: return None scale = np.sqrt(3.0 / char_dim) table = np.empty([num_chars, char_dim], dtype=np.float32) table[conllx_data.UNK_ID, :] = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) oov = 0 for char, index, in char_alphabet.items(): if char in char_dict: embedding = char_dict[char] else: embedding = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('character OOV: %d' % oov) return torch.from_numpy(table) word_table = construct_word_embedding_table() char_table = construct_char_embedding_table() window = 3 if obj == 'cross_entropy': network = BiRecurrentConvBiAffine(word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, hidden_size, num_layers, num_types, arc_space, type_space, embedd_word=word_table, embedd_char=char_table, p_in=p_in, p_out=p_out, p_rnn=p_rnn, biaffine=True, pos=use_pos, char=use_char) elif obj == 'crf': raise NotImplementedError else: raise RuntimeError('Unknown objective: %s' % obj) def save_args(): arg_path = model_name + '.arg.json' arguments = [word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, hidden_size, num_layers, num_types, arc_space, type_space] kwargs = {'p_in': p_in, 'p_out': p_out, 'p_rnn': p_rnn, 'biaffine': True, 'pos': use_pos, 'char': use_char} json.dump({'args': arguments, 'kwargs': kwargs}, open(arg_path, 'w'), indent=4) if freeze: freeze_embedding(network.word_embedd) network = network.to(device) save_args() pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) def generate_optimizer(opt, lr, params): params = filter(lambda param: param.requires_grad, params) if opt == 'adam': return Adam(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps) elif opt == 'sgd': return SGD(params, lr=lr, momentum=momentum, weight_decay=gamma, nesterov=True) elif opt == 'adamax': return Adamax(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps) else: raise ValueError('Unknown optimization algorithm: %s' % opt) lr = learning_rate optim = generate_optimizer(opt, lr, network.parameters()) opt_info = 'opt: %s, ' % opt if opt == 'adam': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) elif opt == 'sgd': opt_info += 'momentum=%.2f' % momentum elif opt == 'adamax': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) word_status = 'frozen' if freeze else 'fine tune' char_status = 'enabled' if use_char else 'disabled' pos_status = 'enabled' if use_pos else 'disabled' logger.info("Embedding dim: word=%d (%s), char=%d (%s), pos=%d (%s)" % (word_dim, word_status, char_dim, char_status, pos_dim, pos_status)) logger.info("CNN: filter=%d, kernel=%d" % (num_filters, window)) logger.info("RNN: %s, num_layer=%d, hidden=%d, arc_space=%d, type_space=%d" % (mode, num_layers, hidden_size, arc_space, type_space)) logger.info("train: obj: %s, l2: %f, (#data: %d, batch: %d, clip: %.2f, unk replace: %.2f)" % (obj, gamma, num_data, batch_size, clip, unk_replace)) logger.info("dropout(in, out, rnn): (%.2f, %.2f, %s)" % (p_in, p_out, p_rnn)) logger.info("decoding algorithm: %s" % decoding) logger.info(opt_info) num_batches = num_data / batch_size + 1 dev_ucorrect = 0.0 dev_lcorrect = 0.0 dev_ucomlpete_match = 0.0 dev_lcomplete_match = 0.0 dev_ucorrect_nopunc = 0.0 dev_lcorrect_nopunc = 0.0 dev_ucomlpete_match_nopunc = 0.0 dev_lcomplete_match_nopunc = 0.0 dev_root_correct = 0.0 best_epoch = 0 test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_root_correct = 0.0 test_total = 0 test_total_nopunc = 0 test_total_inst = 0 test_total_root = 0 if decoding == 'greedy': decode = network.decode elif decoding == 'mst': decode = network.decode_mst else: raise ValueError('Unknown decoding algorithm: %s' % decoding) patient = 0 decay = 0 max_decay = 9 double_schedule_decay = 5 for epoch in range(1, num_epochs + 1): print('Epoch %d (%s, optim: %s, learning rate=%.6f, eps=%.1e, decay rate=%.2f (schedule=%d, patient=%d, decay=%d)): ' % (epoch, mode, opt, lr, eps, decay_rate, schedule, patient, decay)) train_err = 0. train_err_arc = 0. train_err_type = 0. train_total = 0. start_time = time.time() num_back = 0 network.train() for batch in range(1, num_batches + 1): word, char, pos, heads, types, masks, lengths = conllx_data.get_batch_tensor(data_train, batch_size, unk_replace=unk_replace) optim.zero_grad() loss_arc, loss_type = network.loss(word, char, pos, heads, types, mask=masks, length=lengths) loss = loss_arc + loss_type loss.backward() clip_grad_norm_(network.parameters(), clip) optim.step() with torch.no_grad(): num_inst = word.size(0) if obj == 'crf' else masks.sum() - word.size(0) train_err += loss * num_inst train_err_arc += loss_arc * num_inst train_err_type += loss_type * num_inst train_total += num_inst time_ave = (time.time() - start_time) / batch time_left = (num_batches - batch) * time_ave # update log if batch % 10 == 0: sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) log_info = 'train: %d/%d loss: %.4f, arc: %.4f, type: %.4f, time left: %.2fs' % (batch, num_batches, train_err / train_total, train_err_arc / train_total, train_err_type / train_total, time_left) sys.stdout.write(log_info) sys.stdout.flush() num_back = len(log_info) sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) print('train: %d loss: %.4f, arc: %.4f, type: %.4f, time: %.2fs' % (num_batches, train_err / train_total, train_err_arc / train_total, train_err_type / train_total, time.time() - start_time)) # evaluate performance on dev data with torch.no_grad(): network.eval() pred_filename = 'tmp/%spred_dev%d' % (str(uid), epoch) pred_writer.start(pred_filename) gold_filename = 'tmp/%sgold_dev%d' % (str(uid), epoch) gold_writer.start(gold_filename) dev_ucorr = 0.0 dev_lcorr = 0.0 dev_total = 0 dev_ucomlpete = 0.0 dev_lcomplete = 0.0 dev_ucorr_nopunc = 0.0 dev_lcorr_nopunc = 0.0 dev_total_nopunc = 0 dev_ucomlpete_nopunc = 0.0 dev_lcomplete_nopunc = 0.0 dev_root_corr = 0.0 dev_total_root = 0.0 dev_total_inst = 0.0 for batch in conllx_data.iterate_batch_tensor(data_dev, batch_size): word, char, pos, heads, types, masks, lengths = batch heads_pred, types_pred = decode(word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS) word = word.cpu().numpy() pos = pos.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.cpu().numpy() types = types.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval(word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root dev_ucorr += ucorr dev_lcorr += lcorr dev_total += total dev_ucomlpete += ucm dev_lcomplete += lcm dev_ucorr_nopunc += ucorr_nopunc dev_lcorr_nopunc += lcorr_nopunc dev_total_nopunc += total_nopunc dev_ucomlpete_nopunc += ucm_nopunc dev_lcomplete_nopunc += lcm_nopunc dev_root_corr += corr_root dev_total_root += total_root dev_total_inst += num_inst pred_writer.close() gold_writer.close() print('W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % ( dev_ucorr, dev_lcorr, dev_total, dev_ucorr * 100 / dev_total, dev_lcorr * 100 / dev_total, dev_ucomlpete * 100 / dev_total_inst, dev_lcomplete * 100 / dev_total_inst)) print('Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % ( dev_ucorr_nopunc, dev_lcorr_nopunc, dev_total_nopunc, dev_ucorr_nopunc * 100 / dev_total_nopunc, dev_lcorr_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_nopunc * 100 / dev_total_inst, dev_lcomplete_nopunc * 100 / dev_total_inst)) print('Root: corr: %d, total: %d, acc: %.2f%%' %(dev_root_corr, dev_total_root, dev_root_corr * 100 / dev_total_root)) if dev_lcorrect_nopunc < dev_lcorr_nopunc or (dev_lcorrect_nopunc == dev_lcorr_nopunc and dev_ucorrect_nopunc < dev_ucorr_nopunc): dev_ucorrect_nopunc = dev_ucorr_nopunc dev_lcorrect_nopunc = dev_lcorr_nopunc dev_ucomlpete_match_nopunc = dev_ucomlpete_nopunc dev_lcomplete_match_nopunc = dev_lcomplete_nopunc dev_ucorrect = dev_ucorr dev_lcorrect = dev_lcorr dev_ucomlpete_match = dev_ucomlpete dev_lcomplete_match = dev_lcomplete dev_root_correct = dev_root_corr best_epoch = epoch patient = 0 # torch.save(network, model_name) torch.save(network.state_dict(), model_name) pred_filename = 'tmp/%spred_test%d' % (str(uid), epoch) pred_writer.start(pred_filename) gold_filename = 'tmp/%sgold_test%d' % (str(uid), epoch) gold_writer.start(gold_filename) test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_total = 0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_total_nopunc = 0 test_total_inst = 0 test_root_correct = 0.0 test_total_root = 0 for batch in conllx_data.iterate_batch_tensor(data_test, batch_size): word, char, pos, heads, types, masks, lengths = batch heads_pred, types_pred = decode(word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS) word = word.cpu().numpy() pos = pos.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.cpu().numpy() types = types.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval(word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root test_ucorrect += ucorr test_lcorrect += lcorr test_total += total test_ucomlpete_match += ucm test_lcomplete_match += lcm test_ucorrect_nopunc += ucorr_nopunc test_lcorrect_nopunc += lcorr_nopunc test_total_nopunc += total_nopunc test_ucomlpete_match_nopunc += ucm_nopunc test_lcomplete_match_nopunc += lcm_nopunc test_root_correct += corr_root test_total_root += total_root test_total_inst += num_inst pred_writer.close() gold_writer.close() else: if dev_ucorr_nopunc * 100 / dev_total_nopunc < dev_ucorrect_nopunc * 100 / dev_total_nopunc - 5 or patient >= schedule: # network = torch.load(model_name) network.load_state_dict(torch.load(model_name)) lr = lr * decay_rate optim = generate_optimizer(opt, lr, network.parameters()) if decoding == 'greedy': decode = network.decode elif decoding == 'mst': decode = network.decode_mst else: raise ValueError('Unknown decoding algorithm: %s' % decoding) patient = 0 decay += 1 if decay % double_schedule_decay == 0: schedule *= 2 else: patient += 1 print('----------------------------------------------------------------------------------------------------------------------------') print('best dev W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( dev_ucorrect, dev_lcorrect, dev_total, dev_ucorrect * 100 / dev_total, dev_lcorrect * 100 / dev_total, dev_ucomlpete_match * 100 / dev_total_inst, dev_lcomplete_match * 100 / dev_total_inst, best_epoch)) print('best dev Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( dev_ucorrect_nopunc, dev_lcorrect_nopunc, dev_total_nopunc, dev_ucorrect_nopunc * 100 / dev_total_nopunc, dev_lcorrect_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_match_nopunc * 100 / dev_total_inst, dev_lcomplete_match_nopunc * 100 / dev_total_inst, best_epoch)) print('best dev Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % ( dev_root_correct, dev_total_root, dev_root_correct * 100 / dev_total_root, best_epoch)) print('----------------------------------------------------------------------------------------------------------------------------') print('best test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total, test_ucomlpete_match * 100 / test_total_inst, test_lcomplete_match * 100 / test_total_inst, best_epoch)) print('best test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc, test_ucomlpete_match_nopunc * 100 / test_total_inst, test_lcomplete_match_nopunc * 100 / test_total_inst, best_epoch)) print('best test Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % ( test_root_correct, test_total_root, test_root_correct * 100 / test_total_root, best_epoch)) print('============================================================================================================================') if decay == max_decay: break
word_alphabet = Alphabet('word', defualt_value=True, singleton=True) parser = torch.load(pretrained_dependency_parser_fn, map_location=custom_args.device) network = BiRecurrentConvBiAffine(args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], args[8], args[9], args[10], args[11], args[12], args[13], embedd_word=None, embedd_char=None, p_in=kwargs['p_in'], p_out=kwargs['p_out'], p_rnn=kwargs['p_rnn'], biaffine=kwargs['biaffine'], pos=kwargs['pos'], char=kwargs['char']) char_alphabet.load(pretrained_dependency_parser_vocab_fn) pos_alphabet.load(pretrained_dependency_parser_vocab_fn) type_alphabet.load(pretrained_dependency_parser_vocab_fn) word_alphabet.load(pretrained_dependency_parser_vocab_fn)
def main(): args_parser = argparse.ArgumentParser( description='Tuning with graph-based parsing') args_parser.register('type', 'bool', str2bool) args_parser.add_argument('--seed', type=int, default=1234, help='random seed for reproducibility') args_parser.add_argument('--mode', choices=['RNN', 'LSTM', 'GRU', 'FastLSTM'], help='architecture of rnn', required=True) args_parser.add_argument('--num_epochs', type=int, default=1000, help='Number of training epochs') args_parser.add_argument('--batch_size', type=int, default=64, help='Number of sentences in each batch') args_parser.add_argument('--hidden_size', type=int, default=256, help='Number of hidden units in RNN') args_parser.add_argument('--arc_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--type_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--num_layers', type=int, default=1, help='Number of layers of encoder.') args_parser.add_argument('--num_filters', type=int, default=50, help='Number of filters in CNN') args_parser.add_argument('--pos', action='store_true', help='use part-of-speech embedding.') args_parser.add_argument('--char', action='store_true', help='use character embedding and CNN.') args_parser.add_argument('--pos_dim', type=int, default=50, help='Dimension of POS embeddings') args_parser.add_argument('--char_dim', type=int, default=50, help='Dimension of Character embeddings') args_parser.add_argument('--opt', choices=['adam', 'sgd', 'adamax'], help='optimization algorithm') args_parser.add_argument('--objective', choices=['cross_entropy', 'crf'], default='cross_entropy', help='objective function of training procedure.') args_parser.add_argument('--decode', choices=['mst', 'greedy'], default='mst', help='decoding algorithm') args_parser.add_argument('--learning_rate', type=float, default=0.01, help='Learning rate') # args_parser.add_argument('--decay_rate', type=float, default=0.05, help='Decay rate of learning rate') args_parser.add_argument('--clip', type=float, default=5.0, help='gradient clipping') args_parser.add_argument('--gamma', type=float, default=0.0, help='weight for regularization') args_parser.add_argument('--epsilon', type=float, default=1e-8, help='epsilon for adam or adamax') args_parser.add_argument('--p_rnn', nargs='+', type=float, required=True, help='dropout rate for RNN') args_parser.add_argument('--p_in', type=float, default=0.33, help='dropout rate for input embeddings') args_parser.add_argument('--p_out', type=float, default=0.33, help='dropout rate for output layer') # args_parser.add_argument('--schedule', type=int, help='schedule for learning rate decay') args_parser.add_argument( '--unk_replace', type=float, default=0., help='The rate to replace a singleton word with UNK') args_parser.add_argument('--punctuation', nargs='+', type=str, help='List of punctuations') args_parser.add_argument( '--word_embedding', choices=['word2vec', 'glove', 'senna', 'sskip', 'polyglot'], help='Embedding for words', required=True) args_parser.add_argument('--word_path', help='path for word embedding dict') args_parser.add_argument( '--freeze', action='store_true', help='frozen the word embedding (disable fine-tuning).') args_parser.add_argument('--char_embedding', choices=['random', 'polyglot'], help='Embedding for characters', required=True) args_parser.add_argument('--char_path', help='path for character embedding dict') args_parser.add_argument('--data_dir', help='Data directory path') args_parser.add_argument( '--src_lang', required=True, help='Src language to train dependency parsing model') args_parser.add_argument('--aux_lang', nargs='+', help='Language names for adversarial training') args_parser.add_argument('--vocab_path', help='path for prebuilt alphabets.', default=None) args_parser.add_argument('--model_path', help='path for saving model file.', required=True) args_parser.add_argument('--model_name', help='name for saving model file.', required=True) # args_parser.add_argument('--attn_on_rnn', action='store_true', help='use self-attention on top of context RNN.') args_parser.add_argument('--no_word', type='bool', default=False, help='do not use word embedding.') args_parser.add_argument('--use_bert', type='bool', default=False, help='use multilingual BERT.') # # lrate schedule with warmup in the first iter. args_parser.add_argument('--use_warmup_schedule', type='bool', default=False, help="Use warmup lrate schedule.") args_parser.add_argument('--decay_rate', type=float, default=0.75, help='Decay rate of learning rate') args_parser.add_argument('--max_decay', type=int, default=9, help='Number of decays before stop') args_parser.add_argument('--schedule', type=int, help='schedule for learning rate decay') args_parser.add_argument('--double_schedule_decay', type=int, default=5, help='Number of decays to double schedule') args_parser.add_argument( '--check_dev', type=int, default=5, help='Check development performance in every n\'th iteration') # encoder selection args_parser.add_argument('--encoder_type', choices=['Transformer', 'RNN', 'SelfAttn'], default='RNN', help='do not use context RNN.') args_parser.add_argument( '--pool_type', default='mean', choices=['max', 'mean', 'weight'], help='pool type to form fixed length vector from word embeddings') # Tansformer encoder args_parser.add_argument( '--trans_hid_size', type=int, default=1024, help='#hidden units in point-wise feed-forward in transformer') args_parser.add_argument( '--d_k', type=int, default=64, help='d_k for multi-head-attention in transformer encoder') args_parser.add_argument( '--d_v', type=int, default=64, help='d_v for multi-head-attention in transformer encoder') args_parser.add_argument('--num_head', type=int, default=8, help='Value of h in multi-head attention') args_parser.add_argument( '--use_all_encoder_layers', type='bool', default=False, help='Use a weighted representations of all encoder layers') # - positional args_parser.add_argument( '--enc_use_neg_dist', action='store_true', help="Use negative distance for enc's relational-distance embedding.") args_parser.add_argument( '--enc_clip_dist', type=int, default=0, help="The clipping distance for relative position features.") args_parser.add_argument('--position_dim', type=int, default=50, help='Dimension of Position embeddings.') args_parser.add_argument( '--position_embed_num', type=int, default=200, help= 'Minimum value of position embedding num, which usually is max-sent-length.' ) args_parser.add_argument('--train_position', action='store_true', help='train positional encoding for transformer.') args_parser.add_argument('--input_concat_embeds', action='store_true', help="Concat input embeddings, otherwise add.") args_parser.add_argument('--input_concat_position', action='store_true', help="Concat position embeddings, otherwise add.") args_parser.add_argument( '--partitioned', type='bool', default=False, help= "Partition the content and positional attention for multi-head attention." ) args_parser.add_argument( '--partition_type', choices=['content-position', 'lexical-delexical'], default='content-position', help="How to apply partition in the self-attention.") # args_parser.add_argument( '--train_len_thresh', type=int, default=100, help='In training, discard sentences longer than this.') # # regarding adversarial training args_parser.add_argument('--pre_model_path', type=str, default=None, help='Path of the pretrained model.') args_parser.add_argument('--pre_model_name', type=str, default=None, help='Name of the pretrained model.') args_parser.add_argument('--adv_training', type='bool', default=False, help='Use adversarial training.') args_parser.add_argument( '--lambdaG', type=float, default=0.001, help='Scaling parameter to control generator loss.') args_parser.add_argument('--discriminator', choices=['weak', 'not-so-weak', 'strong'], default='weak', help='architecture of the discriminator') args_parser.add_argument( '--delay', type=int, default=0, help='Number of epochs to be run first for the source task') args_parser.add_argument( '--n_critic', type=int, default=5, help='Number of training steps for discriminator per iter') args_parser.add_argument( '--clip_disc', type=float, default=5.0, help='Lower and upper clip value for disc. weights') args_parser.add_argument('--debug', type='bool', default=False, help='Use debug portion of the training data') args_parser.add_argument('--train_level', type=str, default='word', choices=['word', 'sent'], help='Use X-level adversarial training') args_parser.add_argument('--train_type', type=str, default='GAN', choices=['GR', 'GAN', 'WGAN'], help='Type of adversarial training') # # regarding motivational training args_parser.add_argument( '--motivate', type='bool', default=False, help='This is opposite of the adversarial training') # args = args_parser.parse_args() # fix data-prepare seed random.seed(1234) np.random.seed(1234) # model's seed torch.manual_seed(args.seed) # if output directory doesn't exist, create it if not os.path.exists(args.model_path): os.makedirs(args.model_path) logger = get_logger("GraphParser") logger.info('\ncommand-line params : {0}\n'.format(sys.argv[1:])) logger.info('{0}\n'.format(args)) logger.info("Visible GPUs: %s", str(os.environ["CUDA_VISIBLE_DEVICES"])) args.parallel = False if torch.cuda.device_count() > 1: args.parallel = True mode = args.mode obj = args.objective decoding = args.decode train_path = args.data_dir + args.src_lang + "_train.debug.1_10.conllu" \ if args.debug else args.data_dir + args.src_lang + '_train.conllu' dev_path = args.data_dir + args.src_lang + "_dev.conllu" test_path = args.data_dir + args.src_lang + "_test.conllu" # vocab_path = args.vocab_path if args.vocab_path is not None else args.model_path model_path = args.model_path model_name = args.model_name num_epochs = args.num_epochs batch_size = args.batch_size hidden_size = args.hidden_size arc_space = args.arc_space type_space = args.type_space num_layers = args.num_layers num_filters = args.num_filters learning_rate = args.learning_rate opt = args.opt momentum = 0.9 betas = (0.9, 0.9) eps = args.epsilon decay_rate = args.decay_rate clip = args.clip gamma = args.gamma schedule = args.schedule p_rnn = tuple(args.p_rnn) p_in = args.p_in p_out = args.p_out unk_replace = args.unk_replace punctuation = args.punctuation freeze = args.freeze use_word_emb = not args.no_word word_embedding = args.word_embedding word_path = args.word_path use_char = args.char char_embedding = args.char_embedding char_path = args.char_path attn_on_rnn = args.attn_on_rnn encoder_type = args.encoder_type if attn_on_rnn: assert encoder_type == 'RNN' t_types = (args.adv_training, args.motivate) t_count = sum(1 for tt in t_types if tt) if t_count > 1: assert False, "Only one of: adv_training or motivate can be true" # ------------------- Loading/initializing embeddings -------------------- # use_pos = args.pos pos_dim = args.pos_dim word_dict, word_dim = utils.load_embedding_dict(word_embedding, word_path) char_dict = None char_dim = args.char_dim if char_embedding != 'random': char_dict, char_dim = utils.load_embedding_dict( char_embedding, char_path) logger.info("Creating Alphabets") alphabet_path = os.path.join(vocab_path, 'alphabets/') model_name = os.path.join(model_path, model_name) # TODO (WARNING): must build vocabs previously assert os.path.isdir(alphabet_path), "should have build vocabs previously" word_alphabet, char_alphabet, pos_alphabet, type_alphabet, max_sent_length = conllx_data.create_alphabets( alphabet_path, train_path, data_paths=[dev_path, test_path], max_vocabulary_size=50000, embedd_dict=word_dict) max_sent_length = max(max_sent_length, args.position_embed_num) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) # ------------------------------------------------------------------------- # # --------------------- Loading/building the model ------------------------ # logger.info("Reading Data") use_gpu = torch.cuda.is_available() def construct_word_embedding_table(): scale = np.sqrt(3.0 / word_dim) table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32) table[conllx_data.UNK_ID, :] = np.zeros([1, word_dim]).astype( np.float32) if freeze else np.random.uniform( -scale, scale, [1, word_dim]).astype(np.float32) oov = 0 for word, index in word_alphabet.items(): if word in word_dict: embedding = word_dict[word] elif word.lower() in word_dict: embedding = word_dict[word.lower()] else: embedding = np.zeros([1, word_dim]).astype( np.float32) if freeze else np.random.uniform( -scale, scale, [1, word_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('word OOV: %d' % oov) return torch.from_numpy(table) def construct_char_embedding_table(): if char_dict is None: return None scale = np.sqrt(3.0 / char_dim) table = np.empty([num_chars, char_dim], dtype=np.float32) table[conllx_data.UNK_ID, :] = np.random.uniform( -scale, scale, [1, char_dim]).astype(np.float32) oov = 0 for char, index, in char_alphabet.items(): if char in char_dict: embedding = char_dict[char] else: embedding = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('character OOV: %d' % oov) return torch.from_numpy(table) word_table = construct_word_embedding_table() if use_word_emb else None char_table = construct_char_embedding_table() if use_char else None def load_model_arguments_from_json(): arguments = json.load(open(pre_model_path, 'r')) return arguments['args'], arguments['kwargs'] window = 3 if obj == 'cross_entropy': if args.pre_model_path and args.pre_model_name: pre_model_name = os.path.join(args.pre_model_path, args.pre_model_name) pre_model_path = pre_model_name + '.arg.json' model_args, kwargs = load_model_arguments_from_json() network = BiRecurrentConvBiAffine(use_gpu=use_gpu, *model_args, **kwargs) network.load_state_dict(torch.load(pre_model_name)) logger.info("Model reloaded from %s" % pre_model_path) # Adjust the word embedding layer if network.embedder.word_embedd is not None: network.embedder.word_embedd = nn.Embedding(num_words, word_dim, _weight=word_table) else: network = BiRecurrentConvBiAffine( word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, hidden_size, num_layers, num_types, arc_space, type_space, embedd_word=word_table, embedd_char=char_table, p_in=p_in, p_out=p_out, p_rnn=p_rnn, biaffine=True, pos=use_pos, char=use_char, train_position=args.train_position, encoder_type=encoder_type, trans_hid_size=args.trans_hid_size, d_k=args.d_k, d_v=args.d_v, num_head=args.num_head, enc_use_neg_dist=args.enc_use_neg_dist, enc_clip_dist=args.enc_clip_dist, position_dim=args.position_dim, max_sent_length=max_sent_length, use_gpu=use_gpu, use_word_emb=use_word_emb, input_concat_embeds=args.input_concat_embeds, input_concat_position=args.input_concat_position, attn_on_rnn=attn_on_rnn, partitioned=args.partitioned, partition_type=args.partition_type, use_all_encoder_layers=args.use_all_encoder_layers, use_bert=args.use_bert) elif obj == 'crf': raise NotImplementedError else: raise RuntimeError('Unknown objective: %s' % obj) # ------------------------------------------------------------------------- # # --------------------- Loading data -------------------------------------- # train_data = dict() dev_data = dict() test_data = dict() num_data = dict() lang_ids = dict() reverse_lang_ids = dict() # ===== the reading ============================================= def _read_one(path, is_train): lang_id = guess_language_id(path) logger.info("Reading: guess that the language of file %s is %s." % (path, lang_id)) one_data = conllx_data.read_data_to_variable( path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=False, volatile=(not is_train), symbolic_root=True, lang_id=lang_id, use_bert=args.use_bert, len_thresh=(args.train_len_thresh if is_train else 100000)) return one_data data_train = _read_one(train_path, True) train_data[args.src_lang] = data_train num_data[args.src_lang] = sum(data_train[1]) lang_ids[args.src_lang] = len(lang_ids) reverse_lang_ids[lang_ids[args.src_lang]] = args.src_lang data_dev = _read_one(dev_path, False) data_test = _read_one(test_path, False) dev_data[args.src_lang] = data_dev test_data[args.src_lang] = data_test # =============================================================== # ===== reading data for adversarial training =================== if t_count > 0: for language in args.aux_lang: aux_train_path = args.data_dir + language + "_train.debug.1_10.conllu" \ if args.debug else args.data_dir + language + '_train.conllu' aux_train_data = _read_one(aux_train_path, True) num_data[language] = sum(aux_train_data[1]) train_data[language] = aux_train_data lang_ids[language] = len(lang_ids) reverse_lang_ids[lang_ids[language]] = language # =============================================================== punct_set = None if punctuation is not None: punct_set = set(punctuation) logger.info("punctuations(%d): %s" % (len(punct_set), ' '.join(punct_set))) def save_args(): arg_path = model_name + '.arg.json' arguments = [ word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, hidden_size, num_layers, num_types, arc_space, type_space ] kwargs = { 'p_in': p_in, 'p_out': p_out, 'p_rnn': p_rnn, 'biaffine': True, 'pos': use_pos, 'char': use_char, 'train_position': args.train_position, 'encoder_type': args.encoder_type, 'trans_hid_size': args.trans_hid_size, 'd_k': args.d_k, 'd_v': args.d_v, 'num_head': args.num_head, 'enc_use_neg_dist': args.enc_use_neg_dist, 'enc_clip_dist': args.enc_clip_dist, 'position_dim': args.position_dim, 'max_sent_length': max_sent_length, 'use_word_emb': use_word_emb, 'input_concat_embeds': args.input_concat_embeds, 'input_concat_position': args.input_concat_position, 'attn_on_rnn': attn_on_rnn, 'partitioned': args.partitioned, 'partition_type': args.partition_type, 'use_all_encoder_layers': args.use_all_encoder_layers, 'use_bert': args.use_bert } json.dump({ 'args': arguments, 'kwargs': kwargs }, open(arg_path, 'w'), indent=4) if use_word_emb and freeze: freeze_embedding(network.embedder.word_embedd) if args.parallel: network = torch.nn.DataParallel(network) if use_gpu: network = network.cuda() save_args() param_dict = {} encoder = network.module.encoder if args.parallel else network.encoder for name, param in encoder.named_parameters(): if param.requires_grad: param_dict[name] = np.prod(param.size()) total_params = np.sum(list(param_dict.values())) logger.info('Total Encoder Parameters = %d' % total_params) # ------------------------------------------------------------------------- # # ============================================= if args.adv_training: disc_feat_size = network.module.encoder.output_dim if args.parallel else network.encoder.output_dim reverse_grad = args.train_type == 'GR' nclass = len(lang_ids) if args.train_type == 'GR' else 1 kwargs = { 'input_size': disc_feat_size, 'disc_type': args.discriminator, 'train_level': args.train_level, 'train_type': args.train_type, 'reverse_grad': reverse_grad, 'soft_label': True, 'nclass': nclass, 'scale': args.lambdaG, 'use_gpu': use_gpu, 'opt': 'adam', 'lr': 0.001, 'betas': (0.9, 0.999), 'gamma': 0, 'eps': 1e-8, 'momentum': 0, 'clip_disc': args.clip_disc } AdvAgent = Adversarial(**kwargs) if use_gpu: AdvAgent.cuda() elif args.motivate: disc_feat_size = network.module.encoder.output_dim if args.parallel else network.encoder.output_dim nclass = len(lang_ids) kwargs = { 'input_size': disc_feat_size, 'disc_type': args.discriminator, 'train_level': args.train_level, 'nclass': nclass, 'scale': args.lambdaG, 'use_gpu': use_gpu, 'opt': 'adam', 'lr': 0.001, 'betas': (0.9, 0.999), 'gamma': 0, 'eps': 1e-8, 'momentum': 0, 'clip_disc': args.clip_disc } MtvAgent = Motivator(**kwargs) if use_gpu: MtvAgent.cuda() # ============================================= # --------------------- Initializing the optimizer ------------------------ # lr = learning_rate optim = generate_optimizer(opt, lr, network.parameters(), betas, gamma, eps, momentum) opt_info = 'opt: %s, ' % opt if opt == 'adam': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) elif opt == 'sgd': opt_info += 'momentum=%.2f' % momentum elif opt == 'adamax': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) # ============================================= total_data = min(num_data.values()) word_status = 'frozen' if freeze else 'fine tune' char_status = 'enabled' if use_char else 'disabled' pos_status = 'enabled' if use_pos else 'disabled' logger.info( "Embedding dim: word=%d (%s), char=%d (%s), pos=%d (%s)" % (word_dim, word_status, char_dim, char_status, pos_dim, pos_status)) logger.info("CNN: filter=%d, kernel=%d" % (num_filters, window)) logger.info( "RNN: %s, num_layer=%d, hidden=%d, arc_space=%d, type_space=%d" % (mode, num_layers, hidden_size, arc_space, type_space)) logger.info( "train: obj: %s, l2: %f, (#data: %d, batch: %d, clip: %.2f, unk replace: %.2f)" % (obj, gamma, total_data, batch_size, clip, unk_replace)) logger.info("dropout(in, out, rnn): (%.2f, %.2f, %s)" % (p_in, p_out, p_rnn)) logger.info("decoding algorithm: %s" % decoding) logger.info(opt_info) # ------------------------------------------------------------------------- # # --------------------- Form the mini-batches ----------------------------- # num_batches = total_data // batch_size + 1 aux_lang = [] if t_count > 0: for language in args.aux_lang: aux_lang.extend([language] * num_data[language]) assert num_data[args.src_lang] <= len(aux_lang) # ------------------------------------------------------------------------- # dev_ucorrect = 0.0 dev_lcorrect = 0.0 dev_ucomlpete_match = 0.0 dev_lcomplete_match = 0.0 dev_ucorrect_nopunc = 0.0 dev_lcorrect_nopunc = 0.0 dev_ucomlpete_match_nopunc = 0.0 dev_lcomplete_match_nopunc = 0.0 dev_root_correct = 0.0 best_epoch = 0 if decoding == 'greedy': decode = network.module.decode if args.parallel else network.decode elif decoding == 'mst': decode = network.module.decode_mst if args.parallel else network.decode_mst else: raise ValueError('Unknown decoding algorithm: %s' % decoding) patient = 0 decay = 0 max_decay = args.max_decay double_schedule_decay = args.double_schedule_decay # lrate schedule step_num = 0 use_warmup_schedule = args.use_warmup_schedule if use_warmup_schedule: logger.info("Use warmup lrate for the first epoch, from 0 up to %s." % (lr, )) skip_adv_tuning = 0 loss_fn = network.module.loss if args.parallel else network.loss for epoch in range(1, num_epochs + 1): print( 'Epoch %d (%s, optim: %s, learning rate=%.6f, eps=%.1e, decay rate=%.2f (schedule=%d, patient=%d, decay=%d)): ' % (epoch, mode, opt, lr, eps, decay_rate, schedule, patient, decay)) train_err = 0. train_err_arc = 0. train_err_type = 0. train_total = 0. start_time = time.time() num_back = 0 skip_adv_tuning += 1 loss_d_real, loss_d_fake = [], [] acc_d_real, acc_d_fake, = [], [] gen_loss, parsing_loss = [], [] disent_loss = [] if t_count > 0 and skip_adv_tuning > args.delay: batch_size = args.batch_size // 2 num_batches = total_data // batch_size + 1 # ---------------------- Sample the mini-batches -------------------------- # if t_count > 0: sampled_aux_lang = random.sample(aux_lang, num_batches) lang_in_batch = [(args.src_lang, sampled_aux_lang[k]) for k in range(num_batches)] else: lang_in_batch = [(args.src_lang, None) for _ in range(num_batches)] assert len(lang_in_batch) == num_batches # ------------------------------------------------------------------------- # network.train() warmup_factor = (lr + 0.) / num_batches for batch in range(1, num_batches + 1): update_generator = True update_discriminator = False # lrate schedule (before each step) step_num += 1 if use_warmup_schedule and epoch <= 1: cur_lrate = warmup_factor * step_num # set lr for param_group in optim.param_groups: param_group['lr'] = cur_lrate # considering source language as real and auxiliary languages as fake real_lang, fake_lang = lang_in_batch[batch - 1] real_idx, fake_idx = lang_ids.get(real_lang), lang_ids.get( fake_lang, -1) # word, char, pos, heads, types, masks, lengths, bert_inputs = conllx_data.get_batch_variable( train_data[real_lang], batch_size, unk_replace=unk_replace) if use_gpu: word = word.cuda() char = char.cuda() pos = pos.cuda() heads = heads.cuda() types = types.cuda() masks = masks.cuda() lengths = lengths.cuda() if bert_inputs[0] is not None: bert_inputs[0] = bert_inputs[0].cuda() bert_inputs[1] = bert_inputs[1].cuda() bert_inputs[2] = bert_inputs[2].cuda() real_enc = network(word, char, pos, input_bert=bert_inputs, mask=masks, length=lengths, hx=None) # ========== Update the discriminator ========== if t_count > 0 and skip_adv_tuning > args.delay: # fake examples = 0 word_f, char_f, pos_f, heads_f, types_f, masks_f, lengths_f, bert_inputs = conllx_data.get_batch_variable( train_data[fake_lang], batch_size, unk_replace=unk_replace) if use_gpu: word_f = word_f.cuda() char_f = char_f.cuda() pos_f = pos_f.cuda() heads_f = heads_f.cuda() types_f = types_f.cuda() masks_f = masks_f.cuda() lengths_f = lengths_f.cuda() if bert_inputs[0] is not None: bert_inputs[0] = bert_inputs[0].cuda() bert_inputs[1] = bert_inputs[1].cuda() bert_inputs[2] = bert_inputs[2].cuda() fake_enc = network(word_f, char_f, pos_f, input_bert=bert_inputs, mask=masks_f, length=lengths_f, hx=None) # TODO: temporary crack if t_count > 0 and skip_adv_tuning > args.delay: # skip discriminator training for '|n_critic|' iterations if 'n_critic' < 0 if args.n_critic > 0 or (batch - 1) % (-1 * args.n_critic) == 0: update_discriminator = True if update_discriminator: if args.adv_training: real_loss, fake_loss, real_acc, fake_acc = AdvAgent.update( real_enc['output'].detach(), fake_enc['output'].detach(), real_idx, fake_idx) loss_d_real.append(real_loss) loss_d_fake.append(fake_loss) acc_d_real.append(real_acc) acc_d_fake.append(fake_acc) elif args.motivate: real_loss, fake_loss, real_acc, fake_acc = MtvAgent.update( real_enc['output'].detach(), fake_enc['output'].detach(), real_idx, fake_idx) loss_d_real.append(real_loss) loss_d_fake.append(fake_loss) acc_d_real.append(real_acc) acc_d_fake.append(fake_acc) else: raise NotImplementedError() if args.n_critic > 0 and (batch - 1) % args.n_critic != 0: update_generator = False # ============================================== # =========== Update the generator ============= if update_generator: others_loss = None if args.adv_training and skip_adv_tuning > args.delay: # for GAN: L_G= L_parsing - (lambda_G * L_D) # for GR : L_G= L_parsing + L_D others_loss = AdvAgent.gen_loss(real_enc['output'], fake_enc['output'], real_idx, fake_idx) gen_loss.append(others_loss.item()) elif args.motivate and skip_adv_tuning > args.delay: others_loss = MtvAgent.gen_loss(real_enc['output'], fake_enc['output'], real_idx, fake_idx) gen_loss.append(others_loss.item()) optim.zero_grad() loss_arc, loss_type = loss_fn(real_enc['output'], heads, types, mask=masks, length=lengths) loss = loss_arc + loss_type num_inst = word.size( 0) if obj == 'crf' else masks.sum() - word.size(0) train_err += loss.item() * num_inst train_err_arc += loss_arc.item() * num_inst train_err_type += loss_type.item() * num_inst train_total += num_inst parsing_loss.append(loss.item()) if others_loss is not None: loss = loss + others_loss loss.backward() clip_grad_norm_(network.parameters(), clip) optim.step() time_ave = (time.time() - start_time) / batch time_left = (num_batches - batch) * time_ave if (args.adv_training or args.motivate) and skip_adv_tuning > args.delay: logger.info( 'epoch: %d train: %d loss: %.4f, arc: %.4f, type: %.4f, dis_loss: (%.2f, %.2f), dis_acc: (%.2f, %.2f), ' 'gen_loss: %.2f, time: %.2fs' % (epoch, num_batches, train_err / train_total, train_err_arc / train_total, train_err_type / train_total, sum(loss_d_real) / len(loss_d_real), sum(loss_d_fake) / len(loss_d_fake), sum(acc_d_real) / len(acc_d_real), sum(acc_d_fake) / len(acc_d_fake), sum(gen_loss) / len(gen_loss), time.time() - start_time)) else: logger.info( 'epoch: %d train: %d loss: %.4f, arc: %.4f, type: %.4f, time: %.2fs' % (epoch, num_batches, train_err / train_total, train_err_arc / train_total, train_err_type / train_total, time.time() - start_time)) ################# Validation on Dependency Parsing Only ################################# if epoch % args.check_dev != 0: continue with torch.no_grad(): # evaluate performance on dev data network.eval() dev_ucorr = 0.0 dev_lcorr = 0.0 dev_total = 0 dev_ucomlpete = 0.0 dev_lcomplete = 0.0 dev_ucorr_nopunc = 0.0 dev_lcorr_nopunc = 0.0 dev_total_nopunc = 0 dev_ucomlpete_nopunc = 0.0 dev_lcomplete_nopunc = 0.0 dev_root_corr = 0.0 dev_total_root = 0.0 dev_total_inst = 0.0 for lang, data_dev in dev_data.items(): for batch in conllx_data.iterate_batch_variable( data_dev, batch_size): word, char, pos, heads, types, masks, lengths, bert_inputs = batch if use_gpu: word = word.cuda() char = char.cuda() pos = pos.cuda() heads = heads.cuda() types = types.cuda() masks = masks.cuda() lengths = lengths.cuda() if bert_inputs[0] is not None: bert_inputs[0] = bert_inputs[0].cuda() bert_inputs[1] = bert_inputs[1].cuda() bert_inputs[2] = bert_inputs[2].cuda() heads_pred, types_pred = decode( word, char, pos, input_bert=bert_inputs, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS) word = word.cpu().numpy() pos = pos.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.cpu().numpy() types = types.cpu().numpy() stats, stats_nopunc, stats_root, num_inst = parser.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root dev_ucorr += ucorr dev_lcorr += lcorr dev_total += total dev_ucomlpete += ucm dev_lcomplete += lcm dev_ucorr_nopunc += ucorr_nopunc dev_lcorr_nopunc += lcorr_nopunc dev_total_nopunc += total_nopunc dev_ucomlpete_nopunc += ucm_nopunc dev_lcomplete_nopunc += lcm_nopunc dev_root_corr += corr_root dev_total_root += total_root dev_total_inst += num_inst print( 'W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (dev_ucorr, dev_lcorr, dev_total, dev_ucorr * 100 / dev_total, dev_lcorr * 100 / dev_total, dev_ucomlpete * 100 / dev_total_inst, dev_lcomplete * 100 / dev_total_inst)) print( 'Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (dev_ucorr_nopunc, dev_lcorr_nopunc, dev_total_nopunc, dev_ucorr_nopunc * 100 / dev_total_nopunc, dev_lcorr_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_nopunc * 100 / dev_total_inst, dev_lcomplete_nopunc * 100 / dev_total_inst)) print('Root: corr: %d, total: %d, acc: %.2f%%' % (dev_root_corr, dev_total_root, dev_root_corr * 100 / dev_total_root)) if dev_lcorrect_nopunc < dev_lcorr_nopunc or ( dev_lcorrect_nopunc == dev_lcorr_nopunc and dev_ucorrect_nopunc < dev_ucorr_nopunc): dev_ucorrect_nopunc = dev_ucorr_nopunc dev_lcorrect_nopunc = dev_lcorr_nopunc dev_ucomlpete_match_nopunc = dev_ucomlpete_nopunc dev_lcomplete_match_nopunc = dev_lcomplete_nopunc dev_ucorrect = dev_ucorr dev_lcorrect = dev_lcorr dev_ucomlpete_match = dev_ucomlpete dev_lcomplete_match = dev_lcomplete dev_root_correct = dev_root_corr best_epoch = epoch patient = 0 state_dict = network.module.state_dict( ) if args.parallel else network.state_dict() torch.save(state_dict, model_name) else: if dev_ucorr_nopunc * 100 / dev_total_nopunc < dev_ucorrect_nopunc * 100 / dev_total_nopunc - 5 or patient >= schedule: state_dict = torch.load(model_name) if args.parallel: network.module.load_state_dict(state_dict) else: network.load_state_dict(state_dict) lr = lr * decay_rate optim = generate_optimizer(opt, lr, network.parameters(), betas, gamma, eps, momentum) if decoding == 'greedy': decode = network.module.decode if args.parallel else network.decode elif decoding == 'mst': decode = network.module.decode_mst if args.parallel else network.decode_mst else: raise ValueError('Unknown decoding algorithm: %s' % decoding) patient = 0 decay += 1 if decay % double_schedule_decay == 0: schedule *= 2 else: patient += 1 print( '----------------------------------------------------------------------------------------------------------------------------' ) print( 'best dev W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (dev_ucorrect, dev_lcorrect, dev_total, dev_ucorrect * 100 / dev_total, dev_lcorrect * 100 / dev_total, dev_ucomlpete_match * 100 / dev_total_inst, dev_lcomplete_match * 100 / dev_total_inst, best_epoch)) print( 'best dev Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (dev_ucorrect_nopunc, dev_lcorrect_nopunc, dev_total_nopunc, dev_ucorrect_nopunc * 100 / dev_total_nopunc, dev_lcorrect_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_match_nopunc * 100 / dev_total_inst, dev_lcomplete_match_nopunc * 100 / dev_total_inst, best_epoch)) print( 'best dev Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (dev_root_correct, dev_total_root, dev_root_correct * 100 / dev_total_root, best_epoch)) print( '----------------------------------------------------------------------------------------------------------------------------' ) if decay == max_decay: break torch.cuda.empty_cache() # release memory that can be released
def run_biaffine(model_path, model_name, test_path, punct_set, use_gpu, logger, args): alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) word_alphabet, char_alphabet, pos_alphabet, \ type_alphabet = conllx_data.create_alphabets( alphabet_path, None, data_paths=[None, None], max_vocabulary_size=50000, embedd_dict=None ) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) decoding = args.decode logger.info('use gpu: %s, decoding: %s' % (use_gpu, decoding)) device = torch.device('cuda') if use_gpu else torch.device('cpu') data_test = aida_data.read_data_to_tensor(test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, symbolic_root=True, device=device) pred_writer = AIDAWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) logger.info('model: %s' % model_name) def load_model_arguments_from_json(): arguments = json.load(open(arg_path, 'r')) return arguments['args'], arguments['kwargs'] arg_path = model_name + '.arg.json' model_args, model_kwargs = load_model_arguments_from_json() network = BiRecurrentConvBiAffine(*model_args, **model_kwargs) if torch.cuda.is_available(): map_location = lambda storage, loc: storage.cuda() else: map_location = 'cpu' network.load_state_dict(torch.load(model_name, map_location=map_location)) if use_gpu: network.cuda() else: network.cpu() network.eval() if decoding == 'greedy': decode = network.decode elif decoding == 'mst': decode = network.decode_mst else: raise ValueError('Unknown decoding algorithm: %s' % decoding) pred_writer.start(args.output_path) sent = 0 start_time = time.time() with torch.no_grad(): for batch in aida_data.iterate_batch_tensor(data_test, 1): sys.stdout.write('Processing sentence: %d\n' % sent) sys.stdout.flush() sent += 1 word, char, pos, _, _, masks, lengths, segment_ids_words = batch heads_pred, types_pred = decode( word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() segment_ids, segment_words = zip(*segment_ids_words) pred_writer.write(segment_ids, segment_words, word, pos, heads_pred, types_pred, lengths, symbolic_root=True) pred_writer.close() print('\ntime: %.2fs' % (time.time() - start_time))
def biaffine(model_path, model_name, test_path, punct_set, use_gpu, logger, args): alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) word_alphabet, char_alphabet, pos_alphabet, type_alphabet, max_sent_length = conllx_data.create_alphabets(alphabet_path, None, data_paths=[None, None], max_vocabulary_size=50000, embedd_dict=None) # word_alphabet, char_alphabet, pos_alphabet, type_alphabet = create_alphabets(alphabet_path, # None, data_paths=[None, None], max_vocabulary_size=50000, embedd_dict=None) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) decoding = args.decode out_filename = args.out_filename constraints_method = args.constraints_method constraintFile = args.constraint_file ratioFile = args.ratio_file tolerance = args.tolerance gamma = args.gamma the_language = args.mt_log[9:11] mt_log = open(args.mt_log, 'a') summary_log = open(args.summary_log, 'a') logger.info('use gpu: %s, decoding: %s' % (use_gpu, decoding)) # extra_embeds_arr = augment_with_extra_embedding(word_alphabet, args.extra_embed, args.extra_embed_src, test_path, logger) # ===== the reading def _read_one(path, is_train): lang_id = guess_language_id(path) logger.info("Reading: guess that the language of file %s is %s." % (path, lang_id)) one_data = conllx_data.read_data_to_variable(path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=(not is_train), symbolic_root=True, lang_id=lang_id) return one_data data_test = _read_one(test_path, False) # data_test = conllx_data.read_data_to_variable(test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, # use_gpu=use_gpu, volatile=True, symbolic_root=True) pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) logger.info('model: %s' % model_name) def load_model_arguments_from_json(): arguments = json.load(open(arg_path, 'r')) return arguments['args'], arguments['kwargs'] arg_path = model_name + '.arg.json' args, kwargs = load_model_arguments_from_json() network = BiRecurrentConvBiAffine(use_gpu=use_gpu, *args, **kwargs) network.load_state_dict(torch.load(model_name)) # augment_network_embed(word_alphabet.size(), network, extra_embeds_arr) if use_gpu: network.cuda() else: network.cpu() network.eval() if decoding == 'greedy': decode = network.decode elif decoding == 'mst': decode = network.decode_mst elif decoding == 'proj': decode = network.decode_proj else: raise ValueError('Unknown decoding algorithm: %s' % decoding) # pred_writer.start('tmp/analyze_pred_%s' % str(uid)) # gold_writer.start('tmp/analyze_gold_%s' % str(uid)) # pred_writer.start(model_path + out_filename + '_pred') # gold_writer.start(model_path + out_filename + '_gold') pred_writer.start(out_filename + '_pred') gold_writer.start(out_filename + '_gold') sent = 0 start_time = time.time() constraints = [] mt_log.write("=====================%s, Ablation 2================\n"%(constraints_method)) summary_log.write("==========================%s, Ablation 2=============\n"%(constraints_method)) if ratioFile == 'WALS': import pickle as pk cFile = open(constraintFile, 'rb') WALS_data = pk.load(cFile) for idx in ['85A', '87A', '89A']: constraint = Constraint(0,0,0) extra_const = constraint.load_WALS(idx, WALS_data[the_language][idx], pos_alphabet, method=constraints_method) constraints.append(constraint) if extra_const: constraints.append(extra_const) constraint = Constraint(0,0,0) extra_const = constraint.load_WALS_unary(WALS_data[the_language], pos_alphabet, method=constraints_method) if extra_const: constraints.append(extra_const) constraints.append(constraint) elif ratioFile == 'None': summary_log.write("=================No it is baseline================\n") mt_log.write("==================No it is baseline==============\n") else: cFile = open(constraintFile, 'r') for line in cFile: if len(line.strip()) < 2: break pos1, pos2 = line.strip().split('\t') constraint = Constraint(0,0,0) constraint.load(pos1, pos2, ratioFile, pos_alphabet) constraints.append(constraint) test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_total = 0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_total_nopunc = 0 test_total_inst = 0 test_root_correct = 0.0 test_total_root = 0 arc_list = [] type_list = [] length_list = [] pos_list = [] for batch in conllx_data.iterate_batch_variable(data_test, 1): word, char, pos, heads, types, masks, lengths = batch out_arc, out_type, length = network.pretrain_constraint(word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS) arc_list += list(out_arc) type_list += list(out_type) length_list += list(length) pos_list += list(pos) if constraints_method == 'binary': train_constraints = network.binary_constraints if constraints_method == 'Lagrange': train_constraints = network.Lagrange_constraints if constraints_method == 'PR': train_constraints = network.PR_constraints train_constraints(arc_list, type_list, length_list, pos_list, constraints, tolerance, mt_log, gamma=gamma) for batch in conllx_data.iterate_batch_variable(data_test, 1): #sys.stdout.write('%d, ' % sent) #sys.stdout.flush() sent += 1 word, char, pos, heads, types, masks, lengths = batch heads_pred, types_pred = decode(word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS, constraints=constraints, method=constraints_method, gamma=gamma) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval(word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root test_ucorrect += ucorr test_lcorrect += lcorr test_total += total test_ucomlpete_match += ucm test_lcomplete_match += lcm test_ucorrect_nopunc += ucorr_nopunc test_lcorrect_nopunc += lcorr_nopunc test_total_nopunc += total_nopunc test_ucomlpete_match_nopunc += ucm_nopunc test_lcomplete_match_nopunc += lcm_nopunc test_root_correct += corr_root test_total_root += total_root test_total_inst += num_inst print('\ntime: %.2fs' % (time.time() - start_time)) print('test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % ( test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total, test_ucomlpete_match * 100 / test_total_inst, test_lcomplete_match * 100 / test_total_inst)) print('test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % ( test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc, test_ucomlpete_match_nopunc * 100 / test_total_inst, test_lcomplete_match_nopunc * 100 / test_total_inst)) print('test Root: corr: %d, total: %d, acc: %.2f%%' % ( test_root_correct, test_total_root, test_root_correct * 100 / test_total_root)) mt_log.write('uas: %.2f, las: %.2f\n'%(test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc)) summary_log.write('%s: %.2f %.2f\n'%(the_language, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc)) pred_writer.close() gold_writer.close()
class BiaffineModel(object): def __init__(self, model_path, model_name): print("................................................") print("LOADING Biaffine Model") alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) self.word_alpha, self.char_alpha, self.tag_alpha, self.type_alpha = conllx_data.create_alphabets(alphabet_path, None, data_paths=[None, None], max_vocabulary_size=50000, embedd_dict=None) self.id2word = {v: k for k, v in self.word_alpha.instance2index.iteritems()} num_words = self.word_alpha.size() num_chars = self.char_alpha.size() num_pos = self.tag_alpha.size() num_types = self.type_alpha.size() print("Word Alphabet Size: %d" % num_words) print("Character Alphabet Size: %d" % num_chars) print("POS Alphabet Size: %d" % num_pos) print("Type Alphabet Size: %d" % num_types) def load_model_arguments_from_json(): arguments = json.load(open(arg_path, 'r')) return arguments['args'], arguments['kwargs'] arg_path = model_name + '.arg.json' args, kwargs = load_model_arguments_from_json() self.network = BiRecurrentConvBiAffine(*args, **kwargs) self.network.load_state_dict(torch.load(model_name)) self.network.id2word = self.id2word self.network.cuda() self.network.eval() def prepare_data(self, sentences, use_gpu=True): ret_value = [] for sentence in sentences: inst_size = sentence.length() data = None max_len = 0 bucket = 0 for bucket_size in _buckets: if inst_size < bucket_size: bucket = bucket_size data = [sentence.word_ids, sentence.seq_char_ids, sentence.tag_ids] max_len = max([len(seq_char) for seq_char in sentence.seq_chars]) break if data is None: # meaning the sentence is too long, we cut it into 300 length bucket = _buckets[-1] data = [sentence.word_ids[:bucket], sentence.seq_char_ids[:bucket], sentence.tag_ids[:bucket]] max_len = max([len(seq_char) for seq_char in sentence.seq_chars]) char_length = min(utils.MAX_CHAR_LENGTH, max_len + utils.NUM_CHAR_PAD) wid_inputs = np.empty([1, bucket], dtype=np.int64) cid_inputs = np.empty([1, bucket, char_length], dtype=np.int64) pid_inputs = np.empty([1, bucket], dtype=np.int64) masks = np.zeros([1, bucket], dtype=np.float32) single = np.zeros([1, bucket], dtype=np.int64) lengths = np.empty(bucket, dtype=np.int64) wids = data[0] cid_seqs = data[1] pids = data[2] inst_size = len(wids) lengths[0] = inst_size # word ids wid_inputs[0, :inst_size] = wids wid_inputs[0, inst_size:] = PAD_ID_WORD for c, cids in enumerate(cid_seqs): limit = len(cids) if limit > char_length: limit = char_length try: cid_inputs[0, c, :limit] = cids[:limit] cid_inputs[0, c, limit:] = PAD_ID_CHAR except: import ipdb; ipdb.set_trace() cid_inputs[0, inst_size:, :] = PAD_ID_CHAR # pos ids pid_inputs[0, :inst_size] = pids pid_inputs[0, inst_size:] = PAD_ID_TAG # masks masks[0, :inst_size] = 1.0 for j, wid in enumerate(wids): if self.word_alpha.is_singleton(wid): single[0, j] = 1 words = Variable(torch.from_numpy(wid_inputs), volatile=False) chars = Variable(torch.from_numpy(cid_inputs), volatile=False) pos = Variable(torch.from_numpy(pid_inputs), volatile=False) masks = Variable(torch.from_numpy(masks), volatile=False) single = Variable(torch.from_numpy(single), volatile=False) lengths = torch.from_numpy(lengths) if use_gpu: words = words.cuda() chars = chars.cuda() pos = pos.cuda() masks = masks.cuda() single = single.cuda() lengths = lengths.cuda() index = slice(0,1) ret_value.append((words[index], chars[index], pos[index], masks[index], lengths[index], sentence.words, sentence.edu_ids)) return ret_value def get_syntax_feature(self, data_test, sentences): sent = 0 syntax_features = [] for data in data_test: cur_length = len(sentences[sent].words) word, char, pos, masks, lengths, original_words, edu_ids = data sent += 1 syntax_feature = self.network.get_syntax_feature(original_words, word, char, pos, mask=masks, length=lengths) _ , sent_len, dim = syntax_feature.shape if sent_len != cur_length: assert sent_len < cur_length diff = cur_length - sent_len zeros = Variable(torch.zeros(1, diff, dim)).type(torch.FloatTensor).cuda() syntax_feature = torch.cat([syntax_feature, zeros], dim=1) syntax_features.append(syntax_feature) return syntax_features
def main(): args_parser = argparse.ArgumentParser( description='Tuning with stack pointer parser') args_parser.add_argument('--mode', choices=['RNN', 'LSTM', 'GRU', 'FastLSTM'], help='architecture of rnn', required=True) args_parser.add_argument('--num_epochs', type=int, default=200, help='Number of training epochs') args_parser.add_argument('--batch_size', type=int, default=64, help='Number of sentences in each batch') #args_parser.add_argument('--decoder_input_size', type=int, default=256, help='Number of input units in decoder RNN.') args_parser.add_argument('--hidden_size', type=int, default=256, help='Number of hidden units in RNN') args_parser.add_argument('--arc_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--type_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--encoder_layers', type=int, default=1, help='Number of layers of encoder RNN') #args_parser.add_argument('--decoder_layers', type=int, default=1, help='Number of layers of decoder RNN') args_parser.add_argument('--num_filters', type=int, default=50, help='Number of filters in CNN') # NOTE: action='store_true' is just to set ON args_parser.add_argument('--pos', action='store_true', help='use part-of-speech embedding.') args_parser.add_argument('--char', action='store_true', help='use character embedding and CNN.') args_parser.add_argument('--pos_dim', type=int, default=50, help='Dimension of POS embeddings') args_parser.add_argument('--char_dim', type=int, default=50, help='Dimension of Character embeddings') # NOTE: arg MUST be one of choices(when specified) args_parser.add_argument('--opt', choices=['adam', 'sgd', 'adamax'], help='optimization algorithm') args_parser.add_argument('--learning_rate', type=float, default=0.001, help='Learning rate') args_parser.add_argument('--decay_rate', type=float, default=0.75, help='Decay rate of learning rate') args_parser.add_argument('--max_decay', type=int, default=9, help='Number of decays before stop') args_parser.add_argument('--double_schedule_decay', type=int, default=5, help='Number of decays to double schedule') args_parser.add_argument('--clip', type=float, default=1.0, help='gradient clipping') args_parser.add_argument('--gamma', type=float, default=0.0, help='weight for regularization') args_parser.add_argument('--epsilon', type=float, default=1e-8, help='epsilon for adam or adamax') args_parser.add_argument('--coverage', type=float, default=0.0, help='weight for coverage loss') args_parser.add_argument('--p_rnn', nargs=2, type=float, required=True, help='dropout rate for RNN') args_parser.add_argument('--p_in', type=float, default=0.33, help='dropout rate for input embeddings') args_parser.add_argument('--p_out', type=float, default=0.33, help='dropout rate for output layer') args_parser.add_argument('--label_smooth', type=float, default=1.0, help='weight of label smoothing method') args_parser.add_argument('--skipConnect', action='store_true', help='use skip connection for decoder RNN.') args_parser.add_argument('--grandPar', action='store_true', help='use grand parent.') args_parser.add_argument('--sibling', action='store_true', help='use sibling.') args_parser.add_argument( '--prior_order', choices=['inside_out', 'left2right', 'deep_first', 'shallow_first'], help='prior order of children.', required=True) args_parser.add_argument('--schedule', type=int, help='schedule for learning rate decay') args_parser.add_argument( '--unk_replace', type=float, default=0., help='The rate to replace a singleton word with UNK') args_parser.add_argument('--punctuation', nargs='+', type=str, help='List of punctuations') args_parser.add_argument('--beam', type=int, default=1, help='Beam size for decoding') args_parser.add_argument( '--word_embedding', choices=['glove', 'senna', 'sskip', 'polyglot', 'NNLM'], help='Embedding for words', required=True) args_parser.add_argument('--word_path', help='path for word embedding dict') args_parser.add_argument( '--freeze', action='store_true', help='frozen the word embedding (disable fine-tuning).') args_parser.add_argument('--char_embedding', choices=['random', 'polyglot'], help='Embedding for characters', required=True) args_parser.add_argument('--char_path', help='path for character embedding dict') args_parser.add_argument( '--train') # "data/POS-penn/wsj/split1/wsj1.train.original" args_parser.add_argument( '--dev') # "data/POS-penn/wsj/split1/wsj1.dev.original" args_parser.add_argument( '--test') # "data/POS-penn/wsj/split1/wsj1.test.original" args_parser.add_argument('--model_path', help='path for saving model file.', required=True) args_parser.add_argument('--model_name', help='name for saving model file.', required=True) # TODO: to include in logging process args_parser.add_argument('--pos_embedding', choices=[1, 2, 4], type=int, help='Embedding method for korean POS tag', default=2) args_parser.add_argument('--pos_path', help='path for pos embedding dict') args_parser.add_argument('--elmo', action='store_true', help='use elmo embedding.') args_parser.add_argument('--elmo_path', help='path for elmo embedding model.') args_parser.add_argument('--elmo_dim', type=int, help='dimension for elmo embedding model') #args_parser.add_argument('--fine_tune_path', help='fine tune starting from this state_dict') args_parser.add_argument('--model_version', help='previous model version to load') #hoon : bert args_parser.add_argument( '--bert', action='store_true', help='use elmo embedding.') # true if use bert(hoon) args_parser.add_argument( '--etri_train', help='path for etri data of bert') # etri train path(hoon) args_parser.add_argument( '--etri_dev', help='path for etri data of bert') # etri dev path(hoon) args_parser.add_argument('--bert_path', help='path for bert embedding model.') # yjyj args_parser.add_argument('--bert_dim', type=int, help='dimension for bert embedding model') # yjyj args_parser.add_argument('--bert_learning_rate', type=float, default=5e-5, help='Bert Learning rate') args_parser.add_argument('--decode', choices=['mst', 'greedy'], help='decoding algorithm', required=True) #yj args_parser.add_argument('--objective', choices=['cross_entropy', 'crf'], default='cross_entropy', help='objective function of training procedure.') args = args_parser.parse_args() logger = get_logger("PtrParser") mode = args.mode train_path = args.train dev_path = args.dev test_path = args.test model_path = args.model_path + uid + '/' # for numerous experiments model_name = args.model_name num_epochs = args.num_epochs batch_size = args.batch_size #input_size_decoder = args.decoder_input_size hidden_size = args.hidden_size arc_space = args.arc_space type_space = args.type_space encoder_layers = args.encoder_layers #decoder_layers = args.decoder_layers num_filters = args.num_filters learning_rate = args.learning_rate opt = args.opt momentum = 0.9 betas = (0.9, 0.9) eps = args.epsilon decay_rate = args.decay_rate clip = args.clip gamma = args.gamma cov = args.coverage schedule = args.schedule p_rnn = tuple(args.p_rnn) p_in = args.p_in p_out = args.p_out label_smooth = args.label_smooth unk_replace = args.unk_replace prior_order = args.prior_order skipConnect = args.skipConnect grandPar = args.grandPar sibling = args.sibling beam = args.beam punctuation = args.punctuation freeze = args.freeze word_embedding = args.word_embedding word_path = args.word_path use_char = args.char char_embedding = args.char_embedding # QUESTION: pretrained vector for char? char_path = args.char_path use_pos = False pos_embedding = args.pos_embedding pos_path = args.pos_path pos_dict = None pos_dim = args.pos_dim # NOTE pretrain 있을 경우 pos_dim은 그거 따라감 if pos_path is not None: pos_dict, pos_dim = utils.load_embedding_dict( word_embedding, pos_path) # NOTE 임시적으로 word_embedding(NNLM)이랑 같은 형식 word_dict, word_dim = utils.load_embedding_dict(word_embedding, word_path) char_dict = None char_dim = args.char_dim if char_embedding != 'random': char_dict, char_dim = utils.load_embedding_dict( char_embedding, char_path) use_elmo = args.elmo elmo_path = args.elmo_path elmo_dim = args.elmo_dim #fine_tune_path = args.fine_tune_path #bert(hoon) use_bert = args.bert #bert yj bert_path = args.bert_path bert_dim = args.bert_dim bert_lr = args.bert_learning_rate etri_train_path = args.etri_train etri_dev_path = args.etri_dev obj = args.objective decoding = args.decode logger.info("Creating Alphabets") alphabet_path = os.path.join(model_path, 'alphabets/') model_name = os.path.join(model_path, model_name) # min_occurence=1 data_paths = [dev_path, test_path] if test_path else [dev_path] word_alphabet, char_alphabet, pos_alphabet, type_alphabet = conllx_stacked_data.create_alphabets( alphabet_path, train_path, data_paths=data_paths, max_vocabulary_size=50000, pos_embedding=pos_embedding, embedd_dict=word_dict) num_words = word_alphabet.size() # 30268 num_chars = char_alphabet.size() # 3545 num_pos = pos_alphabet.size() # 46 num_types = type_alphabet.size() # 39 logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) logger.info("Reading Data") use_gpu = torch.cuda.is_available() # data is a list of tuple containing tensors, etc ... data_train = conllx_stacked_data.read_stacked_data_to_variable( train_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, pos_embedding, use_gpu=1, prior_order=prior_order, elmo=use_elmo, bert=use_bert, etri_path=etri_train_path) num_data = sum(data_train[2]) data_dev = conllx_stacked_data.read_stacked_data_to_variable( dev_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, pos_embedding, use_gpu=use_gpu, volatile=True, prior_order=prior_order, elmo=use_elmo, bert=use_bert, etri_path=etri_dev_path) if test_path: data_test = conllx_stacked_data.read_stacked_data_to_variable( test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, pos_embedding, use_gpu=use_gpu, volatile=True, prior_order=prior_order, elmo=use_elmo) punct_set = None if punctuation is not None: punct_set = set(punctuation) logger.info("punctuations(%d): %s" % (len(punct_set), ' '.join(punct_set))) def construct_word_embedding_table(): scale = np.sqrt(3.0 / word_dim) table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32) # NOTE: UNK 관리! table[conllx_stacked_data.UNK_ID, :] = np.zeros([1, word_dim]).astype( np.float32) if freeze else np.random.uniform( -scale, scale, [1, word_dim]).astype(np.float32) oov = 0 for word, index in list(word_alphabet.items()): if word in word_dict: embedding = word_dict[word] elif word.lower() in word_dict: embedding = word_dict[word.lower()] else: # NOTE: words not in pretrained are set to random embedding = np.zeros([1, word_dim]).astype( np.float32) if freeze else np.random.uniform( -scale, scale, [1, word_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('word OOV: %d' % oov) return torch.from_numpy(table) def construct_char_embedding_table(): if char_dict is None: return None scale = np.sqrt(3.0 / char_dim) table = np.empty([num_chars, char_dim], dtype=np.float32) table[conllx_stacked_data.UNK_ID, :] = np.random.uniform( -scale, scale, [1, char_dim]).astype(np.float32) oov = 0 #for char, index, in char_alphabet.items(): for char, index in list(char_alphabet.items()): if char in char_dict: embedding = char_dict[char] else: embedding = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('character OOV: %d' % oov) return torch.from_numpy(table) def construct_pos_embedding_table(): if pos_dict is None: return None scale = np.sqrt(3.0 / char_dim) table = np.empty([num_pos, pos_dim], dtype=np.float32) for pos, index in list(pos_alphabet.items()): if pos in pos_dict: embedding = pos_dict[pos] else: embedding = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) table[index, :] = embedding return torch.from_numpy(table) word_table = construct_word_embedding_table() char_table = construct_char_embedding_table() pos_table = construct_pos_embedding_table() window = 3 # yj 수정 # network = StackPtrNet(word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, # mode, input_size_decoder, hidden_size, encoder_layers, decoder_layers, # num_types, arc_space, type_space, pos_embedding, # embedd_word=word_table, embedd_char=char_table, embedd_pos=pos_table, p_in=p_in, p_out=p_out, # p_rnn=p_rnn, biaffine=True, pos=use_pos, char=use_char, elmo=use_elmo, prior_order=prior_order, # skipConnect=skipConnect, grandPar=grandPar, sibling=sibling, elmo_path=elmo_path, elmo_dim=elmo_dim, # bert = use_bert, bert_path=bert_path, bert_dim=bert_dim) network = BiRecurrentConvBiAffine(word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, hidden_size, encoder_layers, num_types, arc_space, type_space, embedd_word=word_table, embedd_char=char_table, embedd_pos=pos_table, p_in=p_in, p_out=p_out, p_rnn=p_rnn, biaffine=True, pos=use_pos, char=use_char, elmo=use_elmo, elmo_path=elmo_path, elmo_dim=elmo_dim, bert=use_bert, bert_path=bert_path, bert_dim=bert_dim) # if fine_tune_path is not None: # pretrained_dict = torch.load(fine_tune_path) # model_dict = network.state_dict() # # select # #model_dict['pos_embedd.weight'] = pretrained_dict['pos_embedd.weight'] # model_dict['word_embedd.weight'] = pretrained_dict['word_embedd.weight'] # #model_dict['char_embedd.weight'] = pretrained_dict['char_embedd.weight'] # network.load_state_dict(model_dict) model_ver = args.model_version if model_ver is not None: savePath = args.model_path + model_ver + 'network.pt' network.load_state_dict(torch.load(savePath)) logger.info('Load model: %s' % (model_ver)) def save_args(): arg_path = model_name + '.arg.json' arguments = [ word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, hidden_size, encoder_layers, num_types, arc_space, type_space, pos_embedding ] kwargs = { 'p_in': p_in, 'p_out': p_out, 'p_rnn': p_rnn, 'biaffine': True, 'pos': use_pos, 'char': use_char, 'elmo': use_elmo, 'bert': use_bert } json.dump({ 'args': arguments, 'kwargs': kwargs }, open(arg_path, 'w', encoding="utf-8"), indent=4) with open(arg_path + '.raw_args', 'w', encoding="utf-8") as f: f.write(str(args)) if freeze: network.word_embedd.freeze() if use_gpu: network.cuda() save_args() pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet, pos_embedding) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet, pos_embedding) def generate_optimizer(opt, lr, params): # params = [param for name, param in params if param.requires_grad] params = [param for name, param in params] if True: return AdamW(params, lr=lr, betas=betas, weight_decay=gamma) if opt == 'adam': return Adam(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps) elif opt == 'sgd': return SGD(params, lr=lr, momentum=momentum, weight_decay=gamma, nesterov=True) elif opt == 'adamax': return Adamax(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps) else: raise ValueError('Unknown optimization algorithm: %s' % opt) # 우선 huggingface 기본 bert option으로 수정 def generate_bert_optimizer(t_total, bert_lr, model): no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], 'weight_decay': gamma }, { 'params': [ p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) ], 'weight_decay': 0.0 }] optimizer = AdamW(optimizer_grouped_parameters, lr=bert_lr, eps=1e-8) scheduler = WarmupLinearSchedule(optimizer, warmup_steps=0, t_total=t_total) return scheduler, optimizer lr = learning_rate if use_bert: scheduler, optim = generate_bert_optimizer( len(data_train) * num_epochs, lr, network) #optim = generate_optimizer(opt, lr, network.named_parameters()) opt_info = 'opt: %s, ' % opt if opt == 'adam': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) elif opt == 'sgd': opt_info += 'momentum=%.2f' % momentum elif opt == 'adamax': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) word_status = 'frozen' if freeze else 'fine tune' char_status = 'enabled' if use_char else 'disabled' pos_status = 'enabled' if use_pos else 'disabled' logger.info( "Embedding dim: word=%d (%s), char=%d (%s), pos=%d (%s)" % (word_dim, word_status, char_dim, char_status, pos_dim, pos_status)) logger.info("CNN: filter=%d, kernel=%d" % (num_filters, window)) #logger.info("RNN: %s, num_layer=(%d, %d), input_dec=%d, hidden=%d, arc_space=%d, type_space=%d" % (mode, encoder_layers, decoder_layers, input_size_decoder, hidden_size, arc_space, type_space)) logger.info( "train: cov: %.1f, (#data: %d, batch: %d, clip: %.2f, label_smooth: %.2f, unk_repl: %.2f)" % (cov, num_data, batch_size, clip, label_smooth, unk_replace)) logger.info("dropout(in, out, rnn): (%.2f, %.2f, %s)" % (p_in, p_out, p_rnn)) logger.info('prior order: %s, grand parent: %s, sibling: %s, ' % (prior_order, grandPar, sibling)) logger.info('skip connect: %s, beam: %d' % (skipConnect, beam)) logger.info(opt_info) num_batches = int(num_data / batch_size + 1) # kwon dev_ucorrect = 0.0 dev_lcorrect = 0.0 dev_ucomlpete_match = 0.0 dev_lcomplete_match = 0.0 dev_ucorrect_nopunc = 0.0 dev_lcorrect_nopunc = 0.0 dev_ucomlpete_match_nopunc = 0.0 dev_lcomplete_match_nopunc = 0.0 dev_root_correct = 0.0 best_epoch = 0 test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_root_correct = 0.0 test_total = 0 test_total_nopunc = 0 test_total_inst = 0 test_total_root = 0 if decoding == 'greedy': decode = network.decode elif decoding == 'mst': decode = network.decode_mst else: raise ValueError('Unknown decoding algorithm: %s' % decoding) patient = 0 decay = 0 max_decay = args.max_decay double_schedule_decay = args.double_schedule_decay for epoch in range(1, num_epochs + 1): print( 'Epoch %d (%s, optim: %s, learning rate=%.6f, eps=%.1e, decay rate=%.2f (schedule=%d, patient=%d, decay=%d)): ' % (epoch, mode, opt, lr, eps, decay_rate, schedule, patient, decay)) train_err = 0. train_err_arc = 0. train_err_type = 0. train_total = 0. start_time = time.time() num_back = 0 network.train() for batch in range(1, num_batches + 1): # load data input_encoder, _ = conllx_stacked_data.get_batch_stacked_variable( data_train, batch_size, pos_embedding, unk_replace=unk_replace, elmo=use_elmo, bert=use_bert) word_elmo = None if use_elmo: word, char, pos, heads, types, masks, lengths, word_elmo, word_bert = input_encoder else: word, char, pos, heads, types, masks, lengths, word_bert = input_encoder #stacked_heads, children, sibling, stacked_types, skip_connect, masks_d, lengths_d = input_decoder optim.zero_grad() # yjyj loss_arc, loss_type, bert_word_feature_ids, bert_morp_feature_ids = network.loss( word, char, pos, heads, types, mask=masks, length=lengths, input_word_bert=word_bert) # loss_arc_leaf, loss_arc_non_leaf, \ # loss_type_leaf, loss_type_non_leaf, \ # loss_cov, num_leaf, num_non_leaf = network.loss(word, char, pos, heads, stacked_heads, children, sibling, stacked_types, label_smooth, skip_connect=skip_connect, mask_e=masks_e, \ # length_e=lengths_e, mask_d=masks_d, length_d=lengths_d, input_word_elmo = word_elmo, input_word_bert = word_bert) # loss_arc = loss_arc_leaf + loss_arc_non_leaf # loss_type = loss_type_leaf + loss_type_non_leaf # loss = loss_arc + loss_type + cov * loss_cov # cov is set to 0 by default loss = loss_arc + loss_type loss.backward() clip_grad_norm_(network.parameters(), clip) optim.step() if use_bert: pass #bert_optim.step() #scheduler.step() num_inst = word.size( 0) if obj == 'crf' else masks.data.sum() - word.size(0) train_err += loss.item() * num_inst train_err_arc += loss_arc.item() * num_inst train_err_type += loss_type.item() * num_inst train_total += num_inst time_ave = (time.time() - start_time) / batch time_left = (num_batches - batch) * time_ave # yjyj # num_leaf = num_leaf.item() # num_non_leaf = num_non_leaf.item() # train_err_arc_leaf += loss_arc_leaf.item() * num_leaf # train_err_arc_non_leaf += loss_arc_non_leaf.item() * num_non_leaf # # train_err_type_leaf += loss_type_leaf.item() * num_leaf # train_err_type_non_leaf += loss_type_non_leaf.item() * num_non_leaf # # train_err_cov += loss_cov.item() * (num_leaf + num_non_leaf) # train_total_leaf += num_leaf # train_total_non_leaf += num_non_leaf # # time_ave = (time.time() - start_time) / batch # time_left = (num_batches - batch) * time_ave # update log # update log if batch % 10 == 0: sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) log_info = 'train: %d/%d loss: %.4f, arc: %.4f, type: %.4f, time left: %.2fs' % ( batch, num_batches, train_err / train_total, train_err_arc / train_total, train_err_type / train_total, time_left) sys.stdout.write(log_info) sys.stdout.flush() num_back = len(log_info) sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) print( 'train: %d loss: %.4f, arc: %.4f, type: %.4f, time: %.2fs' % (num_batches, train_err / train_total, train_err_arc / train_total, train_err_type / train_total, time.time() - start_time)) # yjyj # if batch % 10 == 0: # sys.stdout.write("\b" * num_back) # sys.stdout.write(" " * num_back) # sys.stdout.write("\b" * num_back) # err_arc_leaf = train_err_arc_leaf / train_total_leaf # err_arc_non_leaf = train_err_arc_non_leaf / train_total_non_leaf # err_arc = err_arc_leaf + err_arc_non_leaf # # err_type_leaf = train_err_type_leaf / train_total_leaf # err_type_non_leaf = train_err_type_non_leaf / train_total_non_leaf # err_type = err_type_leaf + err_type_non_leaf # # err_cov = train_err_cov / (train_total_leaf + train_total_non_leaf) # # err = err_arc + err_type + cov * err_cov # log_info = 'train: %d/%d loss (leaf, non_leaf): %.4f, arc: %.4f (%.4f, %.4f), type: %.4f (%.4f, %.4f), coverage: %.4f, time left (estimated): %.2fs' % ( # batch, num_batches, err, err_arc, err_arc_leaf, err_arc_non_leaf, err_type, err_type_leaf, err_type_non_leaf, err_cov, time_left) # sys.stdout.write(log_info) # sys.stdout.flush() # num_back = len(log_info) # # sys.stdout.write("\b" * num_back) # sys.stdout.write(" " * num_back) # sys.stdout.write("\b" * num_back) # err_arc_leaf = train_err_arc_leaf / train_total_leaf # err_arc_non_leaf = train_err_arc_non_leaf / train_total_non_leaf # err_arc = err_arc_leaf + err_arc_non_leaf # # err_type_leaf = train_err_type_leaf / train_total_leaf # err_type_non_leaf = train_err_type_non_leaf / train_total_non_leaf # err_type = err_type_leaf + err_type_non_leaf # # err_cov = train_err_cov / (train_total_leaf + train_total_non_leaf) # # err = err_arc + err_type + cov * err_cov # print('train: %d loss (leaf, non_leaf): %.4f, arc: %.4f (%.4f, %.4f), type: %.4f (%.4f, %.4f), coverage: %.4f, time: %.2fs' % ( # num_batches, err, err_arc, err_arc_leaf, err_arc_non_leaf, err_type, err_type_leaf, err_type_non_leaf, err_cov, time.time() - start_time)) # evaluate performance on dev data network.eval() pred_filename = model_path + 'tmp/pred_dev%d' % (epoch) pred_writer.start(pred_filename) gold_filename = model_path + 'tmp/gold_dev%d' % (epoch) gold_writer.start(gold_filename) dev_ucorr = 0.0 dev_lcorr = 0.0 dev_total = 0 dev_ucomlpete = 0.0 dev_lcomplete = 0.0 dev_ucorr_nopunc = 0.0 dev_lcorr_nopunc = 0.0 dev_total_nopunc = 0 dev_ucomlpete_nopunc = 0.0 dev_lcomplete_nopunc = 0.0 dev_root_corr = 0.0 dev_total_root = 0.0 dev_total_inst = 0.0 for batch in conllx_stacked_data.iterate_batch_stacked_variable( data_dev, batch_size, pos_embedding, type='dev', elmo=use_elmo): input_encoder, _ = batch #@TODO 여기 input word elmo랑 input word bert 처리 if use_elmo: word, char, pos, heads, types, masks, lengths, word_elmo, word_bert = input_encoder heads_pred, types_pred = decode( word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) # heads_pred, types_pred, _, _ = network.decode(word, char, pos, input_word_elmo=word_elmo, mask=masks, # length=lengths, beam=beam, # leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS, input_word_bert=word_bert) else: word, char, pos, heads, types, masks, lengths, word_bert = input_encoder heads_pred, types_pred, bert_word_feature_ids, bert_morp_feature_ids = decode( word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS, input_word_bert=word_bert) # heads_pred, types_pred, _, _ = network.decode(word, char, pos, mask=masks, length=lengths, beam=beam, # leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS, input_word_bert=word_bert) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser_bpe.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True, bert_word_feature_ids=bert_word_feature_ids, bert_morp_feature_ids=bert_morp_feature_ids) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root dev_ucorr += ucorr dev_lcorr += lcorr dev_total += total dev_ucomlpete += ucm dev_lcomplete += lcm dev_ucorr_nopunc += ucorr_nopunc dev_lcorr_nopunc += lcorr_nopunc dev_total_nopunc += total_nopunc dev_ucomlpete_nopunc += ucm_nopunc dev_lcomplete_nopunc += lcm_nopunc dev_root_corr += corr_root dev_total_root += total_root dev_total_inst += num_inst pred_writer.close() gold_writer.close() print( 'W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (dev_ucorr, dev_lcorr, dev_total, dev_ucorr * 100 / dev_total, dev_lcorr * 100 / dev_total, dev_ucomlpete * 100 / dev_total_inst, dev_lcomplete * 100 / dev_total_inst)) print( 'Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (dev_ucorr_nopunc, dev_lcorr_nopunc, dev_total_nopunc, dev_ucorr_nopunc * 100 / dev_total_nopunc, dev_lcorr_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_nopunc * 100 / dev_total_inst, dev_lcomplete_nopunc * 100 / dev_total_inst)) print('Root: corr: %d, total: %d, acc: %.2f%%' % (dev_root_corr, dev_total_root, dev_root_corr * 100 / dev_total_root)) if dev_ucorrect_nopunc * 1.5 + dev_lcorrect_nopunc < dev_ucorr_nopunc * 1.5 + dev_lcorr_nopunc: dev_ucorrect_nopunc = dev_ucorr_nopunc dev_lcorrect_nopunc = dev_lcorr_nopunc dev_ucomlpete_match_nopunc = dev_ucomlpete_nopunc dev_lcomplete_match_nopunc = dev_lcomplete_nopunc dev_ucorrect = dev_ucorr dev_lcorrect = dev_lcorr dev_ucomlpete_match = dev_ucomlpete dev_lcomplete_match = dev_lcomplete dev_root_correct = dev_root_corr best_epoch = epoch patient = 0 # torch.save(network, model_name) torch.save(network.state_dict(), model_name) # save embedding to txt # FIXME format! #with open(model_path + 'embedding.txt', 'w') as f: # for word, idx in word_alphabet.items(): # embedding = network.word_embedd.weight[idx, :] # f.write('{}\t{}\n'.format(word, embedding)) if test_path: pred_filename = model_path + 'tmp/%spred_test%d' % (str(uid), epoch) pred_writer.start(pred_filename) gold_filename = model_path + 'tmp/%sgold_test%d' % (str(uid), epoch) gold_writer.start(gold_filename) test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_total = 0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_total_nopunc = 0 test_total_inst = 0 test_root_correct = 0.0 test_total_root = 0 for batch in conllx_stacked_data.iterate_batch_stacked_variable( data_test, batch_size, pos_embedding, type='dev'): input_encoder, _ = batch word, char, pos, heads, types, masks, lengths = input_encoder # yjyj # heads_pred, types_pred, _, _ = network.decode(word, char, pos, mask=masks, length=lengths, beam=beam, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) heads_pred, types_pred = decode( word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser_bpe.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root test_ucorrect += ucorr test_lcorrect += lcorr test_total += total test_ucomlpete_match += ucm test_lcomplete_match += lcm test_ucorrect_nopunc += ucorr_nopunc test_lcorrect_nopunc += lcorr_nopunc test_total_nopunc += total_nopunc test_ucomlpete_match_nopunc += ucm_nopunc test_lcomplete_match_nopunc += lcm_nopunc test_root_correct += corr_root test_total_root += total_root test_total_inst += num_inst pred_writer.close() gold_writer.close() else: if dev_ucorr_nopunc * 100 / dev_total_nopunc < dev_ucorrect_nopunc * 100 / dev_total_nopunc - 5 or patient >= schedule: # network = torch.load(model_name) network.load_state_dict(torch.load(model_name)) lr = lr * decay_rate # = generate_optimizer(opt, lr, network.named_parameters()) optim = generate_bert_optimizer(opt, lr, network) patient = 0 decay += 1 if decay % double_schedule_decay == 0: schedule *= 2 else: patient += 1 print( '----------------------------------------------------------------------------------------------------------------------------' ) print( 'best dev W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (dev_ucorrect, dev_lcorrect, dev_total, dev_ucorrect * 100 / dev_total, dev_lcorrect * 100 / dev_total, dev_ucomlpete_match * 100 / dev_total_inst, dev_lcomplete_match * 100 / dev_total_inst, best_epoch)) print( 'best dev Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (dev_ucorrect_nopunc, dev_lcorrect_nopunc, dev_total_nopunc, dev_ucorrect_nopunc * 100 / dev_total_nopunc, dev_lcorrect_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_match_nopunc * 100 / dev_total_inst, dev_lcomplete_match_nopunc * 100 / dev_total_inst, best_epoch)) print('best dev Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (dev_root_correct, dev_total_root, dev_root_correct * 100 / dev_total_root, best_epoch)) print( '----------------------------------------------------------------------------------------------------------------------------' ) if test_path: print( 'best test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total, test_ucomlpete_match * 100 / test_total_inst, test_lcomplete_match * 100 / test_total_inst, best_epoch)) print( 'best test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc, test_ucomlpete_match_nopunc * 100 / test_total_inst, test_lcomplete_match_nopunc * 100 / test_total_inst, best_epoch)) print( 'best test Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (test_root_correct, test_total_root, test_root_correct * 100 / test_total_root, best_epoch)) print( '============================================================================================================================' ) if decay == max_decay: break def save_result(): result_path = model_name + '.result.txt' best_dev_Punc = 'best dev W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( dev_ucorrect, dev_lcorrect, dev_total, dev_ucorrect * 100 / dev_total, dev_lcorrect * 100 / dev_total, dev_ucomlpete_match * 100 / dev_total_inst, dev_lcomplete_match * 100 / dev_total_inst, best_epoch) best_dev_noPunc = 'best dev Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % ( dev_ucorrect_nopunc, dev_lcorrect_nopunc, dev_total_nopunc, dev_ucorrect_nopunc * 100 / dev_total_nopunc, dev_lcorrect_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_match_nopunc * 100 / dev_total_inst, dev_lcomplete_match_nopunc * 100 / dev_total_inst, best_epoch) best_dev_Root = 'best dev Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % ( dev_root_correct, dev_total_root, dev_root_correct * 100 / dev_total_root, best_epoch) f = open(result_path, 'w') f.write(str(best_dev_Punc.encode('utf-8')) + '\n') f.write(str(best_dev_noPunc.encode('utf-8')) + '\n') f.write(str(best_dev_Root.encode('utf-8'))) f.close() save_result()
def biaffine(model_path, model_name, pre_model_path, pre_model_name, use_gpu, logger, args): alphabet_path = os.path.join(pre_model_path, 'alphabets/') logger.info("Alphabet Path: %s" % alphabet_path) pre_model_name = os.path.join(pre_model_path, pre_model_name) model_name = os.path.join(model_path, model_name) # Load pre-created alphabets word_alphabet, char_alphabet, pos_alphabet, type_alphabet, max_sent_length = conllx_data.create_alphabets( alphabet_path, None, data_paths=[None, None], max_vocabulary_size=50000, embedd_dict=None) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) logger.info('use gpu: %s' % (use_gpu)) if args.test_lang: extra_embed = args.embed_dir + ("wiki.multi.%s.vec" % args.test_lang) extra_word_dict, _ = load_embedding_dict('word2vec', extra_embed) test_path = args.data_dir + args.test_lang + '_test.conllu' extra_embeds_arr = augment_with_extra_embedding(word_alphabet, extra_word_dict, test_path, logger) else: extra_embeds_arr = [] for language in args.langs: extra_embed = args.embed_dir + ("wiki.multi.%s.vec" % language) extra_word_dict, _ = load_embedding_dict('word2vec', extra_embed) test_path = args.data_dir + language + '_train.conllu' embeds_arr1 = augment_with_extra_embedding(word_alphabet, extra_word_dict, test_path, logger) test_path = args.data_dir + language + '_dev.conllu' embeds_arr2 = augment_with_extra_embedding(word_alphabet, extra_word_dict, test_path, logger) test_path = args.data_dir + language + '_test.conllu' embeds_arr3 = augment_with_extra_embedding(word_alphabet, extra_word_dict, test_path, logger) extra_embeds_arr.extend(embeds_arr1 + embeds_arr2 + embeds_arr3) # ------------------------------------------------------------------------- # # --------------------- Loading model ------------------------------------- # def load_model_arguments_from_json(): arguments = json.load(open(arg_path, 'r')) return arguments['args'], arguments['kwargs'] arg_path = pre_model_name + '.arg.json' margs, kwargs = load_model_arguments_from_json() network = BiRecurrentConvBiAffine(use_gpu=use_gpu, *margs, **kwargs) network.load_state_dict(torch.load(pre_model_name)) args.use_bert = kwargs.get('use_bert', False) # augment_network_embed(word_alphabet.size(), network, extra_embeds_arr) network.eval() logger.info('model: %s' % pre_model_name) # Freeze the network for p in network.parameters(): p.requires_grad = False nclass = args.nclass classifier = nn.Sequential( nn.Linear(network.encoder.output_dim, 512), nn.Linear(512, nclass) ) if use_gpu: network.cuda() classifier.cuda() else: network.cpu() classifier.cpu() batch_size = args.batch_size # ===== the reading def _read_one(path, is_train=False, max_size=None): lang_id = guess_language_id(path) logger.info("Reading: guess that the language of file %s is %s." % (path, lang_id)) one_data = conllx_data.read_data_to_variable(path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=(not is_train), use_bert=args.use_bert, symbolic_root=True, lang_id=lang_id, max_size=max_size) return one_data def compute_accuracy(data, lang_idx): total_corr, total = 0, 0 classifier.eval() with torch.no_grad(): for batch in conllx_data.iterate_batch_variable(data, batch_size): word, char, pos, _, _, masks, lengths, bert_inputs = batch if use_gpu: word = word.cuda() char = char.cuda() pos = pos.cuda() masks = masks.cuda() lengths = lengths.cuda() if bert_inputs[0] is not None: bert_inputs[0] = bert_inputs[0].cuda() bert_inputs[1] = bert_inputs[1].cuda() bert_inputs[2] = bert_inputs[2].cuda() output = network.forward(word, char, pos, input_bert=bert_inputs, mask=masks, length=lengths, hx=None) output = output['output'].detach() if args.train_level == 'word': output = classifier(output) output = output.contiguous().view(-1, output.size(2)) else: output = torch.mean(output, dim=1) output = classifier(output) preds = output.max(1)[1].cpu() labels = torch.LongTensor([lang_idx]) labels = labels.expand(*preds.size()) n_correct = preds.eq(labels).sum().item() total_corr += n_correct total += output.size(0) return {'total_corr': total_corr, 'total': total} if args.test_lang: classifier.load_state_dict(torch.load(model_name)) path = args.data_dir + args.test_lang + '_train.conllu' test_data = _read_one(path) # TODO: fixed indexing is not GOOD lang_idx = 0 if args.test_lang == args.src_lang else 1 result = compute_accuracy(test_data, lang_idx) accuracy = (result['total_corr'] * 100.0) / result['total'] logger.info('[Classifier performance] Language: %s || accuracy: %.2f%%' % (args.test_lang, accuracy)) else: # if output directory doesn't exist, create it if not os.path.exists(args.model_path): os.makedirs(args.model_path) # --------------------- Loading data -------------------------------------- # train_data = dict() dev_data = dict() test_data = dict() num_data = dict() lang_ids = dict() reverse_lang_ids = dict() # loading language data for language in args.langs: lang_ids[language] = len(lang_ids) reverse_lang_ids[lang_ids[language]] = language train_path = args.data_dir + language + '_train.conllu' # Utilize at most 10000 examples tmp_data = _read_one(train_path, max_size=10000) num_data[language] = sum(tmp_data[1]) train_data[language] = tmp_data dev_path = args.data_dir + language + '_dev.conllu' tmp_data = _read_one(dev_path) dev_data[language] = tmp_data test_path = args.data_dir + language + '_test.conllu' tmp_data = _read_one(test_path) test_data[language] = tmp_data # ------------------------------------------------------------------------- # optim = torch.optim.Adam(classifier.parameters(), lr=0.001) criterion = nn.CrossEntropyLoss() def compute_loss(lang_name, land_idx): word, char, pos, _, _, masks, lengths, bert_inputs = conllx_data.get_batch_variable(train_data[lang_name], batch_size, unk_replace=0.5) if use_gpu: word = word.cuda() char = char.cuda() pos = pos.cuda() masks = masks.cuda() lengths = lengths.cuda() if bert_inputs[0] is not None: bert_inputs[0] = bert_inputs[0].cuda() bert_inputs[1] = bert_inputs[1].cuda() bert_inputs[2] = bert_inputs[2].cuda() output = network.forward(word, char, pos, input_bert=bert_inputs, mask=masks, length=lengths, hx=None) output = output['output'].detach() if args.train_level == 'word': output = classifier(output) output = output.contiguous().view(-1, output.size(2)) else: output = torch.mean(output, dim=1) output = classifier(output) labels = torch.empty(output.size(0)).fill_(land_idx).type_as(output).long() loss = criterion(output, labels) return loss # ---------------------- Form the mini-batches -------------------------- # num_batches = 0 batch_lang_labels = [] for lang in args.langs: nbatches = num_data[lang] // batch_size + 1 batch_lang_labels.extend([lang] * nbatches) num_batches += nbatches assert len(batch_lang_labels) == num_batches # ------------------------------------------------------------------------- # best_dev_accuracy = 0 patience = 0 for epoch in range(1, args.num_epochs + 1): # shuffling the data lang_in_batch = copy.copy(batch_lang_labels) random.shuffle(lang_in_batch) classifier.train() for batch in range(1, num_batches + 1): lang_name = lang_in_batch[batch - 1] lang_id = lang_ids.get(lang_name) loss = compute_loss(lang_name, lang_id) loss.backward() optim.step() # Validation avg_acc = dict() for dev_lang in dev_data.keys(): lang_idx = lang_ids.get(dev_lang) result = compute_accuracy(dev_data[dev_lang], lang_idx) accuracy = (result['total_corr'] * 100.0) / result['total'] avg_acc[dev_lang] = accuracy acc = ', '.join('%s: %.2f' % (key, val) for (key, val) in avg_acc.items()) logger.info('Epoch: %d, Performance[%s]' % (epoch, acc)) avg_acc = sum(avg_acc.values()) / len(avg_acc) if best_dev_accuracy < avg_acc: best_dev_accuracy = avg_acc patience = 0 state_dict = classifier.state_dict() torch.save(state_dict, model_name) else: patience += 1 if patience >= 5: break # Testing logger.info('Testing model %s' % pre_model_name) total_corr, total = 0, 0 for test_lang in UD_languages: if test_lang in test_data: lang_idx = lang_ids.get(test_lang) result = compute_accuracy(test_data[test_lang], lang_idx) accuracy = (result['total_corr'] * 100.0) / result['total'] print('[LANG]: %s, [ACC]: %.2f' % (test_lang.upper(), accuracy)) total_corr += result['total_corr'] total += result['total'] print('[Avg. Performance]: %.2f' % ((total_corr * 100.0) / total))
def main(): args_parser = argparse.ArgumentParser( description='Tuning with graph-based parsing') args_parser.add_argument('--seed', type=int, default=1234, help='random seed for reproducibility') args_parser.add_argument('--mode', choices=['RNN', 'LSTM', 'GRU', 'FastLSTM'], help='architecture of rnn', required=True) args_parser.add_argument('--num_epochs', type=int, default=1000, help='Number of training epochs') args_parser.add_argument('--batch_size', type=int, default=64, help='Number of sentences in each batch') args_parser.add_argument('--hidden_size', type=int, default=256, help='Number of hidden units in RNN') args_parser.add_argument('--arc_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--type_space', type=int, default=128, help='Dimension of tag space') args_parser.add_argument('--num_layers', type=int, default=1, help='Number of layers of encoder.') args_parser.add_argument('--num_filters', type=int, default=50, help='Number of filters in CNN') args_parser.add_argument('--pos', action='store_true', help='use part-of-speech embedding.') args_parser.add_argument('--char', action='store_true', help='use character embedding and CNN.') args_parser.add_argument('--pos_dim', type=int, default=50, help='Dimension of POS embeddings') args_parser.add_argument('--char_dim', type=int, default=50, help='Dimension of Character embeddings') args_parser.add_argument('--opt', choices=['adam', 'sgd', 'adamax'], help='optimization algorithm') args_parser.add_argument('--objective', choices=['cross_entropy', 'crf'], default='cross_entropy', help='objective function of training procedure.') args_parser.add_argument('--decode', choices=['mst', 'greedy'], default='mst', help='decoding algorithm') args_parser.add_argument('--learning_rate', type=float, default=0.01, help='Learning rate') # args_parser.add_argument('--decay_rate', type=float, default=0.05, help='Decay rate of learning rate') args_parser.add_argument('--clip', type=float, default=5.0, help='gradient clipping') args_parser.add_argument('--gamma', type=float, default=0.0, help='weight for regularization') args_parser.add_argument('--epsilon', type=float, default=1e-8, help='epsilon for adam or adamax') args_parser.add_argument('--p_rnn', nargs='+', type=float, required=True, help='dropout rate for RNN') args_parser.add_argument('--p_in', type=float, default=0.33, help='dropout rate for input embeddings') args_parser.add_argument('--p_out', type=float, default=0.33, help='dropout rate for output layer') # args_parser.add_argument('--schedule', type=int, help='schedule for learning rate decay') args_parser.add_argument( '--unk_replace', type=float, default=0., help='The rate to replace a singleton word with UNK') args_parser.add_argument('--punctuation', nargs='+', type=str, help='List of punctuations') args_parser.add_argument( '--word_embedding', choices=['word2vec', 'glove', 'senna', 'sskip', 'polyglot'], help='Embedding for words', required=True) args_parser.add_argument('--word_path', help='path for word embedding dict') args_parser.add_argument( '--freeze', action='store_true', help='frozen the word embedding (disable fine-tuning).') args_parser.add_argument('--char_embedding', choices=['random', 'polyglot'], help='Embedding for characters', required=True) args_parser.add_argument('--char_path', help='path for character embedding dict') args_parser.add_argument( '--train') # "data/POS-penn/wsj/split1/wsj1.train.original" args_parser.add_argument( '--dev') # "data/POS-penn/wsj/split1/wsj1.dev.original" args_parser.add_argument( '--test') # "data/POS-penn/wsj/split1/wsj1.test.original" args_parser.add_argument('--vocab_path', help='path for prebuilt alphabets.', default=None) args_parser.add_argument('--model_path', help='path for saving model file.', required=True) args_parser.add_argument('--model_name', help='name for saving model file.', required=True) # args_parser.add_argument('--no_word', action='store_true', help='do not use word embedding.') # # lrate schedule with warmup in the first iter. args_parser.add_argument('--use_warmup_schedule', action='store_true', help="Use warmup lrate schedule.") args_parser.add_argument('--decay_rate', type=float, default=0.75, help='Decay rate of learning rate') args_parser.add_argument('--max_decay', type=int, default=9, help='Number of decays before stop') args_parser.add_argument('--schedule', type=int, help='schedule for learning rate decay') args_parser.add_argument('--double_schedule_decay', type=int, default=5, help='Number of decays to double schedule') args_parser.add_argument( '--check_dev', type=int, default=5, help='Check development performance in every n\'th iteration') # Tansformer encoder args_parser.add_argument('--no_CoRNN', action='store_true', help='do not use context RNN.') args_parser.add_argument( '--trans_hid_size', type=int, default=1024, help='#hidden units in point-wise feed-forward in transformer') args_parser.add_argument( '--d_k', type=int, default=64, help='d_k for multi-head-attention in transformer encoder') args_parser.add_argument( '--d_v', type=int, default=64, help='d_v for multi-head-attention in transformer encoder') args_parser.add_argument('--multi_head_attn', action='store_true', help='use multi-head-attention.') args_parser.add_argument('--num_head', type=int, default=8, help='Value of h in multi-head attention') # - positional args_parser.add_argument( '--enc_use_neg_dist', action='store_true', help="Use negative distance for enc's relational-distance embedding.") args_parser.add_argument( '--enc_clip_dist', type=int, default=0, help="The clipping distance for relative position features.") args_parser.add_argument('--position_dim', type=int, default=50, help='Dimension of Position embeddings.') args_parser.add_argument( '--position_embed_num', type=int, default=200, help= 'Minimum value of position embedding num, which usually is max-sent-length.' ) args_parser.add_argument('--train_position', action='store_true', help='train positional encoding for transformer.') # args_parser.add_argument( '--train_len_thresh', type=int, default=100, help='In training, discard sentences longer than this.') # args = args_parser.parse_args() # fix data-prepare seed random.seed(1234) np.random.seed(1234) # model's seed torch.manual_seed(args.seed) logger = get_logger("GraphParser") mode = args.mode obj = args.objective decoding = args.decode train_path = args.train dev_path = args.dev test_path = args.test model_path = args.model_path model_name = args.model_name num_epochs = args.num_epochs batch_size = args.batch_size hidden_size = args.hidden_size arc_space = args.arc_space type_space = args.type_space num_layers = args.num_layers num_filters = args.num_filters learning_rate = args.learning_rate opt = args.opt momentum = 0.9 betas = (0.9, 0.9) eps = args.epsilon decay_rate = args.decay_rate clip = args.clip gamma = args.gamma schedule = args.schedule p_rnn = tuple(args.p_rnn) p_in = args.p_in p_out = args.p_out unk_replace = args.unk_replace punctuation = args.punctuation freeze = args.freeze word_embedding = args.word_embedding word_path = args.word_path use_char = args.char char_embedding = args.char_embedding char_path = args.char_path use_pos = args.pos pos_dim = args.pos_dim word_dict, word_dim = utils.load_embedding_dict(word_embedding, word_path) char_dict = None char_dim = args.char_dim if char_embedding != 'random': char_dict, char_dim = utils.load_embedding_dict( char_embedding, char_path) # vocab_path = args.vocab_path if args.vocab_path is not None else args.model_path logger.info("Creating Alphabets") alphabet_path = os.path.join(vocab_path, 'alphabets/') model_name = os.path.join(model_path, model_name) # todo(warn): exactly same for loading vocabs word_alphabet, char_alphabet, pos_alphabet, type_alphabet, max_sent_length = conllx_data.create_alphabets( alphabet_path, train_path, data_paths=[dev_path, test_path], max_vocabulary_size=50000, embedd_dict=word_dict) max_sent_length = max(max_sent_length, args.position_embed_num) num_words = word_alphabet.size() num_chars = char_alphabet.size() num_pos = pos_alphabet.size() num_types = type_alphabet.size() logger.info("Word Alphabet Size: %d" % num_words) logger.info("Character Alphabet Size: %d" % num_chars) logger.info("POS Alphabet Size: %d" % num_pos) logger.info("Type Alphabet Size: %d" % num_types) logger.info("Reading Data") use_gpu = torch.cuda.is_available() # ===== the reading def _read_one(path, is_train): lang_id = guess_language_id(path) logger.info("Reading: guess that the language of file %s is %s." % (path, lang_id)) one_data = conllx_data.read_data_to_variable( path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, use_gpu=use_gpu, volatile=(not is_train), symbolic_root=True, lang_id=lang_id, len_thresh=(args.train_len_thresh if is_train else 100000)) return one_data data_train = _read_one(train_path, True) num_data = sum(data_train[1]) data_dev = _read_one(dev_path, False) data_test = _read_one(test_path, False) # ===== punct_set = None if punctuation is not None: punct_set = set(punctuation) logger.info("punctuations(%d): %s" % (len(punct_set), ' '.join(punct_set))) def construct_word_embedding_table(): scale = np.sqrt(3.0 / word_dim) table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32) table[conllx_data.UNK_ID, :] = np.zeros([1, word_dim]).astype( np.float32) if freeze else np.random.uniform( -scale, scale, [1, word_dim]).astype(np.float32) oov = 0 for word, index in word_alphabet.items(): if word in word_dict: embedding = word_dict[word] elif word.lower() in word_dict: embedding = word_dict[word.lower()] else: embedding = np.zeros([1, word_dim]).astype( np.float32) if freeze else np.random.uniform( -scale, scale, [1, word_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('word OOV: %d' % oov) return torch.from_numpy(table) def construct_char_embedding_table(): if char_dict is None: return None scale = np.sqrt(3.0 / char_dim) table = np.empty([num_chars, char_dim], dtype=np.float32) table[conllx_data.UNK_ID, :] = np.random.uniform( -scale, scale, [1, char_dim]).astype(np.float32) oov = 0 for char, index, in char_alphabet.items(): if char in char_dict: embedding = char_dict[char] else: embedding = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32) oov += 1 table[index, :] = embedding print('character OOV: %d' % oov) return torch.from_numpy(table) word_table = construct_word_embedding_table() char_table = construct_char_embedding_table() window = 3 if obj == 'cross_entropy': network = BiRecurrentConvBiAffine( word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, hidden_size, num_layers, num_types, arc_space, type_space, embedd_word=word_table, embedd_char=char_table, p_in=p_in, p_out=p_out, p_rnn=p_rnn, biaffine=True, pos=use_pos, char=use_char, train_position=args.train_position, use_con_rnn=(not args.no_CoRNN), trans_hid_size=args.trans_hid_size, d_k=args.d_k, d_v=args.d_v, multi_head_attn=args.multi_head_attn, num_head=args.num_head, enc_use_neg_dist=args.enc_use_neg_dist, enc_clip_dist=args.enc_clip_dist, position_dim=args.position_dim, max_sent_length=max_sent_length, use_gpu=use_gpu, no_word=args.no_word) elif obj == 'crf': raise NotImplementedError else: raise RuntimeError('Unknown objective: %s' % obj) def save_args(): arg_path = model_name + '.arg.json' arguments = [ word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window, mode, hidden_size, num_layers, num_types, arc_space, type_space ] kwargs = { 'p_in': p_in, 'p_out': p_out, 'p_rnn': p_rnn, 'biaffine': True, 'pos': use_pos, 'char': use_char, 'train_position': args.train_position, 'use_con_rnn': (not args.no_CoRNN), 'trans_hid_size': args.trans_hid_size, 'd_k': args.d_k, 'd_v': args.d_v, 'multi_head_attn': args.multi_head_attn, 'num_head': args.num_head, 'enc_use_neg_dist': args.enc_use_neg_dist, 'enc_clip_dist': args.enc_clip_dist, 'position_dim': args.position_dim, 'max_sent_length': max_sent_length, 'no_word': args.no_word } json.dump({ 'args': arguments, 'kwargs': kwargs }, open(arg_path, 'w'), indent=4) if freeze: network.word_embedd.freeze() if use_gpu: network.cuda() save_args() pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet) def generate_optimizer(opt, lr, params): params = filter(lambda param: param.requires_grad, params) if opt == 'adam': return Adam(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps) elif opt == 'sgd': return SGD(params, lr=lr, momentum=momentum, weight_decay=gamma, nesterov=True) elif opt == 'adamax': return Adamax(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps) else: raise ValueError('Unknown optimization algorithm: %s' % opt) lr = learning_rate optim = generate_optimizer(opt, lr, network.parameters()) opt_info = 'opt: %s, ' % opt if opt == 'adam': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) elif opt == 'sgd': opt_info += 'momentum=%.2f' % momentum elif opt == 'adamax': opt_info += 'betas=%s, eps=%.1e' % (betas, eps) word_status = 'frozen' if freeze else 'fine tune' char_status = 'enabled' if use_char else 'disabled' pos_status = 'enabled' if use_pos else 'disabled' logger.info( "Embedding dim: word=%d (%s), char=%d (%s), pos=%d (%s)" % (word_dim, word_status, char_dim, char_status, pos_dim, pos_status)) logger.info("CNN: filter=%d, kernel=%d" % (num_filters, window)) logger.info( "RNN: %s, num_layer=%d, hidden=%d, arc_space=%d, type_space=%d" % (mode, num_layers, hidden_size, arc_space, type_space)) logger.info( "train: obj: %s, l2: %f, (#data: %d, batch: %d, clip: %.2f, unk replace: %.2f)" % (obj, gamma, num_data, batch_size, clip, unk_replace)) logger.info("dropout(in, out, rnn): (%.2f, %.2f, %s)" % (p_in, p_out, p_rnn)) logger.info("decoding algorithm: %s" % decoding) logger.info(opt_info) num_batches = num_data / batch_size + 1 dev_ucorrect = 0.0 dev_lcorrect = 0.0 dev_ucomlpete_match = 0.0 dev_lcomplete_match = 0.0 dev_ucorrect_nopunc = 0.0 dev_lcorrect_nopunc = 0.0 dev_ucomlpete_match_nopunc = 0.0 dev_lcomplete_match_nopunc = 0.0 dev_root_correct = 0.0 best_epoch = 0 test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_root_correct = 0.0 test_total = 0 test_total_nopunc = 0 test_total_inst = 0 test_total_root = 0 if decoding == 'greedy': decode = network.decode elif decoding == 'mst': decode = network.decode_mst else: raise ValueError('Unknown decoding algorithm: %s' % decoding) patient = 0 decay = 0 max_decay = args.max_decay double_schedule_decay = args.double_schedule_decay # lrate schedule step_num = 0 use_warmup_schedule = args.use_warmup_schedule warmup_factor = (lr + 0.) / num_batches if use_warmup_schedule: logger.info("Use warmup lrate for the first epoch, from 0 up to %s." % (lr, )) # for epoch in range(1, num_epochs + 1): print( 'Epoch %d (%s, optim: %s, learning rate=%.6f, eps=%.1e, decay rate=%.2f (schedule=%d, patient=%d, decay=%d)): ' % (epoch, mode, opt, lr, eps, decay_rate, schedule, patient, decay)) train_err = 0. train_err_arc = 0. train_err_type = 0. train_total = 0. start_time = time.time() num_back = 0 network.train() for batch in range(1, num_batches + 1): # lrate schedule (before each step) step_num += 1 if use_warmup_schedule and epoch <= 1: cur_lrate = warmup_factor * step_num # set lr for param_group in optim.param_groups: param_group['lr'] = cur_lrate # word, char, pos, heads, types, masks, lengths = conllx_data.get_batch_variable( data_train, batch_size, unk_replace=unk_replace) optim.zero_grad() loss_arc, loss_type = network.loss(word, char, pos, heads, types, mask=masks, length=lengths) loss = loss_arc + loss_type loss.backward() clip_grad_norm(network.parameters(), clip) optim.step() num_inst = word.size( 0) if obj == 'crf' else masks.data.sum() - word.size(0) train_err += loss.data[0] * num_inst train_err_arc += loss_arc.data[0] * num_inst train_err_type += loss_type.data[0] * num_inst train_total += num_inst time_ave = (time.time() - start_time) / batch time_left = (num_batches - batch) * time_ave # update log if batch % 10 == 0: sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) log_info = 'train: %d/%d loss: %.4f, arc: %.4f, type: %.4f, time left: %.2fs' % ( batch, num_batches, train_err / train_total, train_err_arc / train_total, train_err_type / train_total, time_left) sys.stdout.write(log_info) sys.stdout.flush() num_back = len(log_info) sys.stdout.write("\b" * num_back) sys.stdout.write(" " * num_back) sys.stdout.write("\b" * num_back) print( 'train: %d loss: %.4f, arc: %.4f, type: %.4f, time: %.2fs' % (num_batches, train_err / train_total, train_err_arc / train_total, train_err_type / train_total, time.time() - start_time)) ################################################################################################ if epoch % args.check_dev != 0: continue # evaluate performance on dev data network.eval() pred_filename = 'tmp/%spred_dev%d' % (str(uid), epoch) pred_writer.start(pred_filename) gold_filename = 'tmp/%sgold_dev%d' % (str(uid), epoch) gold_writer.start(gold_filename) dev_ucorr = 0.0 dev_lcorr = 0.0 dev_total = 0 dev_ucomlpete = 0.0 dev_lcomplete = 0.0 dev_ucorr_nopunc = 0.0 dev_lcorr_nopunc = 0.0 dev_total_nopunc = 0 dev_ucomlpete_nopunc = 0.0 dev_lcomplete_nopunc = 0.0 dev_root_corr = 0.0 dev_total_root = 0.0 dev_total_inst = 0.0 for batch in conllx_data.iterate_batch_variable(data_dev, batch_size): word, char, pos, heads, types, masks, lengths = batch heads_pred, types_pred = decode( word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root dev_ucorr += ucorr dev_lcorr += lcorr dev_total += total dev_ucomlpete += ucm dev_lcomplete += lcm dev_ucorr_nopunc += ucorr_nopunc dev_lcorr_nopunc += lcorr_nopunc dev_total_nopunc += total_nopunc dev_ucomlpete_nopunc += ucm_nopunc dev_lcomplete_nopunc += lcm_nopunc dev_root_corr += corr_root dev_total_root += total_root dev_total_inst += num_inst pred_writer.close() gold_writer.close() print( 'W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (dev_ucorr, dev_lcorr, dev_total, dev_ucorr * 100 / dev_total, dev_lcorr * 100 / dev_total, dev_ucomlpete * 100 / dev_total_inst, dev_lcomplete * 100 / dev_total_inst)) print( 'Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (dev_ucorr_nopunc, dev_lcorr_nopunc, dev_total_nopunc, dev_ucorr_nopunc * 100 / dev_total_nopunc, dev_lcorr_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_nopunc * 100 / dev_total_inst, dev_lcomplete_nopunc * 100 / dev_total_inst)) print('Root: corr: %d, total: %d, acc: %.2f%%' % (dev_root_corr, dev_total_root, dev_root_corr * 100 / dev_total_root)) if dev_lcorrect_nopunc < dev_lcorr_nopunc or ( dev_lcorrect_nopunc == dev_lcorr_nopunc and dev_ucorrect_nopunc < dev_ucorr_nopunc): dev_ucorrect_nopunc = dev_ucorr_nopunc dev_lcorrect_nopunc = dev_lcorr_nopunc dev_ucomlpete_match_nopunc = dev_ucomlpete_nopunc dev_lcomplete_match_nopunc = dev_lcomplete_nopunc dev_ucorrect = dev_ucorr dev_lcorrect = dev_lcorr dev_ucomlpete_match = dev_ucomlpete dev_lcomplete_match = dev_lcomplete dev_root_correct = dev_root_corr best_epoch = epoch patient = 0 # torch.save(network, model_name) torch.save(network.state_dict(), model_name) pred_filename = 'tmp/%spred_test%d' % (str(uid), epoch) pred_writer.start(pred_filename) gold_filename = 'tmp/%sgold_test%d' % (str(uid), epoch) gold_writer.start(gold_filename) test_ucorrect = 0.0 test_lcorrect = 0.0 test_ucomlpete_match = 0.0 test_lcomplete_match = 0.0 test_total = 0 test_ucorrect_nopunc = 0.0 test_lcorrect_nopunc = 0.0 test_ucomlpete_match_nopunc = 0.0 test_lcomplete_match_nopunc = 0.0 test_total_nopunc = 0 test_total_inst = 0 test_root_correct = 0.0 test_total_root = 0 for batch in conllx_data.iterate_batch_variable( data_test, batch_size): word, char, pos, heads, types, masks, lengths = batch heads_pred, types_pred = decode( word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS) word = word.data.cpu().numpy() pos = pos.data.cpu().numpy() lengths = lengths.cpu().numpy() heads = heads.data.cpu().numpy() types = types.data.cpu().numpy() pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True) gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True) stats, stats_nopunc, stats_root, num_inst = parser.eval( word, pos, heads_pred, types_pred, heads, types, word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True) ucorr, lcorr, total, ucm, lcm = stats ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc corr_root, total_root = stats_root test_ucorrect += ucorr test_lcorrect += lcorr test_total += total test_ucomlpete_match += ucm test_lcomplete_match += lcm test_ucorrect_nopunc += ucorr_nopunc test_lcorrect_nopunc += lcorr_nopunc test_total_nopunc += total_nopunc test_ucomlpete_match_nopunc += ucm_nopunc test_lcomplete_match_nopunc += lcm_nopunc test_root_correct += corr_root test_total_root += total_root test_total_inst += num_inst pred_writer.close() gold_writer.close() else: if dev_ucorr_nopunc * 100 / dev_total_nopunc < dev_ucorrect_nopunc * 100 / dev_total_nopunc - 5 or patient >= schedule: # network = torch.load(model_name) network.load_state_dict(torch.load(model_name)) lr = lr * decay_rate optim = generate_optimizer(opt, lr, network.parameters()) if decoding == 'greedy': decode = network.decode elif decoding == 'mst': decode = network.decode_mst else: raise ValueError('Unknown decoding algorithm: %s' % decoding) patient = 0 decay += 1 if decay % double_schedule_decay == 0: schedule *= 2 else: patient += 1 print( '----------------------------------------------------------------------------------------------------------------------------' ) print( 'best dev W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (dev_ucorrect, dev_lcorrect, dev_total, dev_ucorrect * 100 / dev_total, dev_lcorrect * 100 / dev_total, dev_ucomlpete_match * 100 / dev_total_inst, dev_lcomplete_match * 100 / dev_total_inst, best_epoch)) print( 'best dev Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (dev_ucorrect_nopunc, dev_lcorrect_nopunc, dev_total_nopunc, dev_ucorrect_nopunc * 100 / dev_total_nopunc, dev_lcorrect_nopunc * 100 / dev_total_nopunc, dev_ucomlpete_match_nopunc * 100 / dev_total_inst, dev_lcomplete_match_nopunc * 100 / dev_total_inst, best_epoch)) print('best dev Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (dev_root_correct, dev_total_root, dev_root_correct * 100 / dev_total_root, best_epoch)) print( '----------------------------------------------------------------------------------------------------------------------------' ) print( 'best test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total, test_ucomlpete_match * 100 / test_total_inst, test_lcomplete_match * 100 / test_total_inst, best_epoch)) print( 'best test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc, test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc, test_ucomlpete_match_nopunc * 100 / test_total_inst, test_lcomplete_match_nopunc * 100 / test_total_inst, best_epoch)) print('best test Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (test_root_correct, test_total_root, test_root_correct * 100 / test_total_root, best_epoch)) print( '============================================================================================================================' ) if decay == max_decay: break