Exemple #1
0
 def test_leapfrog_method_example(self):
     hmc = HMCNeuron('fake_arg','fake_arg','fake_arg')
     hmc.grad_obj = mock.Mock()
     hmc.grad_obj.return_value = np.array([.02,.02]) # Fake gradient calc
     weights = np.array([.1,.2]) # Fake initialized weights
     momentum = np.array([.01,.02]) # Fake initial momentum
     gradient = np.array([.01,.01]) # Another fake gradient
     momentum = hmc.leapfrog_method(momentum,weights,gradient)
Exemple #2
0
 def test_leapfrog_method_must_call_grad_obj_count(self,mock_randint):
     mock_randint.return_value = 100
     hmc = HMCNeuron('fake_arg','fake_arg','fake_arg')
     hmc.grad_obj = mock.Mock()
     hmc.grad_obj.return_value = np.array([.02,.02])
     weights = np.array([.1,.2])
     momentum = np.array([.01,.02])
     gradient = np.array([.01,.01])
     momentum = hmc.leapfrog_method(momentum,weights,gradient)
     actual = hmc.grad_obj.call_count
     expected = 100
     assert(actual == expected)
Exemple #3
0
 def test_leapfrog_method_randomly_generates_tau(self,mock_randint):
     """
     Make sure the number of gradient calculations is randomly
     chosen.
     """
     hmc = HMCNeuron('fake_arg','fake_arg','fake_arg')
     hmc.grad_obj = mock.Mock()
     hmc.grad_obj.return_value = np.array([.02,.02])
     weights = np.array([.1,.2])
     momentum = np.array([.01,.02])
     gradient = np.array([.01,.01])
     momentum = hmc.leapfrog_method(momentum,weights,gradient)
     assert(mock_randint.called_once)
Exemple #4
0
 def test_leapfrog_method_args_must_be_np_arrays(self):
     """ When the args aren't numpy arrays, it should fail."""
     with nose.tools.assert_raises(TypeError) as te:
         hmc = HMCNeuron('fake_arg','fake_arg','fake_arg')
         hmc.grad_obj = mock.Mock()
         hmc.grad_obj.return_value = [.02,.02]
         weights = np.array([.1,.2])
         momentum = np.array([.01,.02])
         gradient = np.array([.01,.01])
         momentum = hmc.leapfrog_method(momentum,weights,gradient)
     expected = 'can\'t multiply sequence by non-int of type \'float\''
     actual = str(te.exception)
     assert(actual == expected)
Exemple #5
0
 def test_leapfrog_method_return_array_correct_dimensions(self):
     """
     The return value of leapfrog_method should be 1 row with
     an element for each input column.
     """
     hmc = HMCNeuron('fake_arg','fake_arg','fake_arg')
     hmc.grad_obj = mock.Mock()
     hmc.grad_obj.return_value = np.array([.02,.02,.4])
     weights = np.array([.1,.2,.2])
     momentum = np.array([.01,.02,.1])
     gradient = np.array([.01,.01,.1])
     momentum = hmc.leapfrog_method(momentum,weights,gradient)
     actual = len(momentum)
     expected = 3
     assert(actual==expected)
Exemple #6
0
 def test_leapfrog_method_return_value_must_be_np_array(self):
     """
     The return value of leapfrog_method should be a numpy array;
     If this were simply an array, a type error would be raised once
     I multiply momentum by .5 (which is exactly what happens next in
     the training algorithm).
     """
     hmc = HMCNeuron('fake_arg','fake_arg','fake_arg')
     hmc.grad_obj = mock.Mock()
     hmc.grad_obj.return_value = np.array([.02,.02])
     weights = np.array([.1,.2])
     momentum = np.array([.01,.02])
     gradient = np.array([1,1])
     momentum = hmc.leapfrog_method(momentum,weights,gradient)
     momentum * .5