Exemple #1
0
def test_ridge_dtype():
    x, y = datasets.make_regression(n_features=3,
                                    n_targets=7,
                                    n_samples=6,
                                    random_state=1)
    x = np.asarray(x, dtype="float32")
    y = np.asarray(y, dtype="float32")
    reg = ridge.RidgeGCV(alphas=ALPHAS).fit(x, y)
    assert reg.coef_.dtype == "float32"
    y = np.asarray(y, dtype="float64")
    reg = ridge.RidgeGCV(alphas=ALPHAS).fit(x, y)
    assert reg.coef_.dtype == "float64"
def test_simple_encoder():
    x, y, voc = _dataset_and_voc()
    vect = tokenization.TextVectorizer.from_vocabulary(voc)
    ridge_reg = ridge.RidgeGCV().fit(x, y)
    reg = ridge.FittedLinearModel(ridge_reg.coef_, ridge_reg.intercept_)
    encoder = encoding.SimpleEncoder(vect, reg, mask_img=_mask_img(y.shape[1]))
    text = "feature0 and feature8"
    res = encoder(text)
    with tempfile.TemporaryDirectory() as tmp_dir:
        encoder.to_data_dir(tmp_dir)
        loaded = encoding.SimpleEncoder.from_data_dir(tmp_dir)
    encoded = image.get_data(loaded(text)["brain_map"])
    assert np.allclose(encoded, image.get_data(res["brain_map"]))
    assert len(encoder.full_vocabulary()) == 91
Exemple #3
0
def test_ridge(noise, n_samples):
    x, y = datasets.make_regression(
        n_features=100,
        n_targets=33,
        effective_rank=4,
        bias=100,
        n_informative=7,
        shuffle=False,
        noise=noise,
        n_samples=n_samples,
        random_state=1,
    )
    x += 71
    y -= 370
    xx, yy = x.copy(), y.copy()
    sk_ridge = RidgeCV(alphas=ALPHAS).fit(x, y)
    reg = ridge.RidgeGCV(alphas=ALPHAS).fit(x, y)
    assert sk_ridge.alpha_ == reg.alpha_
    assert np.allclose(reg.coef_, sk_ridge.coef_, atol=1e-7)
    assert np.allclose(reg.intercept_, sk_ridge.intercept_)
    assert (x == xx).all()
    assert (y == yy).all()