def generate_analysis_images(self,
                                 image_dir=None,
                                 analyses=None,
                                 add_to_db=True,
                                 overwrite=True,
                                 **kwargs):
        """ Create a full set of analysis meta-analysis images via Neurosynth.
        Args:
            image_dir: Folder in which to store images. If None, uses default
                location specified in SETTINGS.
            analyses: Optional list of analyses to limit meta-analysis to.
                If None, all available analyses are processed.
            add_to_db: if True, will create new AnalysisImage records, and
                associate them with the corresponding Analysis record.
            overwrite: if True, always generate new meta-analysis images. If
                False, will skip any analyses that already have images.
            kwargs: optional keyword arguments to pass onto the Neurosynth
                meta-analysis.
        """
        # Set up defaults
        if image_dir is None:
            image_dir = join(settings.IMAGE_DIR, 'analyses')
            if not os.path.exists(image_dir):
                os.makedirs(image_dir)
                os.makedirs(join(settings.IMAGE_DIR, 'custom'))

        if analyses is None:
            analyses = self._get_feature_names()

        # Remove analyses that already exist
        if not overwrite:
            files = glob(
                join(settings.IMAGE_DIR, 'analyses',
                     '*_association-test_z.nii.gz'))
            existing = [basename(f).split('_')[0] for f in files]
            analyses = list(set(analyses) - set(existing))

        # Meta-analyze all images
        meta.analyze_features(self.dataset,
                              analyses,
                              output_dir=image_dir,
                              q=0.01,
                              **kwargs)

        # Create AnalysisImage records
        if add_to_db:
            for f in analyses:
                self.add_analysis_images(f, image_dir)

            self.db.session.commit()
 def test_meta_analysis(self):
     """ Test full meta-analysis stream. """
     # run a meta-analysis
     ids = ['study1', 'study3']
     ma = meta.MetaAnalysis(self.dataset, ids)
     # save the results
     tempdir = tempfile.mkdtemp()
     ma.save_results(tempdir + os.path.sep, prefix='test')
     files = glob(tempdir + os.path.sep + "test_*.nii.gz")
     self.assertEquals(len(files), 9)
     shutil.rmtree(tempdir)
     # test the analyze_features() wrapper
     tempdir = tempfile.mkdtemp()
     meta.analyze_features(self.dataset, output_dir=tempdir, prefix="meep")
     files = glob(tempdir + os.path.sep + "meep*.nii.gz")
     self.assertEquals(len(files), 9 * 5)
     shutil.rmtree(tempdir)
    def generate_analysis_images(self, image_dir=None, analyses=None,
                                 add_to_db=True, overwrite=True, **kwargs):
        """
        Create a full set of analysis meta-analysis images via Neurosynth.

        Args:
            image_dir: Folder in which to store images. If None, uses default
                location specified in SETTINGS.
            analyses: Optional list of analyses to limit meta-analysis to.
                If None, all available analyses are processed.
            add_to_db: if True, will create new AnalysisImage records, and
                associate them with the corresponding Analysis record.
            overwrite: if True, always generate new meta-analysis images. If
                False, will skip any analyses that already have images.
            kwargs: optional keyword arguments to pass onto the Neurosynth
                meta-analysis.
        """

        # Set up defaults
        if image_dir is None:
            image_dir = join(settings.IMAGE_DIR, 'analyses')
            if not os.path.exists(image_dir):
                os.makedirs(image_dir)
                os.makedirs(join(settings.IMAGE_DIR, 'custom'))

        if analyses is None:
            analyses = self._get_feature_names()

        # Remove analyses that already exist
        if not overwrite:
            files = glob(
                join(settings.IMAGE_DIR, 'analyses', '*_pFgA_z.nii.gz'))
            existing = [basename(f).split('_')[0] for f in files]
            analyses = list(set(analyses) - set(existing))

        # Meta-analyze all images
        meta.analyze_features(self.dataset, analyses, output_dir=image_dir,
                              q=0.01, **kwargs)

        # Create AnalysisImage records
        if add_to_db:
            for f in analyses:
                self.add_analysis_images(f, image_dir)

            self.db.session.commit()
 def test_meta_analysis(self):
     """ Test full meta-analysis stream. """
     # run a meta-analysis
     ids = ['study1', 'study3']
     ma = meta.MetaAnalysis(self.dataset, ids)
     # save the results
     tempdir = tempfile.mkdtemp()
     ma.save_results(tempdir + os.path.sep, prefix='test')
     files = glob(tempdir + os.path.sep + "test_*.nii.gz")
     self.assertEquals(len(files), 9)
     shutil.rmtree(tempdir)
     # test the analyze_features() wrapper
     tempdir = tempfile.mkdtemp()
     meta.analyze_features(
         self.dataset, output_dir=tempdir, prefix="meep")
     files = glob(tempdir + os.path.sep + "meep*.nii.gz")
     self.assertEquals(len(files), 9*5)
     shutil.rmtree(tempdir)
Exemple #5
0
  def _load_features_from_dataset(self, features=None, image_type=None):
    """ Load feature image data from the current Dataset instance.

    Args:
      features: Optional list of features to use. If None, all features in the
        current Dataset instance will be used.
    """
    self.feature_names = self.dataset.feature_table.feature_names
    if features is not None:
      self.feature_names = filter(lambda x: x in self.feature_names, features)
    from neurosynth.analysis import meta
    self.feature_images = meta.analyze_features(self.dataset, self.feature_names, image_type=image_type)
Exemple #6
0
 def _load_features_from_dataset(self, features=None, image_type=None, threshold=0.001):
     """ Load feature image data from the current Dataset instance. See load_features()
     for documentation.
     """
     self.feature_names = self.dataset.feature_table.feature_names
     if features is not None:
         self.feature_names = filter(lambda x: x in self.feature_names, features)
     from neurosynth.analysis import meta
     self.feature_images = meta.analyze_features(
         self.dataset, self.feature_names, image_type=image_type, threshold=threshold)
     # Apply a mask if one was originally passed
     if self.masker.layers:
         in_mask = self.masker.get_current_mask(in_global_mask=True)
         self.feature_images = self.feature_images[in_mask,:]
Exemple #7
0
    def _load_features_from_dataset(self, features=None, image_type=None):
        """ Load feature image data from the current Dataset instance.

    Args:
      features: Optional list of features to use. If None, all features in the
        current Dataset instance will be used.
    """
        self.feature_names = self.dataset.feature_table.feature_names
        if features is not None:
            self.feature_names = filter(lambda x: x in self.feature_names,
                                        features)
        from neurosynth.analysis import meta
        self.feature_images = meta.analyze_features(self.dataset,
                                                    self.feature_names,
                                                    image_type=image_type)
Exemple #8
0
 def _load_features_from_dataset(self, features=None, image_type=None,
                                 threshold=0.001):
     """ Load feature image data from the current Dataset instance. See
     load_features() for documentation.
     """
     self.feature_names = self.dataset.feature_table.feature_names
     if features is not None:
         self.feature_names = [f for f in features if f in self.feature_names]
     from neurosynth.analysis import meta
     self.feature_images = meta.analyze_features(
         self.dataset, self.feature_names, image_type=image_type,
         threshold=threshold)
     # Apply a mask if one was originally passed
     if self.masker.layers:
         in_mask = self.masker.get_mask(in_global_mask=True)
         self.feature_images = self.feature_images[in_mask, :]
Exemple #9
0
 def _load_features_from_dataset(self,
                                 features=None,
                                 image_type=None,
                                 threshold=0.001):
     """ Load feature image data from the current Dataset instance. See
     load_features() for documentation.
     """
     self.feature_names = self.dataset.feature_table.feature_names
     if features is not None:
         self.feature_names = [
             f for f in features if f in self.feature_names
         ]
     from neurosynth.analysis import meta
     self.feature_images = meta.analyze_features(self.dataset,
                                                 self.feature_names,
                                                 image_type=image_type,
                                                 threshold=threshold)
Exemple #10
0
from neurosynth.base.dataset import Dataset
from neurosynth.analysis import meta
""" Load a Dataset and generate a full set of meta-analysis
images--i.e., run a meta-analysis on every single feature.
"""

# Load pickled Dataset--assumes you've previously saved it. If not,
# follow the create_a_new_dataset_and_load_features example.
dataset = Dataset.load('dataset.pkl')

# Get the full list of feature names
feature_list = dataset.get_feature_names()

# Run a meta-analysis on each feature, and save all the results to
# a directory called results. Note that the directory will not be
# created for you, so make sure it exists.
# Here we use the default frequency threshold of 0.001 (i.e., a
# study is said to have a feature if more than 1 in every 1,000
# words is the target word), and an FDR correction level of 0.05.
meta.analyze_features(dataset,
                      feature_list,
                      threshold=0.001,
                      q=0.05,
                      save='results/')
Exemple #11
0
from neurosynth import Dataset
from neurosynth.analysis import meta
from neurosynth.analysis import decode

neurosynth_data = "%s/neurosynth-data" % base

# you will need to open the features file in vim and add pmid as the first column name to appear before "action."
dataset = Dataset('%s/database.txt' % neurosynth_data, features_file)

# Generate maps for the features
neurosynth_feature_maps = "%s/feature_maps" % neurosynth_data
if not os.path.exists(neurosynth_feature_maps):
    os.mkdir(neurosynth_feature_maps)

meta.analyze_features(dataset,
                      output_dir=neurosynth_feature_maps,
                      prefix='cog_atlas')

#...and boom, you should have a full set of images. (-Tal Yarkoni) :)

# we need to put image data into 2mm mask to resize to 4mm
df = pandas.DataFrame(dataset.image_table.data.toarray())
df.columns = features.index

# Make 4mm images
brain_4mm = get_standard_mask(4)
for pmid in df.columns:
    pmid_mr = df[pmid].tolist()
    empty_nii = numpy.zeros(dataset.masker.volume.shape)
    empty_nii[dataset.masker.volume.get_data() != 0] = pmid_mr
    empty_nii = nibabel.Nifti1Image(empty_nii,
Exemple #12
0
    def add_topics(self, generate_images=True, add_images=True, top_n=20,
                   reset=False):
        """ Seed the database with topics.
        Args:
            generate_images (bool): if True, generates meta-analysis images for
                all topics.
            add_images (bool): if True, adds records for all images to the
                database.
            top_n: number of top-loading words to save.
            reset: if True, drops all existing TopicSets and TopicAnalysis
                records before repopulating.
        """
        if reset:
            for ts in AnalysisSet.query.filter_by(type='topics').all():
                self.db.session.delete(ts)
            for t in TopicAnalysis.query.all():
                self.db.session.delete(t)

        self.db.session.commit()

        topic_sets = glob(join(settings.TOPIC_DIR, '*.json'))

        # Temporarily store the existing AnalysisTable so we don't overwrite it
        # feature_table = deepcopy(self.dataset.feature_table)

        topic_image_dir = join(settings.IMAGE_DIR, 'topics')

        # Get all valid Study ids for speed
        study_ids = [x[0] for x in set(self.db.session.query(Study.pmid).all())]

        for ts in topic_sets:
            data = json.load(open(ts))
            n = int(data['n_topics'])

            topic_set_image_dir = join(topic_image_dir, data['name'])
            if not exists(topic_set_image_dir):
                os.makedirs(topic_set_image_dir)

            self.dataset.add_features(
                join(settings.TOPIC_DIR, 'analyses',
                     data['name'] + '.txt'), append=False)
            key_data = open(join(settings.TOPIC_DIR, 'keys', data['name'] +
                                 '.txt')).read().splitlines()

            # Generate full set of topic images
            if generate_images:
                meta.analyze_features(
                    self.dataset, self.dataset.get_feature_names(),
                    output_dir=topic_set_image_dir, threshold=0.05, q=0.01,
                    prefix=data['name'])

            ts = AnalysisSet(name=data['name'],
                             description=data['description'], n_analyses=n,
                             type='topics')
            self.db.session.add(ts)

            feature_data = self.dataset.feature_table.data
            feature_names = self.dataset.get_feature_names()

            for i, fn in enumerate(feature_names):

                number = int(fn.split('_')[0])
                name = '%s_%s' % (ts.name, fn)

                # Disable autoflush temporarily because it causes problems
                with self.db.session.no_autoflush:
                    terms = ', '.join(key_data[number].split()[2:][:top_n])
                    # Topics are not always in natsort order; get correct number
                    topic = TopicAnalysis(name=name, terms=terms, number=number)

                    self.db.session.add(topic)
                    self.db.session.commit()

                    # Map onto studies
                    freqs = feature_data[fn]
                    above_thresh = freqs[freqs >= 0.05]
                    srsly = 0
                    for s_id, f in above_thresh.iteritems():
                        s_id = int(s_id)
                        if s_id in study_ids:
                            srsly += 1
                            self.db.session.add(Frequency(
                                pmid=s_id, analysis=topic, frequency=f))

                    # Update counts
                    topic.n_studies = len(above_thresh)

                    self.db.session.commit()

                    if add_images:
                        self.add_analysis_images(topic, topic_set_image_dir)

                ts.analyses.append(topic)

            self.db.session.commit()
from neurosynth.base.dataset import Dataset
from neurosynth.analysis import meta

""" Load a Dataset and generate a full set of meta-analysis
images--i.e., run a meta-analysis on every single feature.
"""

# Load pickled Dataset--assumes you've previously saved it. If not,
# follow the create_a_new_dataset_and_load_features example.
dataset = Dataset.load('dataset.pkl')

# Get the full list of feature names
feature_list = dataset.get_feature_names()

# Run a meta-analysis on each feature, and save all the results to 
# a directory called results. Note that the directory will not be 
# created for you, so make sure it exists.
# Here we use the default frequency threshold of 0.001 (i.e., a 
# study is said to have a feature if more than 1 in every 1,000
# words is the target word), and an FDR correction level of 0.05.
meta.analyze_features(dataset, feature_list, threshold=0.001, q=0.05, save='results/')
    def add_topics(self, generate_images=True, add_images=True, top_n=20,
                   reset=False):
        """ Seed the database with topics.
        Args:
            generate_images (bool): if True, generates meta-analysis images for
                all topics.
            add_images (bool): if True, adds records for all images to the
                database.
            top_n: number of top-loading words to save.
            reset: if True, drops all existing TopicSets and TopicAnalysis
                records before repopulating.
        """
        if reset:
            for ts in AnalysisSet.query.filter_by(type='topics').all():
                self.db.session.delete(ts)
            for t in TopicAnalysis.query.all():
                self.db.session.delete(t)

        self.db.session.commit()

        topic_sets = glob(join(settings.TOPIC_DIR, '*.json'))

        # Temporarily store the existing AnalysisTable so we don't overwrite it
        # feature_table = deepcopy(self.dataset.feature_table)

        topic_image_dir = join(settings.IMAGE_DIR, 'topics')

        # Get all valid Study ids for speed
        study_ids = [x[0] for x in set(self.db.session.query(Study.pmid).all())]

        for ts in topic_sets:
            data = json.load(open(ts))
            n = int(data['n_topics'])

            topic_set_image_dir = join(topic_image_dir, data['name'])
            if not exists(topic_set_image_dir):
                os.makedirs(topic_set_image_dir)

            self.dataset.add_features(
                join(settings.TOPIC_DIR, 'analyses',
                     data['name'] + '.txt'), append=False)
            key_data = open(join(settings.TOPIC_DIR, 'keys', data['name'] +
                                 '.txt')).read().splitlines()

            # Generate full set of topic images
            if generate_images:
                meta.analyze_features(
                    self.dataset, self.dataset.get_feature_names(),
                    output_dir=topic_set_image_dir, threshold=0.05, q=0.01,
                    prefix=data['name'])

            ts = AnalysisSet(name=data['name'],
                             description=data['description'], n_analyses=n,
                             type='topics')
            self.db.session.add(ts)

            feature_data = self.dataset.feature_table.data
            feature_names = self.dataset.get_feature_names()

            for i, fn in enumerate(feature_names):

                number = int(fn.split('_')[0])
                name = '%s_%s' % (ts.name, fn)

                # Disable autoflush temporarily because it causes problems
                with self.db.session.no_autoflush:
                    terms = ', '.join(key_data[number].split()[2:][:top_n])
                    # Topics are not always in natsort order; get correct number
                    topic = TopicAnalysis(name=name, terms=terms, number=number)

                    self.db.session.add(topic)
                    self.db.session.commit()

                    # Map onto studies
                    freqs = feature_data[fn]
                    above_thresh = freqs[freqs >= 0.05]
                    srsly = 0
                    for s_id, f in above_thresh.iteritems():
                        s_id = int(s_id)
                        if s_id in study_ids:
                            srsly += 1
                            self.db.session.add(Frequency(
                                pmid=s_id, analysis=topic, frequency=f))

                    # Update counts
                    topic.n_studies = len(above_thresh)

                    self.db.session.commit()

                    if add_images:
                        self.add_analysis_images(topic, topic_set_image_dir)

                ts.analyses.append(topic)

            self.db.session.commit()
def do_full_analysis(dataset, image_directory):
	feature_list = dataset.get_feature_names()
	meta.analyze_features(dataset, feature_list, threshold=0.001,save=image_directory)
def do_full_analysis(dataset):
	feature_list = dataset.get_feature_names()
	meta.analyze_features(dataset, feature_list, threshold=0.001,save='results-old/')
Exemple #17
0
    # Pickle the Dataset to file so we can use Dataset.load() next time
    # instead of having to sit through the generation process again.
    dataset.save(op.join(neurosynth_data_dir, "dataset.pkl"))

# Load pickled Dataset--assumes you've previously saved it. If not,
# follow the create_a_new_dataset_and_load_features example.
dataset = Dataset.load(op.join(neurosynth_data_dir, "dataset.pkl"))

# Get the full list of feature names
feature_list = dataset.get_feature_names()

# Run a meta-analysis on each feature, and save all the results to
# a directory called results. Note that the directory will not be
# created for you, so make sure it exists.
# Here we use the default frequency threshold of 0.001 (i.e., a
# study is said to have a feature if more than 1 in every 1,000
# words is the target word), and an FDR correction level of 0.05.
out_dir = "/home/data/nbc/misc-projects/meta-gradients/code/feature_maps"

for tmp_feature in feature_list:
    print(tmp_feature)
    meta.analyze_features(
        dataset,
        [tmp_feature],
        threshold=0.001,
        image_type="association-test_z",
        output_dir=out_dir,
        q=0.01,
    )
from neurosynth import Dataset
from neurosynth.analysis import meta
from neurosynth.analysis import decode

neurosynth_data = "%s/neurosynth-data" %base

# you will need to open the features file in vim and add pmid as the first column name to appear before "action." 
dataset = Dataset('%s/database.txt' %neurosynth_data,features_file)

# Generate maps for the features
neurosynth_feature_maps = "%s/feature_maps" %neurosynth_data
if not os.path.exists(neurosynth_feature_maps):
    os.mkdir(neurosynth_feature_maps)

meta.analyze_features(dataset, output_dir=neurosynth_feature_maps, prefix='cog_atlas')

#...and boom, you should have a full set of images. (-Tal Yarkoni) :)

# we need to put image data into 2mm mask to resize to 4mm
df = pandas.DataFrame(dataset.image_table.data.toarray())
df.columns = features.index

# Make 4mm images
brain_4mm = get_standard_mask(4)
for pmid in df.columns:
    pmid_mr = df[pmid].tolist()
    empty_nii = numpy.zeros(dataset.masker.volume.shape)
    empty_nii[dataset.masker.volume.get_data()!=0] = pmid_mr
    empty_nii = nibabel.Nifti1Image(empty_nii,affine=dataset.masker.volume.get_affine())
    tmpnii = "%s/tmp.nii.gz" %(neurosynth_feature_maps)