Exemple #1
0
    def __init__(self,
                 num_heads,
                 num_units,
                 attention_key_depth=None,
                 attention_value_depth=None,
                 output_depth=None,
                 attention_dropout_rate=0.1,
                 attention_type="dot_product",
                 name=None):
        """ Initializes the multi head attention layer.

        Args:
            num_heads: A int scalar, the number of heads.
            num_units: A int scalar, the default units if other `depth` is
                not provided.
            attention_key_depth: A int scalar, the dimension for projected
                attention keys. If not provided, then use `num_units` as default.
            attention_value_depth: A int scalar, the dimension for projected
                attention values. If not provided, then use `num_units` as default.
            output_depth: A int scalar, the dimension for projected
                outputs. If not provided, then use `num_units` as default.
            attention_dropout_rate: A float scalar, the dropout rate for attention weight.
            attention_type: A string indicating the attention type.
            name: The name of the layer.
        """
        self._params = extract_constructor_params(locals(), verbose=False)
        super(MultiHeadAttention, self).__init__(name=name)
        self._num_heads = num_heads
        self._num_units = num_units
        self._attention_key_depth = attention_key_depth or num_units
        self._attention_value_depth = attention_value_depth or num_units
        self._output_depth = output_depth or num_units
        self._attention_dropout_rate = attention_dropout_rate
        self._attention_type = attention_type
        if self._attention_key_depth % self._num_heads != 0:
            raise ValueError(
                "query depth ({}) must be divisible by the number of "
                "attention heads ({}).".format(self._attention_key_depth,
                                               self._num_heads))
        if self._attention_value_depth % self._num_heads != 0:
            raise ValueError(
                "value depth ({}) must be divisible by the number of "
                "attention heads ({}).".format(self._attention_value_depth,
                                               self._num_heads))
        # pre-create output transform layer
        self._output_transform_layer = MultiHeadDenseLayer(
            output_units=self._output_depth,
            num_heads=self._num_heads,
            kernel_initializer="glorot_uniform",
            is_output_transform=True,
            use_bias=True,
            name="output_transform")
 def build(self, input_shape):
     """ Builds the layer.
         Layers for linearly projecting the queries, keys, and values."""
     self._q_transform_layer = MultiHeadDenseLayer(
         output_units=self._attention_key_depth,
         num_heads=self._num_heads,
         kernel_initializer="glorot_uniform",
         is_output_transform=False,
         use_bias=True,
         name="q_transform")
     self._kv_transform_layer = MultiHeadDenseLayer(
         output_units=[
             self._attention_key_depth, self._attention_value_depth
         ],
         num_heads=self._num_heads,
         kernel_initializer="glorot_uniform",
         is_output_transform=False,
         use_bias=True,
         name="kv_transform")
     self.add_activation_quantizer(name="output", activation="act")
     self.add_activation_quantizer(name="softmax", activation="softmax")
     self.built = True
 def build(self, input_shape):
     self._qkv_transform_layer = MultiHeadDenseLayer(
         output_units=[
             self._attention_key_depth, self._attention_key_depth,
             self._attention_value_depth
         ],
         num_heads=self._num_heads,
         kernel_initializer="glorot_uniform",
         is_output_transform=False,
         use_bias=True,
         name="qkv_transform")
     self.add_activation_quantizer(name="output", activation="act")
     self.add_activation_quantizer(name="softmax", activation="softmax")
     self.built = True
Exemple #4
0
def test_multihead_dense():
    num_heads = 3
    output_size = 6
    non_out_layer = MultiHeadDenseLayer(output_size,
                                        num_heads,
                                        use_bias=True,
                                        is_output_transform=False,
                                        name="nonoutput_transform")
    inputs = tf.convert_to_tensor(numpy.random.randn(2, 3, 6),
                                  dtype=tf.float32)
    layer_out = non_out_layer(inputs)
    kernel, bias = None, None
    for w in non_out_layer.trainable_weights:
        if "kernel" in w.name:
            kernel = w
        else:
            bias = w
    manual_out = tf.einsum("abc,cd->abd", inputs, kernel) + bias
    manual_out = tf.reshape(
        manual_out,
        tf.concat(
            [tf.shape(manual_out)[:-1], [num_heads, output_size // num_heads]],
            axis=0))
    assert numpy.sum((manual_out.numpy() - layer_out.numpy())**2) < 1e-9

    num_inputs_per_head = 5
    out_layer = MultiHeadDenseLayer(output_size,
                                    num_heads,
                                    use_bias=True,
                                    is_output_transform=True,
                                    name="output_transform")
    inputs = tf.convert_to_tensor(numpy.random.randn(1, 2, num_heads,
                                                     num_inputs_per_head),
                                  dtype=tf.float32)
    layer_out = out_layer(inputs)
    kernel, bias = None, None
    for w in out_layer.trainable_weights:
        if "kernel" in w.name:
            kernel = w
        else:
            bias = w
    manual_out = tf.matmul(
        tf.reshape(inputs, tf.concat([tf.shape(inputs)[:-2], [-1]], 0)),
        kernel) + bias
    assert numpy.sum((manual_out.numpy() - layer_out.numpy())**2) < 1e-9

    output_size1 = 9
    non_out_multi_layer = MultiHeadDenseLayer([output_size, output_size1],
                                              num_heads,
                                              use_bias=True,
                                              is_output_transform=False,
                                              name="nonoutput_transform")
    inputs = tf.convert_to_tensor(numpy.random.randn(2, 3, 6),
                                  dtype=tf.float32)
    layer_out0, layer_out1 = non_out_multi_layer(inputs)
    kernel, bias = None, None
    for w in non_out_multi_layer.trainable_weights:
        if "kernel" in w.name:
            kernel = w
        else:
            bias = w
    manual_out = tf.einsum("abc,cd->abd", inputs, kernel) + bias
    manual_out0, manual_out1 = tf.split(manual_out,
                                        [output_size, output_size1],
                                        axis=-1)
    manual_out0 = tf.reshape(
        manual_out0,
        tf.concat([
            tf.shape(manual_out0)[:-1], [num_heads, output_size // num_heads]
        ],
                  axis=0))
    manual_out1 = tf.reshape(
        manual_out1,
        tf.concat([
            tf.shape(manual_out1)[:-1], [num_heads, output_size1 // num_heads]
        ],
                  axis=0))
    assert numpy.sum((manual_out0.numpy() - layer_out0.numpy())**2) < 1e-9
    assert numpy.sum((manual_out1.numpy() - layer_out1.numpy())**2) < 1e-9