#start_checkpoint = '/home/zhangs/tensorflow-master/tensorflow/examples/speech_lyc/tmp/speech_commands_train/hd5_train_2words_8bit_mixup_16fea_bnnv2/fixed_point_bnn_v2/fixed_point_bnn_v2.ckpt-9800' start_checkpoint = '/home/zhangs/tensorflow-master/tensorflow/examples/speech_lyc/tmp/speech_commands_train/h5_40_20ms16_1word_happy_dscv1_mix1Q6nobias/dscv1/dscv1.ckpt-5800' pbs_path = '' # We want to see all the logging messages for this tutorial. tf.logging.set_verbosity(tf.logging.INFO) # Start a new TensorFlow session. sess = tf.InteractiveSession() model_settings = models.prepare_model_settings( len(new_features_input.prepare_words_list_my(wanted_words.split(','))), sample_rate, clip_duration_ms, window_size_ms, window_stride_ms, dct_coefficient_count) audio_processor = new_features_input.AudioProcessor( data_dir, silence_percentage, wanted_words.split(','), validation_percentage, testing_percentage) fingerprint_size = model_settings['fingerprint_size'] label_count = model_settings['label_count'] fingerprint_input = tf.placeholder( # tf.float32, [None, fingerprint_size], name='fingerprint_input') # tf.float32, [None, 20,7,64], name='fingerprint_input') # fingerprint_input_raw = tf.placeholder( tf.float32, [None, fingerprint_size], name='fingerprint_input_raw') # #tf.float32, [None, 20,7,64], name='fingerprint_input') # ground_truth_input = tf.placeholder( tf.float32, [None, label_count], name='groundtruth_input') ########################### dscv1model = rebuild_model.paras(start_checkpoint) logits,lconv1,lconv1bn,ldsc1,ldsc1bn,ldsc1pw,ldsc1pwbn,ldsc2,ldsc2bn,ldsc2pw,ldsc2pwbn,ldsc3,ldsc3bn,ldsc3pw,ldsc3pwbn,\
def main(_): best_acc = 0 best_step = 0 best_acc_istrain = 0 best_step_istrain = 0 # We want to see all the logging messages for this tutorial. tf.logging.set_verbosity(tf.logging.INFO) # Start a new TensorFlow session. sess = tf.InteractiveSession() # Begin by making sure we have the training data we need. If you already have # training data of your own, use `--data_url= ` on the command line to avoid # downloading. model_settings = models.prepare_model_settings( len(new_features_input.prepare_words_list_my(FLAGS.wanted_words.split(','))), FLAGS.sample_rate, FLAGS.clip_duration_ms, FLAGS.window_size_ms, FLAGS.window_stride_ms, FLAGS.dct_coefficient_count) audio_processor = new_features_input.AudioProcessor( FLAGS.data_dir, FLAGS.silence_percentage, FLAGS.wanted_words.split(','), FLAGS.validation_percentage, FLAGS.testing_percentage) fingerprint_size = model_settings['fingerprint_size'] label_count = model_settings['label_count'] training_steps_list = list(map(int, FLAGS.how_many_training_steps.split(','))) learning_rates_list = list(map(float, FLAGS.learning_rate.split(','))) if len(training_steps_list) != len(learning_rates_list): raise Exception( '--how_many_training_steps and --learning_rate must be equal length ' 'lists, but are %d and %d long instead' % (len(training_steps_list), len(learning_rates_list))) ############################################## ############tensorflow modules########## fingerprint_input = tf.placeholder( tf.float32, [None, fingerprint_size], name='fingerprint_input') # ############ 模型创建 ########## istrain = tf.placeholder(tf.bool, name='istrain') logits,conv1,conv1bn,dsc1,dsc1bn,dsc1pw,dsc1pwbn,dsc2,dsc2bn,dsc2pw,dsc2pwbn,dsc3,dsc3bn,dsc3pw,dsc3pwbn,\ dsc4,dsc4bn,dsc4pw,dsc4pwbn,fc= models.create_model( fingerprint_input, model_settings, FLAGS.model_architecture, is_training=istrain) ############ 模型创建 ########## # logits, dropout_prob= models.create_model( # fingerprint_input, # model_settings, # FLAGS.model_architecture, # is_training=True) # Define loss and optimizer ############ 真实值 ########## ground_truth_input = tf.placeholder( tf.float32, [None, label_count], name='groundtruth_input') # Optionally we can add runtime checks to spot when NaNs or other symptoms of # numerical errors start occurring during training. control_dependencies = [] if FLAGS.check_nans: checks = tf.add_check_numerics_ops() control_dependencies = [checks] # Create the back propagation and training evaluation machinery in the graph. ############ 交叉熵计算 ########## # with tf.name_scope('cross_entropy'): # cross_entropy_mean = tf.reduce_mean( # tf.nn.softmax_cross_entropy_with_logits( # labels=ground_truth_input, logits=logits)) + beta*loss_norm with tf.name_scope('cross_entropy'): cross_entropy_mean = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits( labels=ground_truth_input, logits=logits)) tf.summary.scalar('cross_entropy', cross_entropy_mean) ############ 学习率、准确率、混淆矩阵 ########## # learning_rate_input 学习率输入(tf.placeholder) # train_step 训练过程 (优化器) # predicted_indices 预测输出索引 # expected_indices 实际希望输出索引 # correct_prediction 正确预测矩阵 # confusion_matrix 混淆矩阵 # evaluation_step 正确分类概率(每个阶段) # global_step 全局训练阶段 # increment_global_step 全局训练阶段递增 learning_rate_input = tf.placeholder( tf.float32, [], name='learning_rate_input') update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_step = tf.train.AdamOptimizer( learning_rate_input).minimize(cross_entropy_mean) # with tf.name_scope('train'), tf.control_dependencies(control_dependencies): # learning_rate_input = tf.placeholder( # tf.float32, [], name='learning_rate_input') # # train_step = tf.train.GradientDescentOptimizer( # # learning_rate_input).minimize(cross_entropy_mean) # with tf.control_dependencies(update_ops): # train_step = tf.train.AdamOptimizer( # learning_rate_input).minimize(cross_entropy_mean) predicted_indices = tf.argmax(logits, 1) expected_indices = tf.argmax(ground_truth_input, 1) correct_prediction = tf.equal(predicted_indices, expected_indices) confusion_matrix = tf.confusion_matrix( expected_indices, predicted_indices, num_classes=label_count) evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) acc = tf.summary.scalar('accuracy', evaluation_step) global_step = tf.train.get_or_create_global_step() increment_global_step = tf.assign(global_step, global_step + 1) saver = tf.train.Saver(tf.global_variables(),max_to_keep=None)# max keep file // moren 5 # Merge all the summaries and write them out to /tmp/retrain_logs (by default) merged_summaries = tf.summary.merge_all() validation_merged_summaries = tf.summary.merge([tf.get_collection(tf.GraphKeys.SUMMARIES,'accuracy'),tf.get_collection(tf.GraphKeys.SUMMARIES,'cross_entropy')]) test_summaries = tf.summary.merge([acc]) test_summaries_istrain = tf.summary.merge([tf.get_collection(tf.GraphKeys.SUMMARIES,'accuracy'),tf.get_collection(tf.GraphKeys.SUMMARIES,'cross_entropy')]) #test_summaries_istrain = tf.summary.merge([acc]) train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train', sess.graph) # validation_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/validation') test_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/test') test_istrain_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/test_istrain') tf.global_variables_initializer().run() start_step = 1 if FLAGS.start_checkpoint: models.load_variables_from_checkpoint(sess, FLAGS.start_checkpoint) start_step = global_step.eval(session=sess) tf.logging.info('Training from step: %d ', start_step) # Save graph.pbtxt. tf.train.write_graph(sess.graph_def, FLAGS.train_dir, FLAGS.model_architecture + '.pbtxt') # Save list of words. with gfile.GFile( os.path.join(FLAGS.train_dir, FLAGS.model_architecture + '_labels.txt'), 'w') as f: f.write('\n'.join(audio_processor.words_list)) ### # model1: fc # model2: conv :940k个parameter # model3:low_latancy_conv:~~model1 # model4: 750k # Training loop. ############################################# ######## 主循环 ###### ############################################# training_steps_max = np.sum(training_steps_list) for training_step in xrange(start_step, training_steps_max + 1): # Figure out what the current learning rate is. ####### 自动切换学习率 ####### if training_step <12000+1: learning_rate_value = learning_rates_list[0]*0.02**(training_step/12000) else: learning_rate_value = learning_rates_list[0]*0.02 #0.015 12000 training_steps_sum = 0 # for i in range(len(training_steps_list)): # training_steps_sum += training_steps_list[i] # if training_step <= training_steps_sum: # learning_rate_value = learning_rates_list[i] # break # Pull the audio samples we'll use for training. ####### audio处理器导入数据 ################################## ##get_data(self, how_many, offset, model_settings, background_frequency, ## background_volume_range, time_shift, mode, sess) ######################################################################## train_fingerprints, train_ground_truth = audio_processor.get_data_my( FLAGS.batch_size, 0, model_settings ,'training') #mid = np.abs(np.max(train_fingerprints) + np.min(train_fingerprints)) / 2 #half = np.max(train_fingerprints) - np.min(train_fingerprints) # train_fingerprints = ((train_fingerprints + mid) / half * 255).astype(int) train_fingerprints_mix, train_ground_truth_mix = mixup_data(train_fingerprints, train_ground_truth, 1) train_fingerprints = np.append(train_fingerprints, train_fingerprints_mix, axis=0) train_ground_truth = np.append(train_ground_truth, train_ground_truth_mix, axis=0) random_index = list(np.arange(FLAGS.batch_size*2)) np.random.shuffle(random_index) train_fingerprints = train_fingerprints[random_index, :] train_ground_truth = train_ground_truth[random_index, :] train_summary, train_accuracy, cross_entropy_value, _, _ = sess.run( [ merged_summaries, evaluation_step, cross_entropy_mean, train_step, increment_global_step ], feed_dict={ fingerprint_input: train_fingerprints, ground_truth_input: train_ground_truth, learning_rate_input: learning_rate_value, istrain:True }) train_writer.add_summary(train_summary, training_step) tf.logging.info('Step #%d: rate %f, accuracy %.1f%%, cross entropy %f' % (training_step, learning_rate_value, train_accuracy * 100, cross_entropy_value)) is_last_step = (training_step == training_steps_max) if (training_step % FLAGS.eval_step_interval) == 0 or is_last_step: ############################################# ######## 测试集重复计算正确率和混淆矩阵 ###### set_size = audio_processor.set_size('testing') tf.logging.info('set_size=%d', set_size) test_fingerprints, test_ground_truth = audio_processor.get_data_my( -1, 0, model_settings,'testing') #mid = np.abs(np.max(test_fingerprints) + np.min(test_fingerprints)) / 2 #half = np.max(test_fingerprints) - np.min(test_fingerprints) #test_fingerprints = ((test_fingerprints + mid) / half * 255).astype(int) final_summary,test_accuracy, conf_matrix = sess.run( [test_summaries,evaluation_step, confusion_matrix], feed_dict={ fingerprint_input: test_fingerprints, ground_truth_input: test_ground_truth, istrain : False }) final_summary_istrain,test_accuracy_istrain= sess.run( [test_summaries_istrain,evaluation_step], feed_dict={ fingerprint_input: test_fingerprints, ground_truth_input: test_ground_truth, istrain : True }) if test_accuracy > best_acc: best_acc = test_accuracy best_step = training_step if test_accuracy_istrain > best_acc_istrain: best_acc_istrain = test_accuracy_istrain best_step_istrain = training_step test_writer.add_summary(final_summary, training_step) test_istrain_writer.add_summary(final_summary_istrain, training_step) tf.logging.info('Confusion Matrix:\n %s' % (conf_matrix)) tf.logging.info('test accuracy = %.1f%% (N=%d)' % (test_accuracy * 100,6882)) tf.logging.info('test_istrain accuracy = %.1f%% (N=%d)' % (test_accuracy_istrain * 100,6882)) tf.logging.info('Best test accuracy before now = %.1f%% (N=%d)' % (best_acc * 100,6882) + ' at step of ' + str(best_step)) tf.logging.info('Best test_istrain accuracy before now = %.1f%% (N=%d)' % (best_acc_istrain * 100,6882) + ' at step of ' + str(best_step_istrain)) # Save the model checkpoint periodically. if (training_step % FLAGS.save_step_interval == 0 or training_step == training_steps_max): checkpoint_path = os.path.join(FLAGS.train_dir + '/'+FLAGS.model_architecture, FLAGS.model_architecture + '.ckpt') tf.logging.info('Saving to "%s-%d"', checkpoint_path, training_step) saver.save(sess, checkpoint_path, global_step=training_step) print_line = 'Best test accuracy before now = %.1f%% (N=%d)' % (best_acc * 100,6882) + ' at step of ' + str(best_step) + '\n' + \ 'Best test_istrain accuracy before now = %.1f%% (N=%d)' % (best_acc_istrain * 100,6882) + ' at step of ' + str(best_step_istrain) if training_step == training_steps_max: with open(FLAGS.train_dir + '/' +FLAGS.model_architecture+ '/details.txt', 'w') as f: f.write(print_line)