Exemple #1
0
#start_checkpoint = '/home/zhangs/tensorflow-master/tensorflow/examples/speech_lyc/tmp/speech_commands_train/hd5_train_2words_8bit_mixup_16fea_bnnv2/fixed_point_bnn_v2/fixed_point_bnn_v2.ckpt-9800'
start_checkpoint = '/home/zhangs/tensorflow-master/tensorflow/examples/speech_lyc/tmp/speech_commands_train/h5_40_20ms16_1word_happy_dscv1_mix1Q6nobias/dscv1/dscv1.ckpt-5800'
pbs_path = ''

# We want to see all the logging messages for this tutorial.
tf.logging.set_verbosity(tf.logging.INFO)

# Start a new TensorFlow session.
sess = tf.InteractiveSession()

model_settings = models.prepare_model_settings(
  len(new_features_input.prepare_words_list_my(wanted_words.split(','))),
  sample_rate, clip_duration_ms, window_size_ms,
  window_stride_ms, dct_coefficient_count)
audio_processor = new_features_input.AudioProcessor(
    data_dir, silence_percentage,
    wanted_words.split(','), validation_percentage,
    testing_percentage)
fingerprint_size = model_settings['fingerprint_size']
label_count = model_settings['label_count']

fingerprint_input = tf.placeholder(
     # tf.float32, [None, fingerprint_size], name='fingerprint_input')    #
    tf.float32, [None, 20,7,64], name='fingerprint_input')    #
fingerprint_input_raw = tf.placeholder(
     tf.float32, [None, fingerprint_size], name='fingerprint_input_raw')    #
    #tf.float32, [None, 20,7,64], name='fingerprint_input')    #
ground_truth_input = tf.placeholder(
    tf.float32, [None, label_count], name='groundtruth_input')
###########################
dscv1model = rebuild_model.paras(start_checkpoint)
logits,lconv1,lconv1bn,ldsc1,ldsc1bn,ldsc1pw,ldsc1pwbn,ldsc2,ldsc2bn,ldsc2pw,ldsc2pwbn,ldsc3,ldsc3bn,ldsc3pw,ldsc3pwbn,\
def main(_):
  best_acc = 0
  best_step = 0
  best_acc_istrain = 0
  best_step_istrain = 0
  # We want to see all the logging messages for this tutorial.
  tf.logging.set_verbosity(tf.logging.INFO)

  # Start a new TensorFlow session.
  sess = tf.InteractiveSession()

  # Begin by making sure we have the training data we need. If you already have
  # training data of your own, use `--data_url= ` on the command line to avoid
  # downloading.
  model_settings = models.prepare_model_settings(
      len(new_features_input.prepare_words_list_my(FLAGS.wanted_words.split(','))),
      FLAGS.sample_rate, FLAGS.clip_duration_ms, FLAGS.window_size_ms,
      FLAGS.window_stride_ms, FLAGS.dct_coefficient_count)
  audio_processor = new_features_input.AudioProcessor(
      FLAGS.data_dir, FLAGS.silence_percentage,
      FLAGS.wanted_words.split(','), FLAGS.validation_percentage,
      FLAGS.testing_percentage)
  fingerprint_size = model_settings['fingerprint_size']
  label_count = model_settings['label_count']

  training_steps_list = list(map(int, FLAGS.how_many_training_steps.split(',')))
  learning_rates_list = list(map(float, FLAGS.learning_rate.split(',')))
  if len(training_steps_list) != len(learning_rates_list):
    raise Exception(
        '--how_many_training_steps and --learning_rate must be equal length '
        'lists, but are %d and %d long instead' % (len(training_steps_list),
                                                   len(learning_rates_list)))
##############################################
  ############tensorflow modules##########

  fingerprint_input = tf.placeholder(
      tf.float32, [None, fingerprint_size], name='fingerprint_input')

  # ############ 模型创建 ##########
  istrain = tf.placeholder(tf.bool, name='istrain')
  logits,conv1,conv1bn,dsc1,dsc1bn,dsc1pw,dsc1pwbn,dsc2,dsc2bn,dsc2pw,dsc2pwbn,dsc3,dsc3bn,dsc3pw,dsc3pwbn,\
           dsc4,dsc4bn,dsc4pw,dsc4pwbn,fc= models.create_model(
      fingerprint_input,
      model_settings,
      FLAGS.model_architecture,
      is_training=istrain)
  ############ 模型创建 ##########
  # logits, dropout_prob= models.create_model(
  #     fingerprint_input,
  #     model_settings,
  #     FLAGS.model_architecture,
  #     is_training=True)
  # Define loss and optimizer

  ############ 真实值 ##########
  ground_truth_input = tf.placeholder(
      tf.float32, [None, label_count], name='groundtruth_input')

  # Optionally we can add runtime checks to spot when NaNs or other symptoms of
  # numerical errors start occurring during training.
  control_dependencies = []
  if FLAGS.check_nans:
    checks = tf.add_check_numerics_ops()
    control_dependencies = [checks]

  # Create the back propagation and training evaluation machinery in the graph.
  ############ 交叉熵计算 ##########
  # with tf.name_scope('cross_entropy'):
  #   cross_entropy_mean = tf.reduce_mean(
  #       tf.nn.softmax_cross_entropy_with_logits(
  #           labels=ground_truth_input, logits=logits)) + beta*loss_norm
  with tf.name_scope('cross_entropy'):
    cross_entropy_mean = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(
            labels=ground_truth_input, logits=logits))
  tf.summary.scalar('cross_entropy', cross_entropy_mean)

  ############ 学习率、准确率、混淆矩阵 ##########
  # learning_rate_input    学习率输入(tf.placeholder)
  # train_step             训练过程 (优化器)
  # predicted_indices      预测输出索引
  # expected_indices       实际希望输出索引
  # correct_prediction     正确预测矩阵
  # confusion_matrix       混淆矩阵
  # evaluation_step        正确分类概率(每个阶段)
  # global_step            全局训练阶段
  # increment_global_step  全局训练阶段递增

  learning_rate_input = tf.placeholder(
      tf.float32, [], name='learning_rate_input')
  update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
  with tf.control_dependencies(update_ops):
    train_step = tf.train.AdamOptimizer(
        learning_rate_input).minimize(cross_entropy_mean)
  # with tf.name_scope('train'), tf.control_dependencies(control_dependencies):
  #   learning_rate_input = tf.placeholder(
  #       tf.float32, [], name='learning_rate_input')
  #  # train_step = tf.train.GradientDescentOptimizer(
  #     #  learning_rate_input).minimize(cross_entropy_mean)
  #   with tf.control_dependencies(update_ops):
  #       train_step = tf.train.AdamOptimizer(
  #           learning_rate_input).minimize(cross_entropy_mean)
  predicted_indices = tf.argmax(logits, 1)
  expected_indices = tf.argmax(ground_truth_input, 1)
  correct_prediction = tf.equal(predicted_indices, expected_indices)
  confusion_matrix = tf.confusion_matrix(
      expected_indices, predicted_indices, num_classes=label_count)
  evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  acc = tf.summary.scalar('accuracy', evaluation_step)

  global_step = tf.train.get_or_create_global_step()
  increment_global_step = tf.assign(global_step, global_step + 1)


  saver = tf.train.Saver(tf.global_variables(),max_to_keep=None)# max keep file // moren 5

  # Merge all the summaries and write them out to /tmp/retrain_logs (by default)
  merged_summaries = tf.summary.merge_all()
  validation_merged_summaries = tf.summary.merge([tf.get_collection(tf.GraphKeys.SUMMARIES,'accuracy'),tf.get_collection(tf.GraphKeys.SUMMARIES,'cross_entropy')])
  test_summaries = tf.summary.merge([acc])
  test_summaries_istrain = tf.summary.merge([tf.get_collection(tf.GraphKeys.SUMMARIES,'accuracy'),tf.get_collection(tf.GraphKeys.SUMMARIES,'cross_entropy')])

  #test_summaries_istrain = tf.summary.merge([acc])
  train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train',
                                       sess.graph)
  # validation_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/validation')
  test_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/test')
  test_istrain_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/test_istrain')
  tf.global_variables_initializer().run()

  start_step = 1

  if FLAGS.start_checkpoint:
    models.load_variables_from_checkpoint(sess, FLAGS.start_checkpoint)
    start_step = global_step.eval(session=sess)

  tf.logging.info('Training from step: %d ', start_step)

  # Save graph.pbtxt.
  tf.train.write_graph(sess.graph_def, FLAGS.train_dir,
                       FLAGS.model_architecture + '.pbtxt')

  # Save list of words.
  with gfile.GFile(
      os.path.join(FLAGS.train_dir, FLAGS.model_architecture + '_labels.txt'),
      'w') as f:
    f.write('\n'.join(audio_processor.words_list))
###
  # model1: fc
  # model2: conv :940k个parameter
  # model3:low_latancy_conv:~~model1
  # model4: 750k
  # Training loop.
    #############################################
    ########            主循环              ######
    #############################################
  training_steps_max = np.sum(training_steps_list)
  for training_step in xrange(start_step, training_steps_max + 1):
    # Figure out what the current learning rate is.
    #######       自动切换学习率      #######
    if training_step <12000+1:
        learning_rate_value = learning_rates_list[0]*0.02**(training_step/12000)
    else:
        learning_rate_value = learning_rates_list[0]*0.02    #0.015 12000
    training_steps_sum = 0
    # for i in range(len(training_steps_list)):
    #   training_steps_sum += training_steps_list[i]
    #   if training_step <= training_steps_sum:
    #     learning_rate_value = learning_rates_list[i]
    #     break

    # Pull the audio samples we'll use for training.
    #######       audio处理器导入数据      ##################################
    ##get_data(self, how_many, offset, model_settings, background_frequency,
    ##         background_volume_range, time_shift, mode, sess)
    ########################################################################
    train_fingerprints, train_ground_truth = audio_processor.get_data_my(
        FLAGS.batch_size, 0, model_settings ,'training')
    #mid = np.abs(np.max(train_fingerprints) + np.min(train_fingerprints)) / 2
    #half = np.max(train_fingerprints) - np.min(train_fingerprints)
    # train_fingerprints = ((train_fingerprints + mid) / half * 255).astype(int)

    train_fingerprints_mix, train_ground_truth_mix = mixup_data(train_fingerprints, train_ground_truth, 1)
    train_fingerprints = np.append(train_fingerprints, train_fingerprints_mix, axis=0)
    train_ground_truth = np.append(train_ground_truth, train_ground_truth_mix, axis=0)
    random_index = list(np.arange(FLAGS.batch_size*2))
    np.random.shuffle(random_index)
    train_fingerprints = train_fingerprints[random_index, :]
    train_ground_truth = train_ground_truth[random_index, :]

    train_summary, train_accuracy, cross_entropy_value, _, _ = sess.run(
        [
            merged_summaries, evaluation_step, cross_entropy_mean, train_step,
            increment_global_step
        ],
        feed_dict={
            fingerprint_input: train_fingerprints,
            ground_truth_input: train_ground_truth,
            learning_rate_input: learning_rate_value,
            istrain:True
        })
    train_writer.add_summary(train_summary, training_step)
    tf.logging.info('Step #%d: rate %f, accuracy %.1f%%, cross entropy %f' %
                    (training_step, learning_rate_value, train_accuracy * 100,
                     cross_entropy_value))
    is_last_step = (training_step == training_steps_max)
    if (training_step % FLAGS.eval_step_interval) == 0 or is_last_step:

      #############################################
      ########  测试集重复计算正确率和混淆矩阵  ######
      set_size = audio_processor.set_size('testing')
      tf.logging.info('set_size=%d', set_size)
      test_fingerprints, test_ground_truth = audio_processor.get_data_my(
        -1, 0, model_settings,'testing')
      #mid = np.abs(np.max(test_fingerprints) + np.min(test_fingerprints)) / 2
      #half = np.max(test_fingerprints) - np.min(test_fingerprints)
      #test_fingerprints = ((test_fingerprints + mid) / half * 255).astype(int)
      final_summary,test_accuracy, conf_matrix = sess.run(
          [test_summaries,evaluation_step, confusion_matrix],
          feed_dict={
              fingerprint_input: test_fingerprints,
              ground_truth_input: test_ground_truth,
              istrain : False
          })
      final_summary_istrain,test_accuracy_istrain= sess.run(
          [test_summaries_istrain,evaluation_step],
          feed_dict={
              fingerprint_input: test_fingerprints,
              ground_truth_input: test_ground_truth,
              istrain : True
          })

      if test_accuracy > best_acc:
          best_acc = test_accuracy
          best_step = training_step
      if test_accuracy_istrain > best_acc_istrain:
          best_acc_istrain = test_accuracy_istrain
          best_step_istrain = training_step
      test_writer.add_summary(final_summary, training_step)
      test_istrain_writer.add_summary(final_summary_istrain, training_step)
      tf.logging.info('Confusion Matrix:\n %s' % (conf_matrix))
      tf.logging.info('test accuracy = %.1f%% (N=%d)' % (test_accuracy * 100,6882))
      tf.logging.info('test_istrain accuracy = %.1f%% (N=%d)' % (test_accuracy_istrain * 100,6882))

      tf.logging.info('Best test accuracy before now = %.1f%% (N=%d)' % (best_acc * 100,6882) + '  at step of ' + str(best_step))
      tf.logging.info('Best test_istrain accuracy before now = %.1f%% (N=%d)' % (best_acc_istrain * 100,6882) + '  at step of ' + str(best_step_istrain))
    # Save the model checkpoint periodically.
    if (training_step % FLAGS.save_step_interval == 0 or
        training_step == training_steps_max):
      checkpoint_path = os.path.join(FLAGS.train_dir + '/'+FLAGS.model_architecture,
                                     FLAGS.model_architecture + '.ckpt')
      tf.logging.info('Saving to "%s-%d"', checkpoint_path, training_step)
      saver.save(sess, checkpoint_path, global_step=training_step)
    print_line = 'Best test accuracy before now = %.1f%% (N=%d)' % (best_acc * 100,6882) + '  at step of ' + str(best_step) + '\n' + \
                 'Best test_istrain accuracy before now = %.1f%% (N=%d)' % (best_acc_istrain * 100,6882) + '  at step of ' + str(best_step_istrain)
    if training_step == training_steps_max:
        with open(FLAGS.train_dir + '/' +FLAGS.model_architecture+ '/details.txt', 'w') as f:
            f.write(print_line)