Exemple #1
0
    def SparseSoftmaxCrossEntropyWithLogits(self, tf_node, inputs):
        """
        Computes softmax cross entropy. The inputs `logits` are unscaled log
        probabilities, and each row of `labels[i]` must be a valid distribution.
        Reference: https://goo.gl/z5T2my

        Arguments:
            tf_node: NodeDef object, the tensorflow node to convert.
            inputs: List of ngraph Ops as inputs to this node.

        Returns:
            A ngraph Op corresponding to the tensorflow node.

        Inputs to tf_node:
            logits, labels, name
        """

        # logits: (N1, Y1), labels: (N2,)
        logits, labels = inputs

        # check input dimension
        try:
            assert len(logits.axes) == 2
            assert len(labels.axes) == 1
            assert logits.axes[0].length == labels.axes[0].length
        except:
            raise NotImplementedError("logits' shape must be (Y, N), "
                                      "labels' shape must be (N,), "
                                      "other shapes not supported yet.")
        # get axis
        axis_y = logits.axes[1]

        # labels_one_hot: (Y2, N2)
        labels_one_hot = ng.one_hot(labels, axis=axis_y)

        # predicts: (N1, Y1)
        predicts = ng.softmax(logits, normalization_axes=axis_y)

        # dim-shuffle / cast to (Y1, N1)
        predicts_axes = ng.make_axes(
            [axis for axis in reversed(predicts.axes)])
        predicts = ng.Dimshuffle(predicts, axes=predicts_axes)
        labels_one_hot = ng.cast_axes(labels_one_hot, predicts_axes)

        # cross_entropy: (N1,)
        cross_entropy = ng.cross_entropy_multi(predicts,
                                               labels_one_hot,
                                               out_axes=(logits.axes[0], ))

        return cross_entropy
def test_dimshuffle_bprop(transformer_factory):
    """
    dimshuffle a 2d array and make sure bprop works
    """
    A = ng.make_axis(2)
    B = ng.make_axis(3)

    x = ng.placeholder(ng.make_axes([A, B]))

    # randomly initialize
    x_value = rng.uniform(-1, 1, x.axes)

    check_derivative(ng.Dimshuffle(x, axes=ng.make_axes([B, A])),
                     x,
                     0.001,
                     x_value,
                     atol=1e-3,
                     rtol=1e-3)
Exemple #3
0
def test_idempotent_axes_c():
    """
    Test test axes transformations with autodiff, case c, with broadcast,
    slice, cast and dim-shuffle
    """
    ex = ExecutorFactory()
    axes = ng.make_axes([ng.make_axis(3), ng.make_axis(1)])
    result_axes = [ng.make_axis(length=axis.length) for axis in axes]

    # variable
    w = ng.variable(axes, initial_value=np.ones((3, 1)))
    l = w
    r = w

    # broadcast l / r, introducing dummy length 1 axes
    l = ng.broadcast(l, axes)
    r = ng.broadcast(r, axes)

    # slice
    axes_slice = [slice(None, None, None), slice(None, None, None)]
    l_sliced = ng.Slice(l, axes_slice)
    r_sliced = ng.Slice(r, axes_slice)

    # cast r
    r_sliced_casted = ng.cast_axes(r_sliced, axes)

    # perform add
    result = ng.add(l_sliced, r_sliced_casted)

    # cast / dimshuffle
    result = ng.cast_axes(result, result_axes)
    result = ng.Dimshuffle(result, axes=result_axes)

    # cost and grad
    cost = ng.sum(result, reduction_axes=result.axes)
    grad = ng.deriv(cost, w)

    grad_comp = ex.executor(grad)
    cost_comp = ex.executor(cost)

    assert cost_comp() == 6.0
    assert np.array_equal(grad_comp(), np.ones((3, 1)) * 2.)
def test_dimshuffle_fprop(transformer_factory):
    """
    dimshuffle a 2d array and make sure fprop works
    """
    A = ng.make_axis(2)
    B = ng.make_axis(3)

    x = ng.placeholder(ng.make_axes([A, B]))

    # compute convolution with graph
    output = ng.Dimshuffle(x, axes=ng.make_axes([B, A]))

    assert output.axes == ng.make_axes([B, A])

    # randomly initialize
    x_value = rng.uniform(-1, 1, x.axes)

    result = executor(output, x)(x_value)

    np.testing.assert_allclose(result, x_value.T)
Exemple #5
0
    def _element_wise_binary(self, ng_op, tf_node, inputs):
        """
        Element-wise binary operation with broadcast.

        Args:
            ng_op: ngraph Op to be applied.
            tf_node: NodeDef object, the tensorflow node to convert.
            inputs: List of ngraph Ops as inputs to this node.

        Returns:
            A ngraph Op corresponding to the tensorflow node.
        """
        # get inputs
        left, right = inputs

        # check if shape compatibility
        left_shape = left.axes.lengths
        right_shape = right.axes.lengths
        assert is_compatible_numpy_shape(left_shape, right_shape)

        if left_shape and right_shape and left_shape != right_shape:
            """
            Cast axes in numpy broadcast mapping rule

            1. introduce dummy length 1 axes to match left / right length
            2. keep maps for matching left / right / result axes
            3. slice left / right to remove length 1 axes if not both of them
               are length 1
            4. cast right to left by matching axes
            5. perform binary op
            6. cast and broadcast result
            """

            left_dim = len(left.axes)
            right_dim = len(right.axes)

            # pad left and right axis to be the same length, align right
            result_dim = max(left_dim, right_dim)
            left_axes_pad = [
                ng.make_axis(length=1) for _ in range(result_dim - left_dim)
            ] + list(left.axes)
            right_axes_pad = [
                ng.make_axis(length=1) for _ in range(result_dim - right_dim)
            ] + list(right.axes)
            result_axes = [
                ng.make_axis(length=max(l.length, r.length))
                for l, r in zip(left_axes_pad, right_axes_pad)
            ]

            # broadcast left / right, introducing dummy length 1 axes
            left = ng.broadcast(left, left_axes_pad)
            right = ng.broadcast(right, right_axes_pad)

            # make two-way map of lr matching axes and map for result axes
            lr_axes_map = dict()
            result_axes_map = dict()
            for l, r, re in zip(left.axes, right.axes, result_axes):
                lr_axes_map[l] = r
                lr_axes_map[r] = l
                result_axes_map[l] = re
                result_axes_map[r] = re

            # get left / right slice
            left_slice = []
            right_slice = []
            for l, r in zip(left.axes, right.axes):
                if l.length == 1 and r.length != 1:
                    left_slice.append(0)
                else:
                    left_slice.append(slice(None))
                if r.length == 1 and l.length != 1:
                    right_slice.append(0)
                else:
                    right_slice.append(slice(None))

            # perform slicing
            left_sliced = ng.Slice(left, left_slice)
            right_sliced = ng.Slice(right, right_slice)

            # now cast the right_sliced to left_sliced from the axis map
            right_casted_axes = []
            for r in right_sliced.axes:
                if r in lr_axes_map and lr_axes_map[r] in left_sliced.axes:
                    right_casted_axes.append(lr_axes_map[r])
                else:
                    right_casted_axes.append(r)
            right_sliced_casted = ng.cast_axes(right_sliced, right_casted_axes)

            # perform binary op
            result_op = ng_op(left_sliced, right_sliced_casted)

            # cast result axis and broadcast to full result axes
            trimmed_result_axes = [
                result_axes_map[re] for re in result_op.axes
            ]
            result_op = ng.cast_axes(result_op, trimmed_result_axes)
            result_op = ng.Dimshuffle(result_op, axes=result_axes)

        elif left_shape == right_shape:
            # cast right axes to be the same as left
            right = ng.cast_axes(right, left.axes)
            result_op = ng_op(left, right).named(tf_node.name)

        else:
            # no need for casting
            result_op = ng_op(left, right).named(tf_node.name)

        # return op
        return result_op
Exemple #6
0
    def MaxPool(self, tf_node, inputs):
        """
        Performs the max pooling on the input.

        Arguments:
            tf_node: NodeDef object, the tensorflow node tso convert.
            inputs: List of ngraph Ops as inputs to this node.

        Returns:
            A ngraph Op corresponding to the tensorflow node.

        Inputs to tf_node:
            input

        TODO: assume default tensorflow layout NHWC, RSCK,
              need to support NCHW as well
              need to clean up / merge with conv2d

        Notes on output shape:
            https://www.tensorflow.org/api_docs/python/nn.html#convolution
        """
        image = inputs[0]

        # TODO: currently NHWC only
        assert tf_node.attr['data_format'].s.decode("ascii") == "NHWC"

        # set axes shape
        ax_N = ng.make_axis(batch=True)
        ax_C = ng.make_axis(roles=[ar.Channel])
        ax_D = ng.make_axis(roles=[ar.Depth])
        ax_H = ng.make_axis(roles=[ar.Height])
        ax_W = ng.make_axis(roles=[ar.Width])
        ng.make_axes([ax_N, ax_H, ax_W, ax_C]).set_shape(image.axes.lengths)
        ax_D.length = 1

        # ksize params
        tf_ksize = [int(s) for s in list(tf_node.attr['ksize'].list.i)]
        if len(tf_ksize) != 4:
            raise ValueError("Length of ksize my be 4.")
        if tf_ksize[0] != 1:
            raise NotImplementedError('Ksize on batch axis (N) must be 1.')
        if tf_ksize[3] != 1:
            raise NotImplementedError('Ksize on channel axis (C) must be 1.'
                                      'Cross map pooling to be implemented.')
        R, S = tf_ksize[1:3]
        T = J = 1

        # strides params
        tf_strides = [int(s) for s in list(tf_node.attr['strides'].list.i)]
        if len(tf_strides) != 4:
            raise ValueError("Length of strides my be 4.")
        if tf_strides[0] != 1:
            raise NotImplementedError('Strides on batch axis (N) must be 1.')
        if tf_strides[3] != 1:
            raise NotImplementedError('Strides on channel axis (C) must be 1.')
        str_h, str_w = tf_strides[1], tf_strides[2]

        # padding params
        padding = tf_node.attr['padding'].s.decode("ascii")
        pad_t, pad_b, pad_l, pad_r = tf_conv2d_pool_padding(
            image.axes.lengths, (R, S, ax_C.length, ax_C.length), tf_strides,
            padding)
        if pad_t != pad_b or pad_l != pad_r:
            raise NotImplementedError("Requires symmetric padding in ngraph:"
                                      "pad_t(%s) == pad_b(%s) and"
                                      "pad_l(%s) == pad_r(%s)" %
                                      (pad_t, pad_b, pad_l, pad_r))

        # pooling params
        params = dict(op='max',
                      pad_d=0,
                      pad_h=pad_t,
                      pad_w=pad_l,
                      pad_c=0,
                      str_d=1,
                      str_h=str_h,
                      str_w=str_w,
                      str_c=1,
                      J=J,
                      T=T,
                      R=R,
                      S=S)

        # i, f, o axes
        ax_i = ng.make_axes([ax_C, ax_D, ax_H, ax_W, ax_N])
        ax_o = ng.make_axes([
            spatial_axis(ax_i, J, params['pad_c'], params['str_c'],
                         ar.Channel),
            spatial_axis(ax_i, T, params['pad_d'], params['str_d'], ar.Depth),
            spatial_axis(ax_i, R, params['pad_h'], params['str_h'], ar.Height),
            spatial_axis(ax_i, S, params['pad_w'], params['str_w'], ar.Width),
            ax_N
        ])

        # broadcast input / filter axes
        image = ng.cast_axes(image, ng.make_axes([ax_N, ax_H, ax_W, ax_C]))
        image = ng.expand_dims(image, ax_D, 1)  # NHWC -> NDHWC
        image = ng.Dimshuffle(image, axes=ax_i)  # NDHWC -> CDHWN

        # pooling
        output = ng.pooling(params, image, axes=ax_o)

        # cast back to NHWC
        oC, oD, oH, oW, oN = output.axes
        output = ng.broadcast(output, ng.make_axes([oN, oD, oH, oW, oC]))

        # slice away the oD
        out_slicing = [slice(None), 0, slice(None), slice(None), slice(None)]
        output = ng.Slice(output, out_slicing)

        return output
Exemple #7
0
    def Conv2D(self, tf_node, inputs):
        """
        Computes a 2-D convolution given 4D input and filter tensors.

        Arguments:
            tf_node: NodeDef object, the tensorflow node to convert.
            inputs: List of ngraph Ops as inputs to this node.

        Returns:
            A ngraph Op corresponding to the tensorflow node.

        Inputs to tf_node:
            input, filter

        TODO: assume default tensorflow layout NHWC, RSCK,
              need to support NCHW as well
              need to clean up / merge with maxpool

        Notes on output shape:
            https://www.tensorflow.org/api_docs/python/nn.html#convolution
        """
        image, weight = inputs

        # TODO: currently NHWC only
        assert tf_node.attr['data_format'].s.decode("ascii") == "NHWC"

        # set axes shape
        ax_N = ng.make_axis(batch=True)
        ax_C = ng.make_axis(roles=[ar.Channel])
        ax_D = ng.make_axis(roles=[ar.Depth])
        ax_H = ng.make_axis(roles=[ar.Height])
        ax_W = ng.make_axis(roles=[ar.Width])

        ax_T = ng.make_axis(roles=[ar.Depth])
        ax_R = ng.make_axis(roles=[ar.Height])
        ax_S = ng.make_axis(roles=[ar.Width])
        ax_K = ng.make_axis(roles=[ar.Channelout])

        ng.make_axes([ax_N, ax_H, ax_W, ax_C]).set_shape(image.axes.lengths)
        ng.make_axes([ax_R, ax_S, ax_C, ax_K]).set_shape(weight.axes.lengths)
        ax_D.length = 1
        ax_T.length = 1

        # strides params
        tf_strides = [int(s) for s in list(tf_node.attr['strides'].list.i)]
        if len(tf_strides) != 4:
            raise ValueError("Length of strides my be 4.")
        if tf_strides[0] != 1:
            raise NotImplementedError('Strides on batch axis (N) must be 1.')
        if tf_strides[3] != 1:
            raise NotImplementedError('Strides on channel axis (C) must be 1.')
        str_h, str_w = tf_strides[1], tf_strides[2]

        # padding params
        padding = tf_node.attr['padding'].s.decode("ascii")
        pad_t, pad_b, pad_l, pad_r = tf_conv2d_pool_padding(
            image.axes.lengths, weight.axes.lengths, tf_strides, padding)
        if pad_t != pad_b or pad_l != pad_r:
            raise NotImplementedError("Requires symmetric padding in ngraph:"
                                      "pad_t(%s) == pad_b(%s) and"
                                      "pad_l(%s) == pad_r(%s)" %
                                      (pad_t, pad_b, pad_l, pad_r))

        # conv params
        params = dict(pad_d=0,
                      pad_h=pad_t,
                      pad_w=pad_l,
                      str_d=1,
                      str_h=str_h,
                      str_w=str_w)

        # i, f, o axes
        ax_i = ng.make_axes([ax_C, ax_D, ax_H, ax_W, ax_N])
        ax_f = ng.make_axes([ax_C, ax_T, ax_R, ax_S, ax_K])
        ax_o = ng.make_axes([
            ng.make_axis(ax_K.length, name='C', roles=[ar.Channel]),
            spatial_axis(ax_i, ax_f, params['pad_d'], params['str_d'],
                         ar.Depth),
            spatial_axis(ax_i, ax_f, params['pad_h'], params['str_h'],
                         ar.Height),
            spatial_axis(ax_i, ax_f, params['pad_w'], params['str_w'],
                         ar.Width), ax_N
        ])

        # broadcast input / filter axes
        image = ng.cast_axes(image, ng.make_axes([ax_N, ax_H, ax_W, ax_C]))
        image = ng.expand_dims(image, ax_D, 1)  # NHWC -> NDHWC
        image = ng.Dimshuffle(image, axes=ax_i)  # NDHWC -> CDHWN
        weight = ng.cast_axes(weight, ng.make_axes([ax_R, ax_S, ax_C, ax_K]))
        weight = ng.expand_dims(weight, ax_T, 0)  # RSCK -> TRSCK
        weight = ng.Dimshuffle(weight, axes=ax_f)  # TRSCK -> CTRSK

        # convolution
        output = ng.convolution(params, image, weight, axes=ax_o)

        # cast back to NHWC
        oC, oD, oH, oW, oN = output.axes
        output = ng.broadcast(output, ng.make_axes([oN, oD, oH, oW, oC]))

        # slice away the oD
        out_slicing = [slice(None), 0, slice(None), slice(None), slice(None)]
        output = ng.Slice(output, out_slicing)

        return output
def test_fail_on_missing_and_extra_axis(transformer_factory, x, A, C):
    with pytest.raises(ValueError):
        ng.Dimshuffle(x, axes=ng.make_axes([A, C]))
def test_fail_on_missing(transformer_factory, x, B):
    with pytest.raises(ValueError):
        ng.Dimshuffle(x, axes=ng.make_axes([B, B]))
Exemple #10
0
def test_fail_on_axis_reuse(transformer_factory, x, A, B):
    with pytest.raises(ValueError):
        ng.Dimshuffle(x, axes=ng.make_axes([A, B, B]))