Exemple #1
0
import numpy as np
import nicenquickplotlib as nq

x = []
x.append(np.linspace(0,6))
x.append(np.linspace(0,5))
x.append(np.linspace(0,4))

nq.set_figstyle('default')
nq.plot(x, [np.sin(x[0]), np.cos(x[1]), np.sqrt(x[2])], legend=[r'$\sin(x)$', r'$\cos(x)$', r'$\sqrt{x}$'], xlabel='x label', ylabel='y label')
nq.set_figstyle('blacknwhite')
nq.plot(x, [np.sin(x[0]), np.cos(x[1]), np.sqrt(x[2])], legend=[r'$\sin(x)$', r'$\cos(x)$', r'$\sqrt{x}$'], xlabel='x label', ylabel='y label')
nq.set_figstyle('soft')
nq.plot(x, [np.sin(x[0]), np.cos(x[1]), np.sqrt(x[2])], legend=[r'$\sin(x)$', r'$\cos(x)$', r'$\sqrt{x}$'], xlabel='x label', ylabel='y label')
nq.set_figstyle('my_figstyle.yaml')
nq.plot(x, [np.sin(x[0]), np.cos(x[1]), np.sqrt(x[2])], legend=[r'$\sin(x)$', r'$\cos(x)$', r'$\sqrt{x}$'], xlabel='x label', ylabel='y label')

nq.save_all()
	for k in range(len(DMM)):
		DMM[k].write('RESET')
	FunGen.write('RESET')
	print('Instruments have been reset.')
for k in range(len(DMM)):
	DMM[k].read_termination = HP3458A.read_termination
FunGen.read_termination = HP3458A.read_termination
# Measure --------------------------------------------------------------
for k in range(len(GENERATOR_FREQUENCIES)):
	timestamp = utils.timestamp.generate_timestamp()
	samples, sampling_frequency = measure_burst(FunGen=FunGen, DMM=DMM, generator_frequency=GENERATOR_FREQUENCIES[k], generator_amplitude=GENERATOR_AMPLITUDE, sampling_frequency=SAMPLING_FREQUENCIES[k], number_of_samples=SAMPLES_PER_BURST, verbose=True)
	with open(DIRS.UNPROCESSED_DATA_PATH + timestamp + DIRS.CONFIG_FILE_SUFFIX, 'w') as ofile:
		print('Generator frequency (Hz)\tSampling frequency (Hz)\tGenerator amplitude (V)', file=ofile)
		print(str(GENERATOR_FREQUENCIES[k]) + '\t' + str(sampling_frequency) + '\t' + str(GENERATOR_AMPLITUDE), file=ofile)
	with open(DIRS.UNPROCESSED_DATA_PATH + timestamp + DIRS.SAMPLES_FILE_SUFFIX, 'w') as ofile:
		print('Samples1 (V)\tSamples2 (V)', file=ofile)
		for k in range(len(samples[0])):
			print(str(samples[0][k].n) + '\t' + str(samples[1][k].n), file=ofile)
# Close instruments ----------------------------------------------------
print('Closing instruments...')
for k in range(len(DMM)):
	DMM[k].write('DISP OFF, \'I am DMM[' + str(k) + ']\'')
	DMM[k].close()
FunGen.write('USE CHANA') # Select channel A to receive subsequent commands.
FunGen.write('TERM OFF') # Disconnect the output from all terminals.
FunGen.write('USE CHANB') # Select channel B to receive subsequent commands.
FunGen.write('TERM OFF') # Disconnect the output from all terminals.
FunGen.close()
print('Saving data...')
nq.save_all(timestamp=True, csv=True)
Exemple #3
0
        legend=r'$\sin (x)$',
        title='legend passing the legend as a string')
nq.plot(x[0],
        np.sin(x[0]),
        legend=[r'$\sin (x)$'],
        title='legend passing the legend as a list')
nq.plot(x,
        [np.sin(x[0]), np.cos(x[1]), np.sqrt(x[2])],
        legend=[r'$\sin(x)$', r'$\cos(x)$', r'$\sqrt{x}$'],
        title='legend multiple legends together')
nq.plot(x,
        [np.sin(x[0]), np.cos(x[1]), np.sqrt(x[2])],
        legend=[r'$\sin(x)$', r'$\cos(x)$', r'$\sqrt{x}$'],
        together=False,
        title='legend multiple legends together=False')
nq.save_all(timestamp='now')
# Test colors -----------------------------
random_y = []
for k in range(10):
    random_y.append(np.random.normal(loc=k, size=10))
nq.set_figstyle('default')
nq.plot(random_y, title='colors')
# Test markers ----------------------------
nq.plot(x,
        [np.sin(x[0]), np.cos(x[1]), np.sqrt(x[2])],
        legend=[r'$\sin(x)$', r'$\cos(x)$', r'$\sqrt{x}$'],
        marker=True,
        title='markers default')
nq.plot(x,
        [np.sin(x[0]), np.cos(x[1]), np.sqrt(x[2])],
        legend=[r'$\sin(x)$', r'$\cos(x)$', r'$\sqrt{x}$'],
import nicenquickplotlib as nq
import uncertainties as unc  # https://pythonhosted.org/uncertainties/index.html
import numpy as np

x = np.linspace(0, 2, 10)  # Create x data.
y_vals_1 = x**2  # Create y_1 data.
y_errs_1 = y_vals_1 * 0.1 + np.random.rand(len(x)) * 0.1  # Create y_1 errors.
y_vals_2 = np.sqrt(x)  # Create y_2 data.
y_errs_2 = y_vals_2 * 0.1 + np.random.rand(len(x)) * 0.1  # Create y_2 errors.
y_1 = unc.unumpy.uarray(y_vals_1,
                        y_errs_1)  # Create y_1 array of uncertainties.
y_2 = unc.unumpy.uarray(y_vals_2,
                        y_errs_2)  # Create y_2 array of uncertainties.
nq.plot(x, [y_1, y_2],
        title='y error bands',
        legend=['Data 1', 'Data 2'],
        marker=True)
nq.set_figstyle('blacknwhite')
nq.plot(x, [y_1, y_2],
        title='y error bands with blacknwhite figstyle',
        legend=['Data 1', 'Data 2'],
        marker=True)
nq.save_all(csv=True)
Exemple #5
0
freq = np.array(freq)
# PLOT ----------------------------
nq.plot(x=freq,
        y=[T_abs_definitive, T_phi_definitive],
        together=False,
        xlabel='Frequency (Hz)',
        ylabel=['Ratio', 'Phase (rad)'],
        xscale='L',
        title='Transference',
        marker='.')
nq.plot(
    x=freq,
    y=[
        unp.std_devs(T_abs_definitive) / unp.nominal_values(T_abs_definitive),
        np.abs(
            unp.std_devs(T_phi_definitive) /
            unp.nominal_values(T_phi_definitive))
    ],
    together=False,
    xlabel='Frequency (Hz)',
    ylabel=[
        r'Ratio err $\frac{\sigma}{\mu}$', r'Phase err $\frac{\sigma}{\mu}$'
    ],
    xscale='L',
    yscale='L',
    title='Transference uncertainties',
    marker='.')
nq.save_all(mkdir=DIRS.TRANSFERENCE_RESULTS_PATH, csv=True)
print('Transference has been plotted and data was saved in ' +
      DIRS.TRANSFERENCE_RESULTS_PATH)
                                                    ylabel='Voltage (V)',
                                                    nicebox=True,
                                                    marker='.')
    fig.axes[-1].set_xlim(
        [0, 10 * sampling_frequency / 2 / np.pi / generator_frequency])
# Transference calculation ---------------
T_abs = discrete_time_model[1].param_val(0) / discrete_time_model[0].param_val(
    0)
T_phi = utils.lock_in_process.lock_in_process(samples[0], samples[1])
T_abs = np.abs(
    T_abs
)  # This is because sometimes the fitting algorithm converges to a negative amplitude.
# Save data ------------------------------
os.rename(
    DIRS.CURRENTLY_PROCESSING_DATA_PATH + current_timestamp +
    DIRS.CONFIG_FILE_SUFFIX,
    DIRS.PROCESSED_DATA_PATH + current_timestamp + DIRS.CONFIG_FILE_SUFFIX)
os.rename(
    DIRS.CURRENTLY_PROCESSING_DATA_PATH + current_timestamp +
    DIRS.SAMPLES_FILE_SUFFIX,
    DIRS.PROCESSED_DATA_PATH + current_timestamp + DIRS.SAMPLES_FILE_SUFFIX)
nq.save_all(mkdir=DIRS.PROCESSED_DATA_PATH + current_timestamp + 'plots')
with open(
        DIRS.PROCESSED_DATA_PATH + current_timestamp +
        DIRS.TRANSFERENCE_FILE_SUFFIX, 'w') as ofile:
    print('T_abs.n\tT_abs.s\tT_phi.n', file=ofile)
    print(str(T_abs.n) + '\t' + str(T_abs.s) + '\t' + str(T_phi), file=ofile)
print('Analysis completed.')
print('Original data and results can be found in "' +
      DIRS.PROCESSED_DATA_PATH + '"')
Exemple #7
0
fungen.write('OUTP1:IMP INF'
             )  # Set the output impedance to zero (infinite load impedance).
fungen.write('voltage {}'.format(GENERATOR_AMPLITUDE))
fungen.write('voltage:offset {}'.format(GENERATOR_AMPLITUDE / 2))
fungen.write(':frequency:fixed {}'.format(
    GENERATOR_FREQUENCY))  #sets function generator frequency
fungen.write('source1:function:shape squ')

little_board = cf.Little_Board('Dev11')

fungen.write('OUTP1:STAT ON')
time.sleep(1)
data = np.array(
    little_board.acquire(n_samples=N_SAMPLES,
                         sampling_frequency=GENERATOR_FREQUENCY * N_SAMPLES /
                         N_CYCLES,
                         ch0=True,
                         ch1=True))

time_axis = np.linspace(0, N_CYCLES / GENERATOR_FREQUENCY, N_SAMPLES)
nq.plot(x=time_axis,
        y=[np.array(data[0]), np.array(data[1])],
        together=False,
        xlabel='Tiempo (s)')

fungen.write('OUTP1:STAT OFF')
fungen.close()

nq.save_all(timestamp=True, image_format='pdf', csv=True)
nq.show()
Exemple #8
0
import numpy as np
import nicenquickplotlib as nq

x = []
x.append(np.linspace(0, 6))
x.append(np.linspace(0, 5))
x.append(np.linspace(0, 4))

nq.set_figstyle('default')
nq.plot(x,
        [np.sin(x[0]), np.cos(x[1]), np.sqrt(x[2])],
        legend=[r'$\sin(x)$', r'$\cos(x)$', r'$\sqrt{x}$'],
        xlabel='x label',
        ylabel='y label')
nq.set_figstyle('blacknwhite')
nq.plot(x,
        [np.sin(x[0]), np.cos(x[1]), np.sqrt(x[2])],
        legend=[r'$\sin(x)$', r'$\cos(x)$', r'$\sqrt{x}$'],
        xlabel='x label',
        ylabel='y label')
nq.set_figstyle('soft')
nq.plot(x,
        [np.sin(x[0]), np.cos(x[1]), np.sqrt(x[2])],
        legend=[r'$\sin(x)$', r'$\cos(x)$', r'$\sqrt{x}$'],
        xlabel='x label',
        ylabel='y label')

nq.save_all(image_format='pdf')