def main():

    time_start = ph.start_timing()

    # Set print options for numpy
    np.set_printoptions(precision=3)

    # Read input
    input_parser = InputArgparser(
        description="Script to study reconstruction parameters and their "
        "impact on the volumetric reconstruction quality. "
        "This script can only be used to sweep through one single parameter, "
        "e.g. the regularization parameter 'alpha'. ")
    input_parser.add_filenames(required=True)
    input_parser.add_filenames_masks()
    input_parser.add_suffix_mask(default="_mask")
    input_parser.add_dir_input_mc()
    input_parser.add_dir_output(required=True)
    input_parser.add_reconstruction_space()
    input_parser.add_reference(
        help="Path to reference NIfTI image file. If given the volumetric "
        "reconstructed is performed in this physical space. "
        "Either a reconstruction space or a reference must be provided",
        required=False)
    input_parser.add_reference_mask(default=None)
    input_parser.add_study_name()
    input_parser.add_reconstruction_type(default="TK1L2")
    input_parser.add_measures(
        default=["PSNR", "MAE", "RMSE", "SSIM", "NCC", "NMI"])
    input_parser.add_tv_solver(default="PD")
    input_parser.add_iterations(default=50)
    input_parser.add_rho(default=0.1)
    input_parser.add_iter_max(default=10)
    input_parser.add_minimizer(default="lsmr")
    input_parser.add_log_config(default=1)
    input_parser.add_use_masks_srr(default=0)
    input_parser.add_verbose(default=1)
    input_parser.add_slice_thicknesses(default=None)
    input_parser.add_argument(
        "--append",
        "-append",
        action='store_true',
        help="If given, results are appended to previously executed parameter "
        "study with identical parameters and study name store in the output "
        "directory.")

    # Range for parameter sweeps
    input_parser.add_alphas(default=list(np.linspace(0.01, 0.5, 5)))
    input_parser.add_data_losses(default=["linear"]
                                 # default=["linear", "arctan"]
                                 )
    input_parser.add_data_loss_scales(default=[1]
                                      # default=[0.1, 0.5, 1.5]
                                      )

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    if args.reference is None and args.reconstruction_space is None:
        raise IOError("Either reference (--reference) or reconstruction space "
                      "(--reconstruction-space) must be provided.")

    if args.log_config:
        input_parser.log_config(os.path.abspath(__file__))

    # --------------------------------Read Data--------------------------------
    ph.print_title("Read Data")

    data_reader = dr.MultipleImagesReader(
        file_paths=args.filenames,
        file_paths_masks=args.filenames_masks,
        suffix_mask=args.suffix_mask,
        dir_motion_correction=args.dir_input_mc,
        stacks_slice_thicknesses=args.slice_thicknesses,
    )

    data_reader.read_data()
    stacks = data_reader.get_data()
    ph.print_info("%d input stacks read for further processing" % len(stacks))

    if args.reference is not None:
        reference = st.Stack.from_filename(file_path=args.reference,
                                           file_path_mask=args.reference_mask,
                                           extract_slices=False)

        reconstruction_space = stacks[0].get_resampled_stack(reference.sitk)
        reconstruction_space = \
            reconstruction_space.get_stack_multiplied_with_mask()
        x_ref = sitk.GetArrayFromImage(reference.sitk).flatten()
        x_ref_mask = sitk.GetArrayFromImage(reference.sitk_mask).flatten()

    else:
        reconstruction_space = st.Stack.from_filename(
            file_path=args.reconstruction_space, extract_slices=False)
        reconstruction_space = stacks[0].get_resampled_stack(
            reconstruction_space.sitk)
        reconstruction_space = \
            reconstruction_space.get_stack_multiplied_with_mask()
        x_ref = None
        x_ref_mask = None

    # ----------------------------Set Up Parameters----------------------------
    parameters = {}
    parameters["alpha"] = args.alphas
    if len(args.data_losses) > 1:
        parameters["data_loss"] = args.data_losses
    if len(args.data_loss_scales) > 1:
        parameters["data_loss_scale"] = args.data_loss_scales

    # --------------------------Set Up Parameter Study-------------------------
    ph.print_title("Run Parameter Study")
    if args.study_name is None:
        name = args.reconstruction_type
    else:
        name = args.study_name

    reconstruction_info = {
        "shape": reconstruction_space.sitk.GetSize()[::-1],
        "origin": reconstruction_space.sitk.GetOrigin(),
        "spacing": reconstruction_space.sitk.GetSpacing(),
        "direction": reconstruction_space.sitk.GetDirection(),
    }

    # Create Tikhonov solver from which all information can be extracted
    # (also for other reconstruction types)
    tmp = tk.TikhonovSolver(
        stacks=stacks,
        reconstruction=reconstruction_space,
        alpha=args.alphas[0],
        iter_max=args.iter_max,
        data_loss=args.data_losses[0],
        data_loss_scale=args.data_loss_scales[0],
        reg_type="TK1",
        minimizer=args.minimizer,
        verbose=args.verbose,
        use_masks=args.use_masks_srr,
    )
    solver = tmp.get_solver()

    parameter_study_interface = \
        deconv_interface.DeconvolutionParameterStudyInterface(
            A=solver.get_A(),
            A_adj=solver.get_A_adj(),
            D=solver.get_B(),
            D_adj=solver.get_B_adj(),
            b=solver.get_b(),
            x0=solver.get_x0(),
            alpha=solver.get_alpha(),
            x_scale=solver.get_x_scale(),
            data_loss=solver.get_data_loss(),
            data_loss_scale=solver.get_data_loss_scale(),
            iter_max=solver.get_iter_max(),
            minimizer=solver.get_minimizer(),
            iterations=args.iterations,
            measures=args.measures,
            dimension=3,
            L2=16. / reconstruction_space.sitk.GetSpacing()[0]**2,
            reconstruction_type=args.reconstruction_type,
            rho=args.rho,
            dir_output=args.dir_output,
            parameters=parameters,
            name=name,
            reconstruction_info=reconstruction_info,
            x_ref=x_ref,
            x_ref_mask=x_ref_mask,
            tv_solver=args.tv_solver,
            verbose=args.verbose,
            append=args.append,
        )
    parameter_study_interface.set_up_parameter_study()
    parameter_study = parameter_study_interface.get_parameter_study()

    # Run parameter study
    parameter_study.run()

    print("\nComputational time for Deconvolution Parameter Study %s: %s" %
          (name, parameter_study.get_computational_time()))

    return 0
Exemple #2
0
def main():

    time_start = ph.start_timing()

    # Set print options for numpy
    np.set_printoptions(precision=3)

    # Read input
    input_parser = InputArgparser(
        description="Script to study reconstruction parameters and their "
        "impact on the volumetric reconstruction quality.",
    )
    input_parser.add_dir_input()
    input_parser.add_filenames()
    input_parser.add_image_selection()
    input_parser.add_dir_output(required=True)
    input_parser.add_suffix_mask(default="_mask")
    input_parser.add_reconstruction_space()
    input_parser.add_reference(
        help="Path to reference NIfTI image file. If given the volumetric "
        "reconstructed is performed in this physical space. "
        "Either a reconstruction space or a reference must be provided",
        required=False)
    input_parser.add_reference_mask(default=None)
    input_parser.add_study_name()
    input_parser.add_reconstruction_type(default="TK1L2")
    input_parser.add_measures(default=["PSNR", "RMSE", "SSIM", "NCC", "NMI"])
    input_parser.add_tv_solver(default="PD")
    input_parser.add_iterations(default=50)
    input_parser.add_rho(default=0.1)
    input_parser.add_iter_max(default=10)
    input_parser.add_minimizer(default="lsmr")
    input_parser.add_alpha(default=0.01)
    input_parser.add_data_loss(default="linear")
    input_parser.add_data_loss_scale(default=1)
    input_parser.add_log_script_execution(default=1)
    input_parser.add_verbose(default=1)

    # Range for parameter sweeps
    input_parser.add_alpha_range(default=[0.001, 0.05, 20])  # TK1L2
    # input_parser.add_alpha_range(default=[0.001, 0.003, 10])  # TVL2, HuberL2
    input_parser.add_data_losses(
        # default=["linear", "arctan"]
    )
    input_parser.add_data_loss_scale_range(
        # default=[0.1, 1.5, 2]
    )

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    if args.reference is None and args.reconstruction_space is None:
        raise IOError("Either reference (--reference) or reconstruction space "
                      "(--reconstruction-space) must be provided.")

    # Write script execution call
    if args.log_script_execution:
        input_parser.write_performed_script_execution(
            os.path.abspath(__file__))

    # --------------------------------Read Data--------------------------------
    ph.print_title("Read Data")

    # Neither '--dir-input' nor '--filenames' was specified
    if args.filenames is not None and args.dir_input is not None:
        raise IOError(
            "Provide input by either '--dir-input' or '--filenames' "
            "but not both together")

    # '--dir-input' specified
    elif args.dir_input is not None:
        data_reader = dr.ImageSlicesDirectoryReader(
            path_to_directory=args.dir_input,
            suffix_mask=args.suffix_mask,
            image_selection=args.image_selection)

    # '--filenames' specified
    elif args.filenames is not None:
        data_reader = dr.MultipleImagesReader(
            args.filenames, suffix_mask=args.suffix_mask)

    else:
        raise IOError(
            "Provide input by either '--dir-input' or '--filenames'")

    data_reader.read_data()
    stacks = data_reader.get_data()
    ph.print_info("%d input stacks read for further processing" % len(stacks))

    if args.reference is not None:
        reference = st.Stack.from_filename(
            file_path=args.reference,
            file_path_mask=args.reference_mask,
            extract_slices=False)

        reconstruction_space = stacks[0].get_resampled_stack(reference.sitk)
        reconstruction_space = \
            reconstruction_space.get_stack_multiplied_with_mask()
        x_ref = sitk.GetArrayFromImage(reference.sitk).flatten()
        x_ref_mask = sitk.GetArrayFromImage(reference.sitk_mask).flatten()

    else:
        reconstruction_space = st.Stack.from_filename(
            file_path=args.reconstruction_space,
            extract_slices=False)
        reconstruction_space = stacks[0].get_resampled_stack(
            reconstruction_space.sitk)
        reconstruction_space = \
            reconstruction_space.get_stack_multiplied_with_mask()
        x_ref = None
        x_ref_mask = None

    # ----------------------------Set Up Parameters----------------------------
    parameters = {}
    parameters["alpha"] = np.linspace(
        args.alpha_range[0], args.alpha_range[1], int(args.alpha_range[2]))
    if args.data_losses is not None:
        parameters["data_loss"] = args.data_losses
    if args.data_loss_scale_range is not None:
        parameters["data_loss_scale"] = np.linspace(
            args.data_loss_scale_range[0],
            args.data_loss_scale_range[1],
            int(args.data_loss_scale_range[2]))

    # --------------------------Set Up Parameter Study-------------------------
    if args.study_name is None:
        name = args.reconstruction_type
    else:
        name = args.study_name

    reconstruction_info = {
        "shape": reconstruction_space.sitk.GetSize()[::-1],
        "origin": reconstruction_space.sitk.GetOrigin(),
        "spacing": reconstruction_space.sitk.GetSpacing(),
        "direction": reconstruction_space.sitk.GetDirection(),
    }

    # Create Tikhonov solver from which all information can be extracted
    # (also for other reconstruction types)
    tmp = tk.TikhonovSolver(
        stacks=stacks,
        reconstruction=reconstruction_space,
        alpha=args.alpha,
        iter_max=args.iter_max,
        data_loss=args.data_loss,
        data_loss_scale=args.data_loss_scale,
        reg_type="TK1",
        minimizer=args.minimizer,
        verbose=args.verbose,
    )
    solver = tmp.get_solver()

    parameter_study_interface = \
        deconv_interface.DeconvolutionParameterStudyInterface(
            A=solver.get_A(),
            A_adj=solver.get_A_adj(),
            D=solver.get_B(),
            D_adj=solver.get_B_adj(),
            b=solver.get_b(),
            x0=solver.get_x0(),
            alpha=solver.get_alpha(),
            x_scale=solver.get_x_scale(),
            data_loss=solver.get_data_loss(),
            data_loss_scale=solver.get_data_loss_scale(),
            iter_max=solver.get_iter_max(),
            minimizer=solver.get_minimizer(),
            iterations=args.iterations,
            measures=args.measures,
            dimension=3,
            L2=16./reconstruction_space.sitk.GetSpacing()[0]**2,
            reconstruction_type=args.reconstruction_type,
            rho=args.rho,
            dir_output=args.dir_output,
            parameters=parameters,
            name=name,
            reconstruction_info=reconstruction_info,
            x_ref=x_ref,
            x_ref_mask=x_ref_mask,
            tv_solver=args.tv_solver,
            verbose=args.verbose,
        )
    parameter_study_interface.set_up_parameter_study()
    parameter_study = parameter_study_interface.get_parameter_study()

    # Run parameter study
    parameter_study.run()

    print("\nComputational time for Deconvolution Parameter Study %s: %s" %
          (name, parameter_study.get_computational_time()))

    return 0
Exemple #3
0
def main():

    time_start = ph.start_timing()

    # Set print options for numpy
    np.set_printoptions(precision=3)

    # Read input
    input_parser = InputArgparser(
        description="Volumetric MRI reconstruction framework to reconstruct "
        "an isotropic, high-resolution 3D volume from multiple "
        "motion-corrected (or static) stacks of low-resolution slices.", )
    input_parser.add_dir_input()
    input_parser.add_filenames()
    input_parser.add_image_selection()
    input_parser.add_dir_output(required=True)
    input_parser.add_prefix_output(default="SRR_")
    input_parser.add_suffix_mask(default="_mask")
    input_parser.add_target_stack_index(default=0)
    input_parser.add_extra_frame_target(default=10)
    input_parser.add_isotropic_resolution(default=None)
    input_parser.add_reconstruction_space(default=None)
    input_parser.add_minimizer(default="lsmr")
    input_parser.add_iter_max(default=10)
    input_parser.add_reconstruction_type(default="TK1L2")
    input_parser.add_data_loss(default="linear")
    input_parser.add_data_loss_scale(default=1)
    input_parser.add_alpha(default=0.02  # TK1L2
                           # default=0.006  #TVL2, HuberL2
                           )
    input_parser.add_rho(default=0.5)
    input_parser.add_tv_solver(default="PD")
    input_parser.add_pd_alg_type(default="ALG2")
    input_parser.add_iterations(default=15)
    input_parser.add_subfolder_comparison()
    input_parser.add_provide_comparison(default=0)
    input_parser.add_log_script_execution(default=1)
    input_parser.add_verbose(default=0)
    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    # Write script execution call
    if args.log_script_execution:
        input_parser.write_performed_script_execution(
            os.path.abspath(__file__))

    # --------------------------------Read Data--------------------------------
    ph.print_title("Read Data")

    # Neither '--dir-input' nor '--filenames' was specified
    if args.filenames is not None and args.dir_input is not None:
        raise IOError("Provide input by either '--dir-input' or '--filenames' "
                      "but not both together")

    # '--dir-input' specified
    elif args.dir_input is not None:
        data_reader = dr.ImageSlicesDirectoryReader(
            path_to_directory=args.dir_input,
            suffix_mask=args.suffix_mask,
            image_selection=args.image_selection)

    # '--filenames' specified
    elif args.filenames is not None:
        data_reader = dr.MultipleImagesReader(args.filenames,
                                              suffix_mask=args.suffix_mask)

    else:
        raise IOError("Provide input by either '--dir-input' or '--filenames'")

    if args.reconstruction_type not in ["TK1L2", "TVL2", "HuberL2"]:
        raise IOError("Reconstruction type unknown")

    data_reader.read_data()
    stacks = data_reader.get_data()
    ph.print_info("%d input stacks read for further processing" % len(stacks))

    # Reconstruction space is given isotropically resampled target stack
    if args.reconstruction_space is None:
        recon0 = \
            stacks[args.target_stack_index].get_isotropically_resampled_stack(
                resolution=args.isotropic_resolution,
                extra_frame=args.extra_frame_target)

    # Reconstruction space was provided by user
    else:
        recon0 = st.Stack.from_filename(args.reconstruction_space,
                                        extract_slices=False)

        # Change resolution for isotropic resolution if provided by user
        if args.isotropic_resolution is not None:
            recon0 = recon0.get_isotropically_resampled_stack(
                args.isotropic_resolution)

        # Use image information of selected target stack as recon0 serves
        # as initial value for reconstruction
        recon0 = \
            stacks[args.target_stack_index].get_resampled_stack(recon0.sitk)
        recon0 = recon0.get_stack_multiplied_with_mask()

    if args.reconstruction_type in ["TVL2", "HuberL2"]:
        ph.print_title("Compute Initial value for %s" %
                       args.reconstruction_type)
    SRR0 = tk.TikhonovSolver(
        stacks=stacks,
        reconstruction=recon0,
        alpha=args.alpha,
        iter_max=args.iter_max,
        reg_type="TK1",
        minimizer=args.minimizer,
        data_loss=args.data_loss,
        data_loss_scale=args.data_loss_scale,
        # verbose=args.verbose,
    )
    SRR0.run()

    recon = SRR0.get_reconstruction()
    recon.set_filename(SRR0.get_setting_specific_filename(args.prefix_output))
    recon.write(args.dir_output)

    # List to store SRRs
    recons = []
    for i in range(0, len(stacks)):
        recons.append(stacks[i])
    recons.insert(0, recon)

    if args.reconstruction_type in ["TVL2", "HuberL2"]:
        ph.print_title("Compute %s reconstruction" % args.reconstruction_type)
        if args.tv_solver == "ADMM":
            SRR = admm.ADMMSolver(
                stacks=stacks,
                reconstruction=st.Stack.from_stack(SRR0.get_reconstruction()),
                minimizer=args.minimizer,
                alpha=args.alpha,
                iter_max=args.iter_max,
                rho=args.rho,
                data_loss=args.data_loss,
                iterations=args.iterations,
                verbose=args.verbose,
            )
            SRR.run()
            recon = SRR.get_reconstruction()
            recon.set_filename(
                SRR.get_setting_specific_filename(args.prefix_output))
            recons.insert(0, recon)

            recon.write(args.dir_output)

        else:

            SRR = pd.PrimalDualSolver(
                stacks=stacks,
                reconstruction=st.Stack.from_stack(SRR0.get_reconstruction()),
                minimizer=args.minimizer,
                alpha=args.alpha,
                iter_max=args.iter_max,
                iterations=args.iterations,
                alg_type=args.pd_alg_type,
                reg_type="TV"
                if args.reconstruction_type == "TVL2" else "huber",
                data_loss=args.data_loss,
                verbose=args.verbose,
            )
            SRR.run()
            recon = SRR.get_reconstruction()
            recon.set_filename(
                SRR.get_setting_specific_filename(args.prefix_output))
            recons.insert(0, recon)

            recon.write(args.dir_output)

    if args.verbose and not args.provide_comparison:
        sitkh.show_stacks(recons)

    # Show SRR together with linearly resampled input data.
    # Additionally, a script is generated to open files
    if args.provide_comparison:
        sitkh.show_stacks(
            recons,
            show_comparison_file=args.provide_comparison,
            dir_output=os.path.join(args.dir_output,
                                    args.subfolder_comparison),
        )

    ph.print_line_separator()

    elapsed_time = ph.stop_timing(time_start)
    ph.print_title("Summary")
    print("Computational Time for Volumetric Reconstruction: %s" %
          (elapsed_time))

    return 0
def main():

    time_start = ph.start_timing()

    # Set print options for numpy
    np.set_printoptions(precision=3)

    # Read input
    input_parser = InputArgparser(
        description="Volumetric MRI reconstruction framework to reconstruct "
        "an isotropic, high-resolution 3D volume from multiple "
        "motion-corrected (or static) stacks of low-resolution slices.", )
    input_parser.add_filenames(required=True)
    input_parser.add_filenames_masks()
    input_parser.add_dir_input_mc()
    input_parser.add_output(required=True)
    input_parser.add_suffix_mask(default="_mask")
    input_parser.add_target_stack(default=None)
    input_parser.add_extra_frame_target(default=10)
    input_parser.add_isotropic_resolution(default=None)
    input_parser.add_intensity_correction(default=1)
    input_parser.add_reconstruction_space(default=None)
    input_parser.add_minimizer(default="lsmr")
    input_parser.add_iter_max(default=10)
    input_parser.add_reconstruction_type(default="TK1L2")
    input_parser.add_data_loss(default="linear")
    input_parser.add_data_loss_scale(default=1)
    input_parser.add_alpha(default=0.01  # TK1L2
                           # default=0.006  #TVL2, HuberL2
                           )
    input_parser.add_rho(default=0.5)
    input_parser.add_tv_solver(default="PD")
    input_parser.add_pd_alg_type(default="ALG2")
    input_parser.add_iterations(default=15)
    input_parser.add_log_config(default=1)
    input_parser.add_use_masks_srr(default=0)
    input_parser.add_slice_thicknesses(default=None)
    input_parser.add_verbose(default=0)
    input_parser.add_viewer(default="itksnap")
    input_parser.add_argument(
        "--mask",
        "-mask",
        action='store_true',
        help="If given, input images are interpreted as image masks. "
        "Obtained volumetric reconstruction will be exported in uint8 format.")
    input_parser.add_argument(
        "--sda",
        "-sda",
        action='store_true',
        help="If given, the volume is reconstructed using "
        "Scattered Data Approximation (Vercauteren et al., 2006). "
        "--alpha is considered the value for the standard deviation then. "
        "Recommended value is, e.g., --alpha 0.8")

    args = input_parser.parse_args()
    input_parser.print_arguments(args)

    if args.reconstruction_type not in ["TK1L2", "TVL2", "HuberL2"]:
        raise IOError("Reconstruction type unknown")

    if np.alltrue([not args.output.endswith(t) for t in ALLOWED_EXTENSIONS]):
        raise ValueError("output filename '%s' invalid; "
                         "allowed image extensions are: %s" %
                         (args.output, ", ".join(ALLOWED_EXTENSIONS)))

    dir_output = os.path.dirname(args.output)
    ph.create_directory(dir_output)

    if args.log_config:
        input_parser.log_config(os.path.abspath(__file__))

    if args.verbose:
        show_niftis = []
        # show_niftis = [f for f in args.filenames]

    # --------------------------------Read Data--------------------------------
    ph.print_title("Read Data")

    if args.mask:
        filenames_masks = args.filenames
    else:
        filenames_masks = args.filenames_masks

    data_reader = dr.MultipleImagesReader(
        file_paths=args.filenames,
        file_paths_masks=filenames_masks,
        suffix_mask=args.suffix_mask,
        dir_motion_correction=args.dir_input_mc,
        stacks_slice_thicknesses=args.slice_thicknesses,
    )
    data_reader.read_data()
    stacks = data_reader.get_data()

    ph.print_info("%d input stacks read for further processing" % len(stacks))

    # Specify target stack for intensity correction and reconstruction space
    if args.target_stack is None:
        target_stack_index = 0
    else:
        filenames = ["%s.nii.gz" % s.get_filename() for s in stacks]
        filename_target_stack = os.path.basename(args.target_stack)
        try:
            target_stack_index = filenames.index(filename_target_stack)
        except ValueError as e:
            raise ValueError(
                "--target-stack must correspond to an image as provided by "
                "--filenames")

    # ---------------------------Intensity Correction--------------------------
    if args.intensity_correction and not args.mask:
        ph.print_title("Intensity Correction")
        intensity_corrector = ic.IntensityCorrection()
        intensity_corrector.use_individual_slice_correction(False)
        intensity_corrector.use_stack_mask(True)
        intensity_corrector.use_reference_mask(True)
        intensity_corrector.use_verbose(False)

        for i, stack in enumerate(stacks):
            if i == target_stack_index:
                ph.print_info("Stack %d (%s): Reference image. Skipped." %
                              (i + 1, stack.get_filename()))
                continue
            else:
                ph.print_info("Stack %d (%s): Intensity Correction ... " %
                              (i + 1, stack.get_filename()),
                              newline=False)
            intensity_corrector.set_stack(stack)
            intensity_corrector.set_reference(
                stacks[target_stack_index].get_resampled_stack(
                    resampling_grid=stack.sitk,
                    interpolator="NearestNeighbor",
                ))
            intensity_corrector.run_linear_intensity_correction()
            stacks[i] = intensity_corrector.get_intensity_corrected_stack()
            print("done (c1 = %g) " %
                  intensity_corrector.get_intensity_correction_coefficients())

    # -------------------------Volumetric Reconstruction-----------------------
    ph.print_title("Volumetric Reconstruction")

    # Reconstruction space is given isotropically resampled target stack
    if args.reconstruction_space is None:
        recon0 = stacks[target_stack_index].get_isotropically_resampled_stack(
            resolution=args.isotropic_resolution,
            extra_frame=args.extra_frame_target)
        recon0 = recon0.get_cropped_stack_based_on_mask(
            boundary_i=args.extra_frame_target,
            boundary_j=args.extra_frame_target,
            boundary_k=args.extra_frame_target,
            unit="mm",
        )

    # Reconstruction space was provided by user
    else:
        recon0 = st.Stack.from_filename(args.reconstruction_space,
                                        extract_slices=False)

        # Change resolution for isotropic resolution if provided by user
        if args.isotropic_resolution is not None:
            recon0 = recon0.get_isotropically_resampled_stack(
                args.isotropic_resolution)

        # Use image information of selected target stack as recon0 serves
        # as initial value for reconstruction
        recon0 = stacks[target_stack_index].get_resampled_stack(recon0.sitk)
        recon0 = recon0.get_stack_multiplied_with_mask()

    ph.print_info("Reconstruction space defined with %s mm3 resolution" %
                  " x ".join(["%.2f" % s for s in recon0.sitk.GetSpacing()]))

    if args.sda:
        ph.print_title("Compute SDA reconstruction")
        SDA = sda.ScatteredDataApproximation(stacks,
                                             recon0,
                                             sigma=args.alpha,
                                             sda_mask=args.mask)
        SDA.run()
        recon = SDA.get_reconstruction()
        if args.mask:
            dw.DataWriter.write_mask(recon.sitk_mask, args.output)
        else:
            dw.DataWriter.write_image(recon.sitk, args.output)

        if args.verbose:
            show_niftis.insert(0, args.output)

    else:
        if args.reconstruction_type in ["TVL2", "HuberL2"]:
            ph.print_title("Compute Initial value for %s" %
                           args.reconstruction_type)
            SRR0 = tk.TikhonovSolver(
                stacks=stacks,
                reconstruction=recon0,
                alpha=args.alpha,
                iter_max=np.min([5, args.iter_max]),
                reg_type="TK1",
                minimizer="lsmr",
                data_loss="linear",
                use_masks=args.use_masks_srr,
                # verbose=args.verbose,
            )
        else:
            ph.print_title("Compute %s reconstruction" %
                           args.reconstruction_type)
            SRR0 = tk.TikhonovSolver(
                stacks=stacks,
                reconstruction=recon0,
                alpha=args.alpha,
                iter_max=args.iter_max,
                reg_type="TK1",
                minimizer=args.minimizer,
                data_loss=args.data_loss,
                data_loss_scale=args.data_loss_scale,
                use_masks=args.use_masks_srr,
                # verbose=args.verbose,
            )
        SRR0.run()

        recon = SRR0.get_reconstruction()

        if args.reconstruction_type in ["TVL2", "HuberL2"]:
            output = ph.append_to_filename(args.output, "_initTK1L2")
        else:
            output = args.output

        if args.mask:
            mask_estimator = bm.BinaryMaskFromMaskSRREstimator(recon.sitk)
            mask_estimator.run()
            mask_sitk = mask_estimator.get_mask_sitk()
            dw.DataWriter.write_mask(mask_sitk, output)
        else:
            dw.DataWriter.write_image(recon.sitk, output)

        if args.verbose:
            show_niftis.insert(0, output)

        if args.reconstruction_type in ["TVL2", "HuberL2"]:
            ph.print_title("Compute %s reconstruction" %
                           args.reconstruction_type)
            if args.tv_solver == "ADMM":
                SRR = admm.ADMMSolver(
                    stacks=stacks,
                    reconstruction=st.Stack.from_stack(
                        SRR0.get_reconstruction()),
                    minimizer=args.minimizer,
                    alpha=args.alpha,
                    iter_max=args.iter_max,
                    rho=args.rho,
                    data_loss=args.data_loss,
                    iterations=args.iterations,
                    use_masks=args.use_masks_srr,
                    verbose=args.verbose,
                )

            else:
                SRR = pd.PrimalDualSolver(
                    stacks=stacks,
                    reconstruction=st.Stack.from_stack(
                        SRR0.get_reconstruction()),
                    minimizer=args.minimizer,
                    alpha=args.alpha,
                    iter_max=args.iter_max,
                    iterations=args.iterations,
                    alg_type=args.pd_alg_type,
                    reg_type="TV"
                    if args.reconstruction_type == "TVL2" else "huber",
                    data_loss=args.data_loss,
                    use_masks=args.use_masks_srr,
                    verbose=args.verbose,
                )
            SRR.run()
            recon = SRR.get_reconstruction()

            if args.mask:
                mask_estimator = bm.BinaryMaskFromMaskSRREstimator(recon.sitk)
                mask_estimator.run()
                mask_sitk = mask_estimator.get_mask_sitk()
                dw.DataWriter.write_mask(mask_sitk, args.output)

            else:
                dw.DataWriter.write_image(recon.sitk, args.output)

            if args.verbose:
                show_niftis.insert(0, args.output)

    if args.verbose:
        ph.show_niftis(show_niftis, viewer=args.viewer)

    ph.print_line_separator()

    elapsed_time = ph.stop_timing(time_start)
    ph.print_title("Summary")
    print("Computational Time for Volumetric Reconstruction: %s" %
          (elapsed_time))

    return 0