def get_masker_coord(filename):

    if 'BASC' in filename:    
        basc = datasets.fetch_atlas_basc_multiscale_2015(version='sym')['scale444']
        filename=basc
        nib_basc444 = nib.load(basc)
        labels_data = nib_basc444.get_data()  
    else:       
        nib_parcel = nib.load(filename)
        labels_data = nib_parcel.get_data()   
    #fetch all possible label values 
    all_labels = np.unique(labels_data)
    # remove the 0. value which correspond to voxels out of ROIs
    all_labels = all_labels[1:]
#    bari_labels = np.zeros((all_labels.shape[0],3))
#    ## go through all labels 
#    for i,curlabel in enumerate(all_labels):
#        vox_in_label = np.stack(np.argwhere(labels_data == curlabel))
#        bari_labels[i] = vox_in_label.mean(axis=0)
#        
    allcoords=[]
    for i,curlabel in enumerate(all_labels):
        img_curlab = math_img(formula="img==%d"%curlabel,img=filename)
        allcoords.append(find_xyz_cut_coords(img_curlab))
    allcoords=np.array(allcoords)
    return  allcoords  
Exemple #2
0
def get_centers(brain, orig_labs):
    """
    Get coordinate centers given a nifti image loaded with nibabel
    
    Returns a dictionary of label: coordinate as an [x, y, z] array
    """
    dat = brain.get_data()

    labs, size = np.unique(dat, return_counts=True)

    size = dict(zip(labs, size))

    # Bit of a clumsy stop-gap for correcting for lost ROIs due to resampling/registration
    for n in orig_labs:
        if not size.get(n):
            size[n] = None

    coords_connectome = []
    for lab in labs:
        fd_dat = np.asarray(dat == lab).astype('float64')
        parcel = nb.Nifti1Image(dataobj=fd_dat,
                                header=brain.header,
                                affine=brain.affine)
        coords_connectome.append(nip.find_xyz_cut_coords(parcel))

    return dict(zip(labs, coords_connectome)), size
Exemple #3
0
def plotResultImageWithoutDatamanager(path_seg,
                                      path_t1,
                                      path_result,
                                      savepath,
                                      subject,
                                      output_type='save'):
    if output_type == 'save':
        figure, (axes1, axes2) = plt.subplots(2, 1, figsize=(10, 10))
        cut = plotting.find_xyz_cut_coords(path_seg, activation_threshold=0.5)
        plotting.plot_roi(path_result,
                          path_t1,
                          cut_coords=cut,
                          axes=axes1,
                          title='Result')
        plotting.plot_roi(path_seg,
                          path_t1,
                          cut_coords=cut,
                          axes=axes2,
                          title='Target')
        plt.savefig(os.path.join(savepath, 'result_' + subject + '.png'))
        plt.close()
        logging.info('Subject ' + str(subject) + ' plotted with image ' +
                     path_t1 + '.')
    elif output_type == 'show':
        figure, (axes1, axes2) = plt.subplots(2, 1, figsize=(10, 10))
        plotting.plot_roi(path_result, path_t1, axes=axes1, title='Result')
        plotting.plot_roi(path_seg, path_t1, axes=axes2, title='Target')
        plt.show()
        plt.close()
Exemple #4
0
def get_names_and_coords_of_parcels(parlistfile):
    from nilearn.plotting import find_xyz_cut_coords
    from nilearn.image import new_img_like
    try:
        atlas_select = parlistfile.split('/')[-1].split('.')[0]
    except:
        atlas_select = 'User_specified_atlas'
    bna_img = nib.load(parlistfile)
    bna_data = np.round(bna_img.get_data(),1)
    ##Get an array of unique parcels
    bna_data_for_coords_uniq = np.unique(bna_data)
    ##Number of parcels:
    par_max = len(bna_data_for_coords_uniq) - 1
    bna_data = bna_data.astype('int16')
    img_stack = []
    for idx in range(1, par_max+1):
        roi_img = bna_data == bna_data_for_coords_uniq[idx].astype('int16')
        roi_img = roi_img.astype('int16')
        img_stack.append(roi_img)
    img_stack = np.array(img_stack).astype('int16')
    img_list = []
    for idy in range(par_max):
        roi_img_nifti = new_img_like(bna_img, img_stack[idy])
        img_list.append(roi_img_nifti)
    coords = []
    for roiin in img_list:
        coord = find_xyz_cut_coords(roiin)
        coords.append(coord)
    coords = list(tuple(x) for x in np.array(coords))
    return(coords, atlas_select, par_max, img_list)
Exemple #5
0
def get_names_and_coords_of_parcels_from_img(bna_img):
    from nilearn.plotting import find_xyz_cut_coords
    from nilearn.image import new_img_like
    bna_data = np.round(bna_img.get_data(), 1)
    # Get an array of unique parcels
    bna_data_for_coords_uniq = np.unique(bna_data)
    # Number of parcels:
    par_max = len(bna_data_for_coords_uniq) - 1
    bna_data = bna_data.astype('int16')
    img_stack = []
    for idx in range(1, par_max + 1):
        roi_img = bna_data == bna_data_for_coords_uniq[idx].astype('int16')
        roi_img = roi_img.astype('int16')
        img_stack.append(roi_img)
    img_stack = np.array(img_stack).astype('int16')
    img_list = []
    for idy in range(par_max):
        roi_img_nifti = new_img_like(bna_img, img_stack[idy])
        img_list.append(roi_img_nifti)
    coords = []
    for roiin in img_list:
        coord = find_xyz_cut_coords(roiin)
        coords.append(coord)
    coords = list(tuple(x) for x in np.array(coords))
    return coords, par_max, img_list
Exemple #6
0
def plotResultImage(datamanager,
                    resultpath,
                    savepath,
                    subject,
                    output_type='save'):
    basefile = datamanager.getFileName(subject, 't1')
    segfile = datamanager.getFileName(subject, 'seg')
    if output_type == 'save':
        figure, (axes1, axes2) = plt.subplots(2, 1, figsize=(10, 10))
        cut = plotting.find_xyz_cut_coords(segfile, activation_threshold=0.5)
        plotting.plot_roi(resultpath,
                          basefile,
                          cut_coords=cut,
                          axes=axes1,
                          title='Result')
        plotting.plot_roi(segfile,
                          basefile,
                          cut_coords=cut,
                          axes=axes2,
                          title='Target')
        plt.savefig(os.path.join(savepath, 'result_' + subject + '.png'))
        plt.close()
        logging.info('Subject ' + str(subject) + ' plotted with image ' +
                     basefile + '.')
    elif output_type == 'show':
        figure, (axes1, axes2) = plt.subplots(2, 1, figsize=(10, 10))
        plotting.plot_roi(savepath, basefile, axes=axes1, title='Result')
        plotting.plot_roi(segfile, basefile, axes=axes2, title='Target')
        plt.show()
        plt.close()
Exemple #7
0
    def plot(self, downsample=1, out_base="."):
        out_path = os.path.join(out_base, self.subject, self.name, self.task)
        os.makedirs(out_path, exist_ok=True)
        raw = nib.load(self.path)
        M = np.max(raw.get_data())
        n = raw.shape[3]
        mean = nimage.mean_img(raw)
        xyzcuts = nilplot.find_xyz_cut_coords(mean)
        xcuts = nilplot.find_cut_slices(mean, "x")
        ycuts = nilplot.find_cut_slices(mean, "y")
        zcuts = nilplot.find_cut_slices(mean, "z")
        del raw
        nrange = range(0, n, downsample)
        for i, img in enumerate(nimage.iter_img(self.path)):
            if i in nrange:
                nilplot.plot_epi(nimage.math_img("img / %f" % (M), img=img),
                                 colorbar=False,
                                 output_file="%s/orth_epi%0d.png" %
                                 (out_path, i),
                                 annotate=True,
                                 cut_coords=xyzcuts,
                                 cmap="gist_heat")
                nilplot.plot_epi(nimage.math_img("img / %f" % (M), img=img),
                                 colorbar=False,
                                 output_file="%s/x_epi%0d.png" % (out_path, i),
                                 annotate=True,
                                 display_mode="x",
                                 cut_coords=xcuts,
                                 cmap="gist_heat")
                nilplot.plot_epi(nimage.math_img("img / %f" % (M), img=img),
                                 colorbar=False,
                                 output_file="%s/y_epi%0d.png" % (out_path, i),
                                 annotate=True,
                                 display_mode="y",
                                 cut_coords=ycuts,
                                 cmap="gist_heat")
                nilplot.plot_epi(nimage.math_img("img / %f" % (M), img=img),
                                 colorbar=False,
                                 output_file="%s/z_epi%0d.png" % (out_path, i),
                                 annotate=True,
                                 display_mode="z",
                                 cut_coords=zcuts,
                                 cmap="gist_heat")

        slice_names = ["orth_epi", "x_epi", "y_epi", "z_epi"]
        for slic in slice_names:
            filenames = ["%s/%s%0d.png" % (out_path, slic, i) for i in nrange]
            with imageio.get_writer('%s/%s.gif' % (out_path, slic),
                                    mode='I') as writer:
                for i, filename in zip(nrange, filenames):
                    image = Image.open(filename)
                    draw = ImageDraw.Draw(image)
                    fnt = ImageFont.truetype('Pillow/Tests/fonts/FreeMono.ttf',
                                             16)
                    draw.text((2, 2), str(i), font=fnt, fill=(255, 0, 0, 255))
                    image.save(filename, "PNG")
                    image = imageio.imread(filename)
                    writer.append_data(image)
def _save_results(annotated_names, maps_img, dimension):
    maps_img = nibabel.load(maps_img)
    for i, img in enumerate(image.iter_img(maps_img)):
        cut_coords = plotting.find_xyz_cut_coords(img)
        if annotated_names is not None:
            annotated_name = annotated_names.iloc[i].Difumo_names
        else:
            annotated_name = None
        _plot_dl_maps(img, cut_coords, annotated_name, i, dimension)
    return
def run_mini_pipeline():
    atlas = datasets.fetch_atlas_msdl()
    atlas_img = atlas['maps']
    labels = pd.read_csv(atlas['labels'])['name']

    masker = NiftiMapsMasker(maps_img=atlas_img, standardize=True,
                               memory='/tmp/nilearn', verbose=0)

    data = datasets.fetch_adhd(number_subjects)

    figures_folder = '../figures/'
    count=0
    for func_file, confound_file in zip(data.func, data.confounds):
        
        # fit the data to the atlas mask, regress out confounds
        time_series = masker.fit_transform(func_file, confounds=confound_file)

        correlation = np.corrcoef(time_series.T)

        #plotting starts here
        plt.figure(figsize=(10, 10))
        plt.imshow(correlation, interpolation="nearest")
        x_ticks = plt.xticks(range(len(labels)), labels, rotation=90)
        y_ticks = plt.yticks(range(len(labels)), labels)
        corr_file = figures_folder+'subject_number_' + str(count) + '_correlation.pdf'
        plt.savefig(corr_file)

        atlas_region_coords = [plotting.find_xyz_cut_coords(img) for img in image.iter_img(atlas_img)]
        threshold = 0.6
        plotting.plot_connectome(correlation, atlas_region_coords, edge_threshold=threshold)
        connectome_file = figures_folder+'subject_number_' + str(count) + '_connectome.pdf'
        plt.savefig(connectome_file)


        #graph setup

        #binarize correlation matrix
        correlation[correlation<threshold] = 0
        correlation[correlation != 0] = 1

        graph = nx.from_numpy_matrix(correlation)

        partition=louvain.best_partition(graph)

        values = [partition.get(node) for node in graph.nodes()]

        plt.figure()
        nx.draw_spring(graph, cmap = plt.get_cmap('jet'), node_color = values, node_size=30, with_labels=True)
        graph_file = figures_folder+'subject_number_' + str(count) + '_community.pdf'
        plt.savefig(graph_file)

        count += 1

        plt.close('all')
Exemple #10
0
def plot_map(single_map, title, i):
    fig = plt.figure()
    vmax = np.max(np.abs(single_map.get_data()))
    cut_coords = find_xyz_cut_coords(single_map,
                                     activation_threshold=0.33 * vmax)
    plot_stat_map(single_map,
                  title=str(title),
                  figure=fig,
                  cut_coords=cut_coords,
                  threshold=0.)
    plt.savefig(join(analysis_dir, '%s.png' % title))
    plt.close(fig)
Exemple #11
0
def save_info(info, dimension):
    """Save found records

    Parameters
    ----------
    info : dict
        Contains meta-data assigned to each atlas name such as
        overlap proportion, etc
        Each atlas dict contains following attributes:
            'intersection' : sparse matrix
                dot product between DiFuMo regions and regions in target
                atlas (existing pre-defined)

            'target_size' : np.ndarray
                Size of each region estimated in target atlas

            'overlap_proportion' : list of pd.Series
                Each list contains the proportion of overlap estimated
                between this region and all region in target sizes.
                Sorted according to most strong hit in the overlap.

            'overlap_size' : list
                Each list contain overlap in estimated sizes for all
                regions in target atlas.

    dimension : int
        DiFuMo atlas dimension

    Returns
    -------
    data : pd.DataFrame
    """
    html = "https://parietal-inria.github.io/DiFuMo/{0}/html/{1}.html"
    table = set_difumo_storage()
    maps_img = nibabel.load(fetch_difumo(dimension=dimension).maps)
    for i, img in enumerate(image.iter_img(maps_img)):
        cut_coords = plotting.find_xyz_cut_coords(img)
        for n in [64, 128, 256, 512, 1024]:
            labels = fetch_difumo(dimension=n).labels['Difumo_names'].to_list()
            # Proportion of overlap with each index of difumo component
            this_img_info = info[n]['overlap_proportion'][i]
            identified_components = this_img_info.index[1:6]
            if len(identified_components) != 0:
                # grabbing the top five from the overlapped list
                for identified_component in identified_components:
                    table['dimension'].append(dimension)
                    table['component'].append(i + 1)
                    table['overlap_against'].append(n)
                    table['identified'].append(identified_component + 1)
                    table['label'].append(labels[identified_component])
    return pd.DataFrame(table)
def plot_dictionary(components, idx, write_dir):
    """ Plot a dictionary element acorss subjects
    """
    mean_val = components[:, :, idx].mean(0)
    mean_img = masker.inverse_transform(mean_val)
    fig = plt.figure(figsize=(14, 5), facecolor='k')
    # colorbar_ax = fig.add_axes([.98, 0.05, .02, .9], axis_bgcolor='k')
    # vmax = np.max(np.abs(mean_val))
    # _draw_colorbar(colorbar_ax, vmax=vmax, offset = vmax/2)
    cut_coords = plotting.find_xyz_cut_coords(mean_img)
    for i, subject in enumerate(subject_list):
        anat = db[db.contrast == 't1'][db.subject == subject].path.values[-1]
        img = masker.inverse_transform(components[i, :, idx])
        axes = plt.axes([.00 + .13 * np.mod(i, 3), .245 * (i / 3), .13, .245])
        plotting.plot_stat_map(
            img,
            bg_img=anat,
            axes=axes,
            display_mode='x',
            cut_coords=cut_coords[0:1],
            dim=0,
            threshold=3.0,
            black_bg=True,
            vmax=8,  # title=subject,
            colorbar=False)

    axes = plt.axes([.4, .3, .57, .4])
    colors = plt.cm.hsv(np.linspace(0, 255 / n_contrasts, 255))
    plt.bar(range(n_contrasts), dictionary[idx], color=colors)
    plt.xticks(np.linspace(1., n_contrasts + .8, num=n_contrasts + 1),
               labels_bottom,
               rotation=75,
               ha='right',
               fontsize=9,
               color='w')
    for nc in range(n_contrasts):
        plt.text(nc,
                 dictionary[idx].max() + .001,
                 labels_top[nc],
                 rotation=75,
                 ha='left',
                 va='bottom',
                 color='w',
                 fontsize=9)
    #
    plt.axis('tight')
    plt.subplots_adjust(bottom=.3, top=.7)
    fig.savefig(os.path.join(write_dir, 'snapshot_%02d.png' % idx),
                facecolor='k')
    plt.close(fig)
Exemple #13
0
def plotResultImage(datamanager,
                    resultpath,
                    savepath,
                    subject,
                    output_type='save'):
    try:
        basefile = datamanager.getFileName(subject, 't1')
    except:
        try:
            basefile = datamanager.getFileName(subject, 'ct')
        except:
            basefile = datamanager.getFileName(subject, 't1t2')
    segfile = datamanager.getFileName(subject, 'seg')
    if output_type == 'save':
        figure, (axes1, axes2) = plt.subplots(2, 1, figsize=(10, 10))
        cut = plotting.find_xyz_cut_coords(segfile, activation_threshold=0.5)
        # change cut to none if it appears to be an empty array
        try:
            if cut == []: cut = None
            plotting.plot_roi(resultpath,
                              basefile,
                              cut_coords=cut,
                              axes=axes1,
                              title='Result')
            plotting.plot_roi(segfile,
                              basefile,
                              cut_coords=cut,
                              axes=axes2,
                              title='Target')
            plt.savefig(os.path.join(savepath, 'result_' + subject + '.png'))
            plt.close()
        except:
            logging.info('Subject ' + str(subject) +
                         ' couldnt be plotted as a result of an absent ROI')
        logging.info('Subject ' + str(subject) + ' plotted with image ' +
                     basefile + '.')
    elif output_type == 'show':
        figure, (axes1, axes2) = plt.subplots(2, 1, figsize=(10, 10))
        plotting.plot_roi(savepath, basefile, axes=axes1, title='Result')
        plotting.plot_roi(segfile, basefile, axes=axes2, title='Target')
        plt.show()
        plt.close()
Exemple #14
0
def get_centers(brain):
    """
    Get coordinate centers given a nifti image loaded with nibabel
    
    Returns a dictionary of label: coordinate as an [x, y, z] array
    """
    dat = brain.get_data()
    labs = np.unique(dat)
    labs = labs[labs != 0]
    # Line below throwing memory error. I will likely calculate each layer one at a time
    # and find the center
    fd_dat = np.stack(
        [np.asarray(dat == lab).astype('float64') for lab in labs], axis=3)
    parcels = nb.Nifti1Image(dataobj=fd_dat,
                             header=brain.header,
                             affine=brain.affine)
    regions_imgs = image.iter_img(parcels)
    # compute the centers of mass for each ROI
    coords_connectome = [nip.find_xyz_cut_coords(img) for img in regions_imgs]
    return dict(zip(labs, coords_connectome))
Exemple #15
0
def plot_single(img, name, output_dir, view_types=['stat_map'], color=None,
                threshold=0):
    from nilearn.plotting import plot_stat_map, find_xyz_cut_coords, plot_glass_brain

    if color is not None:
        cmap = make_cmap(color, rotation=.5)
        cmap_white = make_cmap(color, rotation=.5, white=True)
    else:
        cmap = 'cold_hot'
        cmap_white = 'cold_white_hot'

    srcs = []
    vmax = np.abs(img.get_data()).max()
    threshold = vmax / 8

    for view_type in view_types:
        src = join(output_dir, '%s_%s.png' % (name, view_type))
        cut_coords = find_xyz_cut_coords(img, activation_threshold=vmax / 3)
        if view_type == 'stat_map':
            plot_stat_map(img, threshold=threshold,
                          cut_coords=cut_coords,
                          vmax=vmax,
                          colorbar=True,
                          output_file=src,
                          # cmap=cmap
                          )
        elif view_type == 'glass_brain':
            plot_glass_brain(img, threshold=threshold,
                             vmax=vmax,
                             plot_abs=False,
                             output_file=src,
                             colorbar=True,
                             # cmap=cmap_white
                             )
        else:
            raise ValueError('Wrong view type in `view_types`: got %s' %
                             view_type)
        srcs.append(src)
    return srcs, name
Exemple #16
0
def get_masker_coord(atlasname):
    """ Get coordinates of parcellation (3D) from a brain atlas image 
    defined by labels (integers)
    
    Parameters:
    ---------
        atlasname : string - pathway of the atlas
            OR is atlas is BASC
                tuple  or list as 
                filename[0]='BASC'
                filename[1]='sym' or 'asym'
                filename[2]= str of nb of parcel (version): '444'
    """

    if 'BASC' in atlasname:
        basc = datasets.fetch_atlas_basc_multiscale_2015(
            version=atlasname[1])['scale' + atlasname[2]]
        atlasname = basc

    nib_parcel = nib.load(atlasname)
    labels_data = nib_parcel.get_data()
    #fetch all possible label values
    all_labels = np.unique(labels_data)
    # remove the 0. value which correspond to voxels out of ROIs
    all_labels = all_labels[1:]
    #    bari_labels = np.zeros((all_labels.shape[0],3))
    #    ## go through all labels
    #    for i,curlabel in enumerate(all_labels):
    #        vox_in_label = np.stack(np.argwhere(labels_data == curlabel))
    #        bari_labels[i] = vox_in_label.mean(axis=0)
    #
    allcoords = []
    for i, curlabel in enumerate(all_labels):
        img_curlab = math_img(formula="img==%d" % curlabel, img=atlasname)
        allcoords.append(find_xyz_cut_coords(img_curlab))
    allcoords = np.array(allcoords)
    return allcoords
Exemple #17
0
                verbose=10,
                random_state=0)
canica.fit(all_images)
components_img = canica.masker_.inverse_transform(canica.components_)
nibabel.save(components_img, 'components_img_cuts.nii')

### Visualize the results #####################################################
# Show some interesting components
import matplotlib.pyplot as plt
from nilearn.plotting import plot_roi, plot_stat_map, plot_glass_brain, find_xyz_cut_coords

fh = plt.figure(facecolor='w', figsize=(18, 10))
nrows = int(np.floor(np.sqrt(0.75 * n_components)))  # 4:3 aspect
ncols = int(np.ceil(n_components / float(nrows)))

all_cut_coords = [find_xyz_cut_coords(img) for img in iter_img(components_img)]
sort_idx = np.argsort(np.array(all_cut_coords)[:, 2])
for ci in range(n_components):
    ax = fh.add_subplot(nrows, ncols, ci + 1)
    ic_idx = sort_idx[ci]
    cut_coords = all_cut_coords[ic_idx]
    var_explained = canica.variance_[ic_idx]
    plot_stat_map(index_img(components_img, ic_idx),
                  title="IC%02d (v=%.1f)" % (ic_idx, var_explained),
                  axes=ax,
                  colorbar=False,
                  display_mode="z",
                  cut_coords=(cut_coords[2], ))

plt.show()
    rois = labels['name'].T
    n_r = len(rois)
    l=360./n_r#roi label size in figures     
    visu = atlas_filename
    all_ntwks = range(n_r)          
    networks = {'Auditory': [0,1],'striate' : [2],'DMN': [3,4,5,6],'Occ post' :[7],
                'Motor': [8],'Attentional' : [9,10,11,12,14,15,16,17,18],
                'Basal' : [13],'Visual secondary' : [19,20,21], 'Salience':[22,23,24],
                'Temporal(STS)':[25,26],'Langage':[27,28,29,30,31],'Cereb':[32],
                'Dors PCC': [33],'cing ins' :[34,35,36],'Ant IPS': [37,38],'All ROIs':all_ntwks}


coords = [] #chose regions representative coordinates, other wise it s computed with find_xyz_cut_coords
#coords = np.vstack((labels['x'], labels['y'], labels['z'])).T
if not coords:
    coords =[plotting.find_xyz_cut_coords(roi) for roi in image.iter_img(atlas_filename)]                  


root='/neurospin/grip/protocols/MRI/AVCnn_Dhaif_2016/AVCnn/AVCnn_data/' #fichier reg et conca pret pour analyse 
func_type_list = [ 'controlRSc','patientsRSc_LD', 'patientsRSc_LG']#  #name of each group's directory for functional images
reg_dirs = [ root+'rgt']#name of each group's directory for regressors (regressor have to be .txt files)
reg_prefix = 'art_mv_fmv_wm_vent_ext_hv_' #art_mv_fmv_wm_vent_ext_hv_regressor prefix (regressors must have corresponding functional file name after prefix: swars_ab_123456.nii and reg1_reg2_swars_ab_123456.txt)
common = 4 #initial differing character between regressors and functional file names
#choose report directory and name (default location is in root, default name is atlas_naabsolute
main_title ='AVCnn_Cont_LG_LD_'+MC_correction #
save_dir = root + 'reports_test/'
try:
    os.makedirs(save_dir)
except:
    print('Warning could not make dir '+save_dir)
    pass
extraction.fit()
regions_img = extraction.regions_img_

################################################################################
# Visualization
# Show region extraction results by importing image & plotting utilities
from nilearn import plotting
from nilearn.image import index_img
from nilearn.plotting import find_xyz_cut_coords

# Showing region extraction results using 4D maps visualization tool
plotting.plot_prob_atlas(regions_img, display_mode='z', cut_coords=1,
                         view_type='contours', title="Regions extracted.")

# To reduce the complexity, we choose to display all the regions
# extracted from network 3
import numpy as np

DMN_network = index_img(atlas_networks, 3)
plotting.plot_stat_map(DMN_network, display_mode='z', cut_coords=1,
                       title='Network 3', colorbar=False)

regions_indices_network3 = np.where(np.array(extraction.index_) == 3)
for index in regions_indices_network3[0]:
    cur_img = index_img(extraction.regions_img_, index)
    coords = find_xyz_cut_coords(cur_img)
    plotting.plot_stat_map(cur_img, display_mode='z', cut_coords=coords[2:3],
                           title="Blob of network3", colorbar=False)

plotting.show()
Exemple #20
0
def plot_spm(
        zmaps,
        roi_dict,
        bg_img=None,
        z_threshold=0,
        f=None,
        axes=None,
        # brain_mask='../Templates/mni_icbm152_nlin_asym_09c_nifti/mni_icbm152_nlin_asym_09c.nii.gz',
        roi_to_plot=('PreSMA', 'M1', 'ACC', 'rIFG', 'STR', 'GPe', 'GPi',
                     'STN'),
        cut_coords=[None, None, None, None, None, None, None, None],
        contrasts=('failed_stop - go_trial', 'successful_stop - go_trial',
                   'failed_stop - successful_stop'),
        plot_columns=(0, 1, 3, 4, 6, 7),
        empty_plots=False,
        skip_all_but_last=False,
        **kwargs):

    if f is None:
        gridspec = dict(hspace=0.0,
                        wspace=0.0,
                        width_ratios=[1, 1, 0.05, 1, 1, .05, 1, 1, .1])
        f, axes = plt.subplots(
            len(roi_to_plot), len(zmaps) + 3, gridspec_kw=gridspec
        )  # add 3 columns: 2 interspace, 1 on the right for the colorbar

    if empty_plots:
        f.set_size_inches(len(zmaps) * 4, len(roi_to_plot) * 4)
        return f, axes

    all_cut_coords = []
    all_disps = []
    for row_n, roi in enumerate(roi_to_plot):
        # for debugging
        if skip_all_but_last:
            if row_n < (len(roi_to_plot) - 1):
                continue

        # get cut coordinates based on 1 hemisphere (if applicable)
        if roi in ['STR', 'STN', 'PreSMA', 'GPe', 'GPi']:
            roi_map = roi_dict['l' + roi]
        else:
            roi_map = roi_dict[roi]
#        roi_map = make_conjunction_mask(roi_map['fn'], brain_mask)
        if roi == 'rIFG':
            ## saggital
            if cut_coords[row_n] is None:
                this_cut_coords = plotting.find_xyz_cut_coords(
                    roi_map['fn'])[0:1]
            else:
                this_cut_coords = cut_coords[row_n]
            display_mode = 'x'
            plot_rois = ['rIFG']  #, 'M1', 'rPreSMA']
        elif roi == 'STR':
            ## axial view
            if cut_coords[row_n] is None:
                this_cut_coords = plotting.find_xyz_cut_coords(
                    roi_map['fn'])[2:3]
            else:
                this_cut_coords = cut_coords[row_n]

            display_mode = 'z'
            plot_rois = [
                'rIFG', 'M1', 'lSTR', 'lGPe', 'lGPi', 'lSTN', 'rSTR', 'rGPe',
                'rGPi', 'rSTN'
            ]
        elif roi == 'STN':
            ## plot coronal view
            if cut_coords[row_n] is None:
                this_cut_coords = plotting.find_xyz_cut_coords(
                    roi_map['fn'])[1:2]
            else:
                this_cut_coords = cut_coords[row_n]

            display_mode = 'y'
            plot_rois = [
                'rIFG', 'M1', 'lSTR', 'lGPe', 'lGPi', 'lSTN', 'rSTR', 'rGPe',
                'rGPi', 'rSTN'
            ]

        all_cut_coords.append({display_mode: this_cut_coords[0]})

        # loop over contrasts for columns
        for col_n, map_n in zip(plot_columns, np.arange(len(zmaps))):
            zmap = zmaps[map_n]
            if skip_all_but_last:
                if col_n < (len(zmaps) - 1):
                    continue

            if row_n == (len(roi_to_plot) - 1) and col_n == (len(zmaps) - 1):
                # plot colobar in the last plot
                cbar = False
            else:
                cbar = False

#             # do not plot in column 2 or 5
#             plot_col = col_n
#             if col_n > 1:
#                 plot_col = col_n + 1
#             if col_n > 3:
#                 plot_col = col_n + 2

            if isinstance(z_threshold, list):
                this_threshold = z_threshold[map_n]
            else:
                this_threshold = z_threshold
            ax = axes[row_n, col_n]

            #             print(cbar)
            disp = plotting.plot_stat_map(zmap,
                                          bg_img=bg_img,
                                          threshold=this_threshold,
                                          cut_coords=this_cut_coords,
                                          display_mode=display_mode,
                                          axes=ax,
                                          colorbar=cbar,
                                          **kwargs)

            # just plot *all* contours, always
            for roi_ in plot_rois:
                roi_map = roi_dict[roi_]
                #             for roi_, roi_map in roi_dict.items():
                #                 print(roi_map)
                add_contours(disp,
                             roi=roi_map['fn'],
                             thr=roi_map['threshold'],
                             color=roi_map['color'])

            # determine limits (xlim/ylim) based on first column, and apply to all others
            this_key = list([x for x in disp.axes.keys()])[0]
            # Determine new xlim/ylim based on first column
            if col_n == plot_columns[0]:
                # extract old/current limits
                cur_xlim = disp.axes[this_key].ax.get_xlim()
                cur_ylim = disp.axes[this_key].ax.get_ylim()
                if display_mode == 'x':
                    new_xlim = get_prop_limits([0, 1], cur_xlim)
                    new_ylim = get_prop_limits([0, 1], cur_ylim)
                elif display_mode == 'z' and 'STN' in roi:
                    new_xlim = get_prop_limits([.25, .75], cur_xlim)
                    new_ylim = get_prop_limits([.40, .90], cur_ylim)
                elif display_mode == 'z' and 'STR' in roi:
                    new_xlim = get_prop_limits([0, 1], cur_xlim)
                    new_ylim = get_prop_limits([0.3, 1], cur_ylim)
                elif display_mode == 'y':
                    new_xlim = get_prop_limits([.26, .74], cur_xlim)
                    new_ylim = get_prop_limits([.25, .75], cur_ylim)

            # Change axes limits
            disp.axes[this_key].ax.set_xlim(new_xlim[0], new_xlim[1])
            disp.axes[this_key].ax.set_ylim(new_ylim[0], new_ylim[1])

            all_disps.append(disp)


#             # set new xlimits if necessary (ie zoom for STN view)
#             if 'STN' in roi and display_mode == 'z':
#                 this_key = [x for x in disp.axes.keys()]
#                 this_key = this_key[0]
#                 cur_xlim = disp.axes[this_key].ax.get_xlim()
#                 cur_ylim = disp.axes[this_key].ax.get_ylim()
#                 new_xlim = get_prop_limits([.25, .75], cur_xlim)
#                 new_ylim = get_prop_limits([.40, .90], cur_ylim)
#                 disp.axes[this_key].ax.set_xlim(new_xlim[0], new_xlim[1])
#                 disp.axes[this_key].ax.set_ylim(new_ylim[0], new_ylim[1])
#             elif 'STN' in roi and display_mode == 'y':
#                 this_key = [x for x in disp.axes.keys()]
#                 this_key = this_key[0]
#                 cur_xlim = disp.axes[this_key].ax.get_xlim()
#                 cur_ylim = disp.axes[this_key].ax.get_ylim()
#                 new_xlim = get_prop_limits([.25, .75], cur_xlim)
#                 new_ylim = get_prop_limits([.25, .75], cur_ylim)
#                 disp.axes[this_key].ax.set_xlim(new_xlim[0], new_xlim[1])
#                 disp.axes[this_key].ax.set_ylim(new_ylim[0], new_ylim[1])
#             elif 'STR' in roi and display_mode == 'z':
#                 this_key = [x for x in disp.axes.keys()]
#                 this_key = this_key[0]
#                 cur_xlim = disp.axes[this_key].ax.get_xlim()
#                 cur_ylim = disp.axes[this_key].ax.get_ylim()
#                 new_xlim = get_prop_limits([0, 1], cur_xlim)
#                 new_ylim = get_prop_limits([.3, 1], cur_ylim)
#                 disp.axes[this_key].ax.set_xlim(new_xlim[0], new_xlim[1])
#                 disp.axes[this_key].ax.set_ylim(new_ylim[0], new_ylim[1])

#             all_disps.append(disp)

# add labels
    if not skip_all_but_last:
        for row_n, ax in enumerate(axes[:, 0]):
            cc = all_cut_coords[row_n]
            disp_mode = [x for x in cc.keys()][0]
            coord = cc[disp_mode]
            ax.annotate('%s = %d' % (disp_mode, int(coord)),
                        xy=(0, 0.5),
                        xytext=(-ax.yaxis.labelpad - 0.5, 0),
                        xycoords=ax.yaxis.label,
                        textcoords='offset points',
                        rotation=90,
                        ha='right',
                        va='center')

    f.set_size_inches(len(zmaps) * 4, len(roi_to_plot) * 4)

    return f, axes, all_disps
Exemple #21
0
    def _reporting(self):
        """
        Returns
        -------
        displays : list
            A list of all displays to be rendered.

        """
        from nilearn.reporting.html_report import _embed_img
        from nilearn import plotting
        if self._reporting_data is not None:
            maps_image = self._reporting_data['maps_image']
        else:
            maps_image = None

        if maps_image is not None:
            n_maps = image.get_data(maps_image).shape[-1]
            maps_to_be_displayed = range(n_maps)
            if isinstance(self.displayed_maps, int):
                if n_maps < self.displayed_maps:
                    msg = ("`generate_report()` received "
                           f"{self.displayed_maps} to be displayed. "
                           f"But masker only has {n_maps} maps."
                           f"Setting number of displayed maps to {n_maps}.")
                    warnings.warn(category=UserWarning, message=msg)
                    self.displayed_maps = n_maps
                maps_to_be_displayed = range(self.displayed_maps)
            elif isinstance(self.displayed_maps, (list, np.ndarray)):
                if max(self.displayed_maps) > n_maps:
                    raise ValueError("Report cannot display the "
                                     "following maps "
                                     f"{self.displayed_maps} because "
                                     f"masker only has {n_maps} maps.")
                maps_to_be_displayed = self.displayed_maps
            self._report_content['report_id'] = self.report_id
            self._report_content['number_of_maps'] = n_maps
            self._report_content['displayed_maps'] = list(maps_to_be_displayed)
            img = self._reporting_data['img']
            embeded_images = []
            if img is not None:
                dim = image.load_img(img).shape
                if len(dim) == 4:
                    # compute middle image from 4D series for plotting
                    img = image.index_img(img, dim[-1] // 2)
                # Find the cut coordinates
                cut_coords = [
                    plotting.find_xyz_cut_coords(image.index_img(
                        maps_image, i)) for i in maps_to_be_displayed
                ]
                for idx, component in enumerate(maps_to_be_displayed):
                    display = plotting.plot_img(img,
                                                cut_coords=cut_coords[idx],
                                                black_bg=False,
                                                cmap='CMRmap_r')
                    display.add_overlay(image.index_img(maps_image, idx),
                                        cmap=plotting.cm.black_blue)
                    embeded_images.append(_embed_img(display))
                    display.close()
                return embeded_images
            else:
                msg = ("No image provided to fit in NiftiMapsMasker. "
                       "Plotting only spatial maps for reporting.")
                warnings.warn(msg)
                self._report_content['warning_message'] = msg
                for component in maps_to_be_displayed:
                    display = plotting.plot_stat_map(
                        image.index_img(maps_image, component))
                    embeded_images.append(_embed_img(display))
                    display.close()
                return embeded_images
        else:
            return [None]
    # is not implemented. See Note section above for details.
    components_img = estimator.components_img_
    components_img.to_filename('%s_resting_state.nii.gz' % names[estimator])
    components_imgs.append(components_img)

###############################################################################
# Visualize the results
# ----------------------
from nilearn.plotting import (plot_prob_atlas, find_xyz_cut_coords, show,
                              plot_stat_map)
from nilearn.image import index_img

# Selecting specific maps to display: maps were manually chosen to be similar
indices = {dict_learning: 25, canica: 33}
# We select relevant cut coordinates for displaying
cut_component = index_img(components_imgs[0], indices[dict_learning])
cut_coords = find_xyz_cut_coords(cut_component)
for estimator, components in zip(estimators, components_imgs):
    # 4D plotting
    plot_prob_atlas(components,
                    view_type="filled_contours",
                    title="%s" % names[estimator],
                    cut_coords=cut_coords,
                    colorbar=False)
    # 3D plotting
    plot_stat_map(index_img(components, indices[estimator]),
                  title="%s" % names[estimator],
                  cut_coords=cut_coords,
                  colorbar=False)
show()
    subject_time_series.append(region_ts)

##############################################################################
# Computing group-sparse precision matrices
from nilearn.connectome import GroupSparseCovarianceCV
gsc = GroupSparseCovarianceCV(verbose=2)
gsc.fit(subject_time_series)

from sklearn import covariance
gl = covariance.GraphLassoCV(verbose=2)
gl.fit(np.concatenate(subject_time_series))

##############################################################################
# Displaying results
atlas_imgs = image.iter_img(msdl_atlas_dataset.maps)
atlas_region_coords = [plotting.find_xyz_cut_coords(img) for img in atlas_imgs]

plotting.plot_connectome(gl.covariance_,
                         atlas_region_coords,
                         edge_threshold='90%',
                         title="Covariance",
                         display_mode="lzr")
plotting.plot_connectome(-gl.precision_,
                         atlas_region_coords,
                         edge_threshold='90%',
                         title="Sparse inverse covariance (GraphLasso)",
                         display_mode="lzr",
                         edge_vmax=.5,
                         edge_vmin=-.5)
plot_matrices(gl.covariance_, gl.precision_, "GraphLasso")
Exemple #24
0
def plot_overlaps(info, atlas_names, dimension, output_dir=None,
                  cmap=plt.cm.gist_rainbow, proposed_labels=None):
    """Plot the regions overlapped from existing anatomical atlases

    Parameters
    ----------
    info : pd.DataFrame
        Data frame contains ovelap information of specific dimension
        with regards to : ['harvard_oxford', 'destrieux', 'diedrichsen',
                           'jhu', 'juelich', 'mist', 'yeo_networks7',
                           'yeo_networks17', 'component', 'cut_coords']
        The info columns

    atlas_names : str or list of str
        Grab atlas from web given the name. Few are shipped with FSL
        and Nilearn.
        Valid options:  ['harvard_oxford', 'destrieux', 'diedrichsen',
                         'juelich', 'jhu', 'mist', 'yeo_networks7',
                         'yeo_networks17']

    dimension : int
        DiFuMo atlas dimension

    cmap : instance of matplotlib cmap or str, default='gist_rainbow'
        Look at these link
        https://nilearn.github.io/auto_examples/01_plotting/plot_colormaps.html#sphx-glr-auto-examples-01-plotting-plot-colormaps-py

    output_dir : str
        Path to save the plots

    proposed_labels : pd.DataFrame, optional
        DiFuMo proposed labels useful for comparisons.
    """
    atlases = fetch_atlases(atlas_names)
    cmap = plt.cm.get_cmap(cmap)
    color_list = cmap(np.linspace(0, 1, dimension))
    difumo = fetch_difumo(dimension=dimension)
    maps_img = nibabel.load(difumo.maps)
    if proposed_labels is None:
        proposed_labels = difumo.labels
    for comp_idx, (img, color) in enumerate(zip(image.iter_img(maps_img),
                                                color_list)):
        cut_coords = plotting.find_xyz_cut_coords(img)
        this_data = info[info['component'] == comp_idx]
        masked_data = _mask_background(this_data)
        columns = _remove_columns(masked_data)
        fig, axes = plt.subplots(ncols=2, nrows=len(columns) + 1,
                                 figsize=(10, 22), facecolor='k')
        proposed_label = proposed_labels.iloc[comp_idx].Difumo_names
        # plot difumo component-wise
        axbig = _simplify_grid(fig, axes, 0)
        _plot_difumo(img, axbig, proposed_label, cut_coords,
                     dimension)
        # plot overlapped references - backbone for naming DiFuMo
        for atlas_idx, atlas in enumerate(columns):
            labels_img, labels = atlases[atlas].maps, atlases[atlas].labels
            # this atlas match for component index
            match_found = masked_data[atlas].values[0]
            _plot_references(match_found, labels_img, labels,
                             atlas, atlas_idx, fig, axes,
                             cut_coords, color)
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        plt.savefig(join(output_dir,
                         '{0}.jpg'.format(comp_idx + 1)),
                    facecolor='k', bbox_inches='tight')
        plt.close()
    return
Exemple #25
0
    isinstance(name, str) for name in groups if name == group_name_2)

# Load all masks into a list
masks_1 = []
masks_2 = []
for i, sub in enumerate(subjects):
    if groups[i] == group_name_1:
        masks_1.append(ni.load(os.path.join(data_dir, sub, 'mrs', mask_file)))
    if groups[i] == group_name_2:
        masks_2.append(ni.load(os.path.join(data_dir, sub, 'mrs', mask_file)))

# Calculate the coordinates of the centroids
centres_1 = np.zeros((n_subs_1, 3))
centres_2 = np.zeros((n_subs_2, 3))
for i in range(n_subs_1):
    centres_1[i, :] = plotting.find_xyz_cut_coords(masks_1[i])
for i in range(n_subs_2):
    centres_2[i, :] = plotting.find_xyz_cut_coords(masks_2[i])

# Create a dummy adjacency matrix
adjacency_matrix_1 = np.zeros((n_subs_1, n_subs_1))
adjacency_matrix_2 = np.zeros((n_subs_2, n_subs_2))
# Plot the figure
fig = plt.figure()
fig.set_size_inches(5, 3)
axes1 = plt.subplot(111)
plotting.plot_connectome(adjacency_matrix=adjacency_matrix_1,
                         node_coords=centres_1,
                         node_size=50,
                         node_color=node_colour_1,
                         display_mode='xz',
doc = xmltodict.parse(xml.text)["atlas"]["data"][
    "label"]  # convert to a superior data structure :)

# We will store region voxel value, name, and a center coordinate
regions = pandas.DataFrame(columns=["value", "name", "x", "y", "z"])

count = 0
for region in doc:
    regions.loc[count, "value"] = int(region["index"])
    regions.loc[count, "name"] = region["name"]
    count += 1

# USE NILEARN TO FIND REGION COORDINATES (the center of the largest activation connected component)
for region in regions.iterrows():
    label = region[1]["value"]
    roi = numpy.zeros(aal4mm.shape)
    roi[aal4mm.get_data() == label] = 1
    nii = nibabel.Nifti1Image(roi, affine=aal4mm.get_affine())
    x, y, z = [int(x) for x in find_xyz_cut_coords(nii)]
    regions.loc[region[0], ["x", "y", "z"]] = [x, y, z]

# Save data to file for application
regions.to_csv("../data/aal_4mm_region_coords.tsv", sep="\t")

# We will also flatten the brain-masked imaging data into a vector,
# so we can select a region x,y,z based on the name
region_lookup = pandas.DataFrame(columns=["aal"])
region_lookup["aal"] = aal4mm.get_data()[img4mm.get_data() != 0]

region_lookup.to_pickle("../data/aal_4mm_region_lookup.pkl")
def run_mini_pipeline():
    atlas = datasets.fetch_atlas_msdl()
    atlas_img = atlas['maps']
    labels = pd.read_csv(atlas['labels'])['name']

    masker = NiftiMapsMasker(maps_img=atlas_img,
                             standardize=True,
                             memory='/tmp/nilearn',
                             verbose=0)

    data = datasets.fetch_adhd(number_subjects)

    figures_folder = '../figures/'
    count = 0
    for func_file, confound_file in zip(data.func, data.confounds):

        # fit the data to the atlas mask, regress out confounds
        time_series = masker.fit_transform(func_file, confounds=confound_file)

        correlation = np.corrcoef(time_series.T)

        #plotting starts here
        plt.figure(figsize=(10, 10))
        plt.imshow(correlation, interpolation="nearest")
        x_ticks = plt.xticks(range(len(labels)), labels, rotation=90)
        y_ticks = plt.yticks(range(len(labels)), labels)
        corr_file = figures_folder + 'subject_number_' + str(
            count) + '_correlation.pdf'
        plt.savefig(corr_file)

        atlas_region_coords = [
            plotting.find_xyz_cut_coords(img)
            for img in image.iter_img(atlas_img)
        ]
        threshold = 0.6
        plotting.plot_connectome(correlation,
                                 atlas_region_coords,
                                 edge_threshold=threshold)
        connectome_file = figures_folder + 'subject_number_' + str(
            count) + '_connectome.pdf'
        plt.savefig(connectome_file)

        #graph setup

        #binarize correlation matrix
        correlation[correlation < threshold] = 0
        correlation[correlation != 0] = 1

        graph = nx.from_numpy_matrix(correlation)

        partition = louvain.best_partition(graph)

        values = [partition.get(node) for node in graph.nodes()]

        plt.figure()
        nx.draw_spring(graph,
                       cmap=plt.get_cmap('jet'),
                       node_color=values,
                       node_size=30,
                       with_labels=True)
        graph_file = figures_folder + 'subject_number_' + str(
            count) + '_community.pdf'
        plt.savefig(graph_file)

        count += 1

        plt.close('all')
    correlations.append(correlation)

# Mean of all correlations
import numpy as np

mean_correlations = np.mean(correlations,
                            axis=0).reshape(n_regions_extracted,
                                            n_regions_extracted)

# Visualization
# Plotting connectome results
import matplotlib.pyplot as plt
from nilearn import image

regions_imgs = image.iter_img(regions_extracted_img)
coords_connectome = [plotting.find_xyz_cut_coords(img) for img in regions_imgs]
title = 'Correlation interactions between %d regions' % n_regions_extracted
plt.figure()
plt.imshow(mean_correlations,
           interpolation="nearest",
           vmax=1,
           vmin=-1,
           cmap=plt.cm.bwr)
plt.colorbar()
plt.title(title)
plotting.plot_connectome(mean_correlations,
                         coords_connectome,
                         edge_threshold='90%',
                         title=title)

################################################################################
Exemple #29
0
roi_coords = []
for i_roi, roi in enumerate(roi_paths):
    roi_nii = nib.load(roi)
    roi_th = nib.Nifti1Image(np.array(roi_nii.get_data() > 0, dtype=np.int16),
                             roi_nii.get_affine(),
                             header=roi_nii.get_header())
    rroi = resample_img(roi_th,
                        target_affine=tmp_img.get_affine(),
                        target_shape=tmp_img.shape[:3],
                        interpolation='nearest')

    cur_roi_img = nib.Nifti1Image(np.array(np.squeeze(rroi.get_data()) > 0,
                                           dtype=np.int32),
                                  affine=tmp_img.get_affine())
    roi_coords.append(plotting.find_xyz_cut_coords(cur_roi_img))

RES_NAME = 'net_pred_combined_clf_' + ROI_DIR
WRITE_DIR = op.join(os.getcwd(), RES_NAME)
if not op.exists(WRITE_DIR):
    os.mkdir(WRITE_DIR)

##############################################################################
# load+preprocess data
##############################################################################

print('Loading ADHD data (1=ADHD)...')
rs_files = glob.glob('/Volumes/porsche/adhd_niak/fmri*/*.nii.gz')
sub_ids = [int(f.split('_session')[0].split('X_')[-1]) for f in rs_files]

fo = open("adhd200_all.tsv", "rw+")
Exemple #30
0
def save_info(info, save_labels, atlas_names, dimension):
    """Save found records

    Parameters
    ----------
    info : dict
        Contains meta-data assigned to each atlas name such as
        overlap proportion, etc
        Each atlas dict contains following attributes:
            'intersection' : sparse matrix
                dot product between DiFuMo regions and regions in target
                atlas (existing pre-defined)

            'target_size' : np.ndarray
                Size of each region estimated in target atlas

            'overlap_proportion' : list of pd.Series
                Each list contains the proportion of overlap estimated
                between this region and all region in target sizes.
                Sorted according to most strong hit in the overlap.

            'overlap_size' : list
                Each list contain overlap in estimated sizes for all
                regions in target atlas.

    save_labels : dict
        List of original labels specific to each atlas. Useful
        for matching the overlap for the visualization of
        records.

    atlas_names : str or list of str
        Grab atlas from web given the name. Few are shipped with FSL
        and Nilearn.
        Valid options:  ['harvard_oxford', 'destrieux', 'diedrichsen',
                         'juelich', 'jhu', 'mist', 'yeo_networks7',
                         'yeo_networks17']

    dimension : int
        DiFuMo atlas dimension

    Returns
    -------
    data : pd.DataFrame
    """
    table = set_data_storage()
    maps_img = nibabel.load(fetch_difumo(dimension=dimension).maps)
    for i, img in enumerate(image.iter_img(maps_img)):
        cut_coords = plotting.find_xyz_cut_coords(img)
        table['cut_coords'].append(cut_coords)
        table['component'].append(i)
        for atlas in atlas_names:
            # Proporting of overlap with each index of difumo component
            this_atlas_info = info[atlas]['overlap_proportion'][i]
            if atlas in [
                    'harvard_oxford', 'diedrichsen', 'juelich', 'jhu', 'mist',
                    'yeo_networks7', 'yeo_networks17'
            ]:
                if len(this_atlas_info.index[:1]) != 0:
                    # grabbing the top one from the overlapped list
                    this_label = save_labels[atlas][
                        this_atlas_info.index[:1]][0]
                else:
                    this_label = 'none'
                if atlas == 'mist':
                    table[atlas].append(this_label[0])
                else:
                    table[atlas].append(this_label)
            else:
                this_label = save_labels[atlas][
                    this_atlas_info.index[:1]][0][1]
                this_label = this_label.decode()
                table[atlas].append(this_label)
    return pd.DataFrame(table)
display_atlas = nilearn.plotting.plot_prob_atlas(ref_atlas,
                                                 anat_img=anat_ref_file[0],
                                                 title=atlas_name + '_anat',
                                                 cut_coords=(5, 0, 0),
                                                 threshold=0.)

atlas_ref_labels = '/neurospin/grip/protocols/MRI/Resting_state_Victor_2014/atlases/atlas_fonctionel_control_AVCnn/AVCnn_roi_labels.csv'
#'/neurospin/grip/protocols/MRI/Resting_state_Victor_2014/atlases/atlas_fonctionel_control_AVCnn/AVCnn_roi_labels.csv'
#'/neurospin/grip/protocols/MRI/Resting_state_Victor_2014/AVCnn/resultats/references/msdl_rois_labels.csv'
#atlas_ref_labels = '/neurospin/grip/protocols/MRI/Resting_state_Victor_2014/AVCnn/resultats/references/labels_short.csv'
#labels_ref = np.recfromcsv(atlas_ref_labels)
labels_ref = open(atlas_ref_labels).read().split()
label_colors = np.random.rand(len(labels_ref), 3)
coords_ref = [
    plotting.find_xyz_cut_coords(roi) for roi in image.iter_img(ref_atlas)
]
rois_ref = np.asarray(labels_ref)
n_r = len(rois_ref)
l = 300. / n_r  #roi label size in figures
visu_ref = ref_atlas

at_check = [plt.gcf()]  #figure handle for atlas check

# prepare pairs for pairwise comparisons between groups
comps = []
for func_index in range(len(func_type_list) - 1):
    if func_index != len(func_type_list) - func_index:
        for i in range(func_index, len(func_type_list) - func_index):
            if i + 1 < len(func_type_list):
                comps.append(
Exemple #32
0
from nilearn.image import index_img
from nilearn.plotting import find_xyz_cut_coords

# Showing region extraction results using 4D maps visualization tool
plotting.plot_prob_atlas(regions_img,
                         display_mode='z',
                         cut_coords=1,
                         view_type='contours',
                         title="Regions extracted.")

# To reduce the complexity, we choose to display all the regions
# extracted from network 3
import numpy as np

DMN_network = index_img(atlas_networks, 3)
plotting.plot_roi(DMN_network,
                  display_mode='z',
                  cut_coords=1,
                  title='Network 3')

regions_indices_network3 = np.where(np.array(extraction.index_) == 3)
for index in regions_indices_network3[0]:
    cur_img = index_img(extraction.regions_img_, index)
    coords = find_xyz_cut_coords(cur_img)
    plotting.plot_roi(cur_img,
                      display_mode='z',
                      cut_coords=coords[2:3],
                      title="Blob of network3")

plotting.show()
coords_connectome = plotting.find_probabilistic_atlas_cut_coords(regions_img)

plotting.plot_connectome(mean_correlations,
                         coords_connectome,
                         edge_threshold='90%',
                         title=title)

################################################################################
# Plot regions extracted for only one specific network
# ----------------------------------------------------
components_img = atlas_harvard_oxford.maps
# First, we plot a network of index=4 without region extraction (left plot)
from nilearn import image

img = image.index_img(components_img, 1)
coords = plotting.find_xyz_cut_coords(img)
display = plotting.plot_stat_map(img,
                                 cut_coords=coords,
                                 colorbar=False,
                                 title='Showing one specific network')

################################################################################
# Now, we plot (right side) same network after region extraction to show that
# connected regions are nicely seperated.
# Each brain extracted region is identified as separate color.

# For this, we take the indices of the all regions extracted related to original
# network given as 4.
regions_indices_of_map3 = np.where(np.array(regions_index) == 1)

display = plotting.plot_anat(cut_coords=coords,
    # saving each subject correlation to correlations
    correlations.append(correlation)

# Mean of all correlations
import numpy as np
mean_correlations = np.mean(correlations, axis=0).reshape(n_regions_extracted,
                                                          n_regions_extracted)

###############################################################################
# Plot resulting connectomes
# ----------------------------
import matplotlib.pyplot as plt
from nilearn import image

regions_imgs = image.iter_img(regions_extracted_img)
coords_connectome = [plotting.find_xyz_cut_coords(img) for img in regions_imgs]
title = 'Correlation interactions between %d regions' % n_regions_extracted
plt.figure()
plt.imshow(mean_correlations, interpolation="nearest",
           vmax=1, vmin=-1, cmap=plt.cm.bwr)
plt.colorbar()
plt.title(title)
plotting.plot_connectome(mean_correlations, coords_connectome,
                         edge_threshold='90%', title=title)

################################################################################
# Plot regions extracted for only one specific network
# ----------------------------------------------------

# First, we plot a network of index=4 without region extraction (left plot)
img = image.index_img(components_img, 4)
xml = requests.get(response["label_description_file"])
doc = xmltodict.parse(xml.text)["atlas"]["data"]["label"]  # convert to a superior data structure :)

# We will store region voxel value, name, and a center coordinate
regions = pandas.DataFrame(columns=["value","name","x","y","z"])

count = 0
for region in doc:
    regions.loc[count,"value"] = int(region["index"]) 
    regions.loc[count,"name"] = region["name"] 
    count+=1

# USE NILEARN TO FIND REGION COORDINATES (the center of the largest activation connected component)
for region in regions.iterrows():
    label = region[1]["value"]
    roi = numpy.zeros(aal4mm.shape)
    roi[aal4mm.get_data()==label] = 1
    nii = nibabel.Nifti1Image(roi,affine=aal4mm.get_affine())
    x,y,z = [int(x) for x in find_xyz_cut_coords(nii)]
    regions.loc[region[0],["x","y","z"]] = [x,y,z]

# Save data to file for application
regions.to_csv("../data/aal_4mm_region_coords.tsv",sep="\t")

# We will also flatten the brain-masked imaging data into a vector,
# so we can select a region x,y,z based on the name
region_lookup = pandas.DataFrame(columns=["aal"])
region_lookup["aal"] = aal4mm.get_data()[img4mm.get_data()!=0]

region_lookup.to_pickle("../data/aal_4mm_region_lookup.pkl")
confound_filename = adhd_dataset.confounds[0]

# Computing some confounds
hv_confounds = mem.cache(nilearn.image.high_variance_confounds)(
    fmri_filename)

time_series = masker.transform(fmri_filename,
                                confounds=[hv_confounds, confound_filename])


print("-- Computing graph-lasso inverse matrix ...")
from sklearn import covariance
gl = covariance.GraphLassoCV(verbose=2)
gl.fit(time_series)

# Displaying results ##########################################################
atlas_imgs = image.iter_img(msdl_atlas_dataset.maps)
atlas_region_coords = [plotting.find_xyz_cut_coords(img) for img in atlas_imgs]

title = "GraphLasso"
plotting.plot_connectome(-gl.precision_, atlas_region_coords,
                         edge_threshold='90%',
                         title="Sparse inverse covariance")
plotting.plot_connectome(gl.covariance_,
                         atlas_region_coords, edge_threshold='90%',
                         title="Covariance")
plot_matrices(gl.covariance_, gl.precision_, title)


plt.show()
# Then find the center of the regions and plot a connectome
regions_img = regions_extracted_img
coords_connectome = plotting.find_probabilistic_atlas_cut_coords(regions_img)

plotting.plot_connectome(mean_correlations, coords_connectome,
                         edge_threshold='90%', title=title)

################################################################################
# Plot regions extracted for only one specific network
# ----------------------------------------------------

# First, we plot a network of index=4 without region extraction (left plot)
from nilearn import image

img = image.index_img(components_img, 4)
coords = plotting.find_xyz_cut_coords(img)
display = plotting.plot_stat_map(img, cut_coords=coords, colorbar=False,
                                 title='Showing one specific network')

################################################################################
# Now, we plot (right side) same network after region extraction to show that
# connected regions are nicely seperated.
# Each brain extracted region is identified as separate color.

# For this, we take the indices of the all regions extracted related to original
# network given as 4.
regions_indices_of_map3 = np.where(np.array(regions_index) == 4)

display = plotting.plot_anat(cut_coords=coords,
                             title='Regions from this network')
    # Grab extracted components umasked back to Nifti image.
    # Note: For older versions, less than 0.4.1. components_img_
    # is not implemented. See Note section above for details.
    components_img = estimator.components_img_
    components_img.to_filename('%s_resting_state.nii.gz' %
                               names[estimator])
    components_imgs.append(components_img)

###############################################################################
# Visualize the results
# ----------------------
from nilearn.plotting import (plot_prob_atlas, find_xyz_cut_coords, show,
                              plot_stat_map)
from nilearn.image import index_img

# Selecting specific maps to display: maps were manually chosen to be similar
indices = {dict_learning: 25, canica: 33}
# We select relevant cut coordinates for displaying
cut_component = index_img(components_imgs[0], indices[dict_learning])
cut_coords = find_xyz_cut_coords(cut_component)
for estimator, components in zip(estimators, components_imgs):
    # 4D plotting
    plot_prob_atlas(components, view_type="filled_contours",
                    title="%s" % names[estimator],
                    cut_coords=cut_coords, colorbar=False)
    # 3D plotting
    plot_stat_map(index_img(components, indices[estimator]),
                  title="%s" % names[estimator],
                  cut_coords=cut_coords, colorbar=False)
show()
node_colour = 'red'

# Load in the participant IDs
subjects = pd.read_csv(data_dir + 'participants.tsv',
                       delimiter='\t')[ID_header]
n_subs = len(subjects)

# Load all masks into a list
all_masks = []
for i, sub in enumerate(subjects):
    all_masks.append(ni.load(os.path.join(data_dir, sub, 'mrs', mask_file)))

# Calculate the coordinates of the centroids
all_centres = np.zeros((n_subs, 3))
for i in range(n_subs):
    all_centres[i, :] = plotting.find_xyz_cut_coords(all_masks[i])

# Create a dummy adjacency matrix
adjacency_matrix = np.zeros((n_subs, n_subs))

# Plot the figure
fig = plt.figure()
fig.set_size_inches(5, 3)
axes1 = plt.subplot(111)
plotting.plot_connectome(adjacency_matrix=adjacency_matrix,
                         node_coords=all_centres,
                         node_size=50,
                         node_color=node_colour,
                         display_mode='xz',
                         node_kwargs={'alpha': 0.3},
                         axes=axes1)